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Abstract

DeFi Leverage

In decentralized finance (DeFi), lending protocols are governed by predefined algorithms that fa-
cilitate automatic loans - allowing users to take on leverage. This paper examines DeFi leverage –
i.e., the asset-to-equity ratio – using wallet-by-wallet data on major lending platforms. The overall
leverage typically ranges between 1.4 and 1.9, while the largest and most active users consistently
exhibit higher leverage in comparison to the rest. Leverage is mainly driven by loan-to-value re-
quirements and borrow cost, as well as crypto market price movements and sentiments. Higher
borrower leverage generally undermines lending resilience, particularly increasing the share of
outstanding debt close to being liquidated. Borrowers with high leverage are more likely to tilt
towards volatile collateral when their debt positions are about to be liquidated.

JEL classification: G12, G23, O36

Keywords: Leverage, collateralised borrowing, decentralised finance, automated algorithm.



1 Introduction

Decentralized finance (DeFi) has witnessed a meteoric rise since 2020, disrupting traditional finan-

cial services by offering users an alternative way of conducting transactions. Among the plethora

of DeFi protocols, lending platforms have emerged as a cornerstone, facilitating collateralised bor-

rowing activities on an economically significant scale (Aramonte, Huang, and Schrimpf, 2021;

Chiu, Ozdenoren, Yuan, and Zhang, 2022). At their zenith, these platforms held over $35 billion

in deposits and $25 billion in outstanding debt, underscoring their significance within the DeFi

ecosystem (IOSCO, 2022; FSB, 2023b). Despite its importance, the intricacies of user behavior

and pool dynamics within DeFi lending remain largely unexplored.

Borrowing with collateral and the associated leverage, however, are not new topics in tradi-

tional finance. The role of collateral and leverage has been thoroughly investigated in general equi-

librium models (Geanakoplos, 2001; Geanakoplos, 2010), in financial intermediary theory (Adrian

and Shin, 2010; Adrian and Shin, 2014) and in asymmetric information problems (Acharya and

Viswanathan, 2011), as well as in eventful markets such as the repurchase agreements (i.e., repo)

(Infante, 2019). However, obtaining detailed data on user-level leverage has proven to be chal-

lenging, resulting in sporadic empirical analyses (with few exceptions such as Ang, Gorovyy, and

Van Inwegen, 2011; Kahraman and Tookes, 2017).

This paper aims to bridge these knowledge gaps by providing a comprehensive analysis of

leverage taking behavior in collateralised borrowing. The contribution of the paper is three-fold.

Firstly, to the best of our knowledge, we are the first to document individual DeFi wallets’ leverage

– which is defined as the asset-to-equity ratio (i.e., the leverage concept in Adrian and Shin (2010)

and Adrian and Shin (2014)). Using granular data from the Ethereum blockchain, our paper pro-

vides an extensive examination of DeFi leverage, elucidating its overall trends, group disparities,

and driving factors. Secondly, our analysis presents new empirical evidence on the systemic risk

impact of high leverage on DeFi lending platforms. In particular, we focus on lending resilience

and strategic substitution behaviour, based on individual wallets’ investment portfolio data. Last

but not least, although DeFi remains a predominantly self-referential system, the lessons gleaned

from DeFi lending – a real world laboratory – could potentially be relevant to understand financial

stability concerns, in particular in repo and securities lending markets given the similarities they
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share. We systemically review the similarities, as well as the distinctions, between DeFi lending

and traditional collateralised borrowing, such as repo.

The main findings consist of three parts. Firstly, we examine the overall trends of DeFi lever-

age. Throughout our sample period (January 2021 - March 2023), the overall leverage of DeFi

users1 ranges from 1.4 to 1.9. This leverage tracks the market-wide price movements with an ap-

proximately 3-month lag, probably reflecting speculative motives in crypto trading (Biais, Bisiere,

Bouvard, Casamatta, and Menkveld, 2020; Auer, Cornelli, Doerr, Frost, and Gambacorta, 2023).

This asset-to-equity ratio type of leverage is significantly lower than the leverage permitted by

the loan-to-value (LTV) ratio (i.e., the leverage concept in Geanakoplos (2001) and Fostel and

Geanakoplos (2014)), which ranges from 3.4 to 4.8.

User leverage exhibits heterogeneity across groups. We identify three distinct user groups:

those with the largest outstanding debt, the most frequent users interacting with lending protocols,

and the earliest adopters of DeFi lending platforms. Our observations reveal that both the largest

and most active wallets exhibit higher leverage compared to the remaining users, with their average

leverage often exceeding 2. We further classify wallets into those with long volatile asset positions

and those with short volatile asset positions. In other words, the long wallets pledge volatile

coins as collateral and borrow stablecoins and the short wallets pledge stablecoins as collateral and

borrow volatile coins. The leverage of short and long wallets is negatively correlated. Specifically,

when volatile assets appreciate, the leverage of long (short) wallets decreases (increases) as their

collateral (debt) value increases.

Next, we explore various hypotheses to identify the factors that are associated with high bor-

rower leverage. Our findings indicate that a user’s leverage is higher when they face higher LTV-

permitted leverage, lower net borrowing cost, and higher market sentiment. In addition, it is strik-

ing that the actual leverage is significantly lower than the (maximum) leverage allowed by the LTV

ratio required by the lending platforms. This gap can be explained by two channels. Firstly, since

borrowers face substantial losses upon automatic liquidation, they generally avoid leveraging to

the maximum extent, opting instead for a more conservative approach with a sizeable buffer. Sec-

ondly, when DeFi users experience asset appreciation (i.e., higher past returns), they deposit more

1In the context of DeFi, which is pseudo-anonymous, we use “wallets” and “users” interchangeably. Because
wallets are standalone units, largely isolated from the broader balance sheet of the entity.
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crypto assets in the lending platforms without taking debts, leading to higher amounts of assets

and lower leverage ceteris paribus.

Our third finding pertains to the systemic impact of high borrower leverage on DeFi lending

platforms. Leverage can propagate shocks via rising liquidity demands that stem from the fluc-

tuations of the collateral value (FSB, 2023a). We first investigate how borrower leverage affects

DeFi lending resilience. We assess lending resilience using two metrics: value-at-risk (VaR) and

liquidation share. The former gauges the share of loans that are close to being liquidated in total

loans, while the latter represents the share of loans that are liquidated. We find that higher borrower

leverage contributes to increased VaR, signifying heightened risk within lending pools. In terms

of liquidation share, however, borrower leverage does not appear to have a significant influence, as

liquidations are predominantly event-driven (Lehar and Parlour, 2022). Last but not least, although

borrowers in DeFi can adjust their collateral portfolios as long as meeting the LTV ratio require-

ments, we find that most borrowers on the brink of liquidation do not shift towards more volatile

collateral. This is probably due to the fact that the LTV ratio requirement is more stringent for

more volatile assets. However, conditional on those that do tilt towards volatile collateral, higher

borrower leverage is associated with more aggressive strategic collateral adjustment. This is con-

sistent with the asymmetric information problem stemming from the pooling of collateral across

borrowers (Chiu, Ozdenoren, Yuan, and Zhang, 2022).

We contribute to three relevant strands of literature. The first one is the rapidly evolving liter-

ature on DeFi lending.2 Aramonte, Huang, and Schrimpf (2021) provide a primer on the essential

building blocks in DeFi, highlighting the illusion of decentralisation. Carapella, Dumas, Gerszten,

Swem, and Wall (2022) discuss the potentials and risks of DeFi platforms. Chiu, Ozdenoren,

Yuan, and Zhang (2022) construct a theoretical model of DeFi lending that captures the distinct

feature of collateral pooling across borrowers and the associated asymmetric information problem.

2Another strand of the literature relates to trading in DeFi and in crypto in general. Interested readers can refer to
Aoyagi and Ito (2021); Lehar and Parlour (2021); Capponi and Jia (2021); Barbon and Ranaldo (2021); Hasbrouck,
Rivera, and Saleh (2022); Capponi, Jia, and Yu (2022); Loesch, Hindman, Richardson, and Welch (2021); Qin,
Zhou, and Gervais (2022); Heimbach, Wang, and Wattenhofer (2021); Heimbach, Schertenleib, and Wattenhofer
(2022); Malinova and Park (2023); Milionis, Moallemi, Roughgarden, and Zhang (2022); Milionis, Moallemi, and
Roughgarden (2023); Milionis, Moallemi, and Roughgarden (2023); Fritsch (2021); Berg, Fritsch, Heimbach, and
Wattenhofer (2022) and Torres, Camino, et al. (2021) for the former, and Cong and He (2019); Biais, Bisiere, Bouvard,
Casamatta, and Menkveld (2020); Makarov and Schoar (2021); Schmeling, Schrimpf, and Todorov (2022) and Auer,
Cornelli, Doerr, Frost, and Gambacorta (2023) for the latter.
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Chaudhary, Kozhan, and Viswanath-Natraj (2023) study the interest rate parity in DeFi lending

and identify a relationship between the interest rate differential and the futures premium. Gudgeon,

Werner, Perez, and Knottenbelt (2020) empirically analyze the differing interest rate rules of DeFi

lending protocols, whereas Rivera, Saleh, and Vandeweyer (2023) show that the pre-determined

interest rate curves of DeFi lending are less efficient compared to traditional lending platforms.

Lehar and Parlour (2022) study the price impact of liquidations in DeFi lending, identifying a po-

tential source of fragility and spillover factor in this nascent financial segment. Similarly, Perez,

Werner, Xu, and Livshits (2021) and Qin, Zhou, Gamito, Jovanovic, and Gervais (2021) empiri-

cally study liquidations in DeFi and the risks that stem from them. Heimbach, Schertenleib, and

Wattenhofer (2023) examine a recent episode in which the available liquidity of a lending pool was

entirely depleted and analyse the underlying issues and counterfactual. Yaish, Tochner, and Zohar

(2022) discuss how cryptocurrency miners could manipulate their interest rate on DeFi loans by

adjusting the block rate, whereas Heimbach, Schertenleib, and Wattenhofer (2023) dissect a recent

price manipulation attack on a lending protocol. Finally, Tovanich, Kassoul, Weidenholzer, and

Prat (2023) study financial contagion in Compound, i.e., the second biggest DeFi lending protocol

on the Ethereum blockchain. Our research complements this strand of literature by presenting new

evidence on DeFi leverage and its consequent effect on lending resilience.

The second strand of literature relates to leverage in traditional markets. McGuire and Tsatsa-

ronis (2008) put forth a “regression-based” methodology for estimating hedge fund leverage using

publicly available data. Ang, Gorovyy, and Van Inwegen (2011) provide an in-depth analysis of

hedge fund leverage based on supervisory data. Adrian and Shin (2014) examine the impact of

leverage on financial stability, as well as its procyclicality. Kahraman and Tookes (2017) use the

unique features of India’s margin trading system to establish a causal relationship between traders’

leverage and a stock’s market liquidity. Utilising the granular transaction data, we contribute to

this literature by identifying the distinct driving factors behind leverage and the impact of high

borrower leverage.

We also contribute to the literature on repo markets. Krishnamurthy, Nagel, and Orlov (2014)

find that repo volume backed by private asset-backed securities falls to near zero during the global

financial crisis. In contrast, Copeland, Martin, and Walker (2014) present evidence suggesting that

there was no system-wide run on repo, using confidential data on tri-party repo. Infante (2019)
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develops a model of repo intermediation that reconciles the discrepancy in the aforementioned

analysis on repo market runs. We enrich this strand of literature by understanding an alternative

approach to collateralised borrowing.

The rest of the paper is organised in the following. We first explain the mechanics of DeFi

lending and contrast that to repo trading and securities lending in Section 2. In Section 3, we show

the stylised facts on DeFi leverage, describing the trend as well as the group features. To understand

the driving factors, we run wallet-day level panel regressions to test several hypotheses. Section 4

looks into the impact of leverage on lending pool resilience. Section 5 examines how high leverage

affects borrowers’ collateral selection when their positions are close to being liquidated. Section 6

concludes.

2 Institutional background and data

How DeFi lending works. On DeFi lending platforms, a user can deposit crypto assets into a

lending pool and receives a claim on their share of the pool. Smart contracts behind these platforms

enable the user to use this claim as collateral to borrow from the same asset or other assets, subject

to loan-to-value (LTV) ratios (Figure 1). Table 1 reports the LTV ratio as of the end of March 2023

for major crypto assets. For instance, on Aave v2, the LTV ratio of USDC – a main stablecoin

– is 80%, which means that for a collateral value of $100 USDC, one can have a debt value of

up to $80. Thus, the associated haircut requirement of USDC is 20% and the implied maximum

leverage is 5 (= 1
1−LTV ratio ). The LTV ratio varies across collateral and time depending on the risk

management of the DeFi lending platforms. Appendix A provides a detailed description of how

the LTV ratio and borrowing/deposit rates are determined in DeFi lending. We note here that the

LTV ratio is set and updated by the protocol governance – a decentralised autonomous organisation

(DAO) – based on risk assessment on smart contract security, counterparty risk, and market risk.

There are two leverage concepts. One is the leverage requirement imposed by the lending

platforms – i.e., the maximum leverage implied by the LTV ratio – which is a key variable in

the leverage cycle proposed by Geanakoplos (2010); Fostel and Geanakoplos (2014). The other

concept is the actual leverage in a user’s portfolio, which measures to what extent the user’s assets
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Table 1. Loan-to-value ratio and implied leverage. LTV is loan-to-value ratio. Haircut is the corresponding discount
of the collateral value. LeverageI is the implied leverage requirement from the LTV ratio. The data is from lending
platforms as of 31 March 2023.

Aave v2 Compound
LTV Haircut LeverageI LTV Haircut LeverageI

USDC 0.800 0.200 5.000 0.855 0.145 6.897
USDT 0.000 1.000 1.000 0.000 1.000 1.000
DAI 0.750 0.250 4.000 0.835 0.165 6.061
ETH 0.825 0.175 5.714 0.825 0.175 5.714
BTC 0.720 0.280 3.571 0.700 0.300 3.333

are support by their own equity – i.e., the asset-to-equity ratio (Adrian and Boyarchenko, 2012;

Adrian and Shin, 2014). Figure 1 shows a stylised balance sheet of a user that uses volatile coins

(VC) as collateral to borrow stablecoins (SC). From the user’s perspective, their assets include the

deposits on these platforms and other coins they held external to DeFi lending platforms. Their

liabilities consist of (collateralised) debt on these platforms. The difference between assets and debt

constitutes the user’s equity. Both concepts capture different aspects of leverage. Given the focus

of this paper is on the users’ borrowing behaviours, the term “leverage” refers to the asset-to-equity

ratio, while “(LTV-)implied leverage” refers to the leverage (or margin) requirement imposed by

the platform.

Figure 1. Mechanics of DeFi lending. This figure shows the balance sheet of a user that borrows stablecoins (SC)
using volatile coins (VC) as collateral.

How DeFi lending differs from repo and securities borrowing. DeFi lending bears similarities

to repo and securities borrowing but also exhibits unique characteristics. Table 2 summarises
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the key differences. First, DeFi lending counterparties tend to be pseudonymous, whereas repo

counterparties are usually known. Second, DeFi lending pools collateral across borrowers, as the

pool claim is used as collateral (Chiu, Ozdenoren, Yuan, and Zhang, 2022), while repo collateral

is typically segregated among borrowers (Copeland, Martin, and Walker, 2014).

Third, DeFi lending features predefined borrow rates and haircuts, with borrow rates dependent

on the utilisation rate, or the proportion of the pool asset lent out (Rivera, Saleh, and Vandeweyer,

2023). Conversely, repo rates and haircuts are determined flexibly through dealer interactions with

cash investors and borrowers (Geanakoplos, 2010). In addition, the maturity in DeFi lending is typ-

ically perpetual, although borrowers can choose to repay early. Repos are short-term instruments,

often overnight.

Furthermore, as DeFi lending platforms strive to automate the whole lending procedure, they

typically put in place liquidation mechanisms to protect lenders from borrowers’ defaults. When

the LTV ratio rises above a liquidation threshold, the debt position becomes available for liqui-

dation and its collateral is auctioned off at a discount to liquidators in exchange for repaying the

debt (see Appendix A). As a result, the close-out process in DeFi lending is automatic and the

settlement is instant, while that in traditional repo and securities lending typically takes time and

is initiated by the non-defaulting party. Note that, with such an automatic close-out process in

DeFi, a loan can still turn out to be bad debt (which is a debt position whose value is larger than

the collateral value) when no liquidators are willing to take on the collateral. This could happen

typically when (i) the collateral price spirals downwards so that the discount is not profitable or (ii)

the loan value is so small that the profit from the discount does not cover transaction costs such as

gas fees. Lastly, DeFi lending also allows users to deposit without borrowing.

Table 2. Key differences between DeFi lending and repo/securities borrowing.

DeFi lending Repo/securities borrowing
Counterparty pseudo-anonymous identifiable
Collateral pooled across borrowers segregated
Borrow rate pre-defined function of utilisation flexible
Haircuts pre-defined flexible
Maturity perpetual, borrower’s option to repay early short-term
Close-out process automatically done by liquidators non-defaulting party starts the process
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Data collection. We run an erigon Ethereum archive execution client and a Lighthouse consen-

sus client to collect DeFi lending protocol data. In particular, we analyze data for Aave v1, Aave

v2, and Compound v2 – the biggest lending platforms on the Ethereum blockchain. Together, they

account for approximately 80% of the value locked in lending protocols.3

For all wallet addresses that borrow from Aave and Compound, we collect their daily debt

and deposit values on the platforms from 1 January 2021 through 31 March 2023. We have an

observation for a user, if they have outstanding debt at the end of the day and do not have bad debt

(because bad debt positions can have negative leverage when collateral value is smaller than debt

value). In addition, we collect the daily values of other crypto assets held by these wallets outside

of the lending platforms.4 We also get price information from oracles – i.e., data sources used by

these lending platforms. All values are in USD and we use “wallets” and “users” interchangeably.5

Appendix B reports the step-by-step data cleaning procedures.

3 DeFi leverage and drivers

3.1 Overview of DeFi user leverage

We start our analysis by providing the summary statistics of our data sample in Table 3. In total,

we have 11,130,928 observations for 55,948 users (Panel A). Not all users are active across the

whole sample period. A typical user is active – i.e., with outstanding debt on DeFi lending plat-

forms – for about 200 days in our sample. On average, a user’s daily outstanding debt amounts

to around $0.6 million, with a daily outstanding asset of around $1.2 million. This leads to an

average daily equity of around $0.6 million. These large numbers suggest that lending activities

in DeFi are economically significant. Out of the three platforms, Aave v2 is the most popular one,

with the highest number of active users and of observations. Compound v2 has especially large

outstanding positions, with an average daily debt reaching $1 million. In comparison, Aave v1

3https://defillama.com/protocols/lending/Ethereum
4We track the balances of ETH, as well as the biggest 20 ERC-20 tokens in terms of market capitalization on

Ethereum, which represent 95% of the total market capitalization and should therefore provide us with good estimate
of the value of the tokens held in a wallet.

5Note that a wallet can represent funds from multiple investors and an investor can have multiple wallets. Our
data do not allow analysis of the actual ownership structure. Interested readers can refer to Victor (2020) for Ethereum
address clustering heuristics.
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and v2 have smaller positions, with average daily debt positions of around $0.2 million and $0.3

million, respectively.

The average daily statistics are biased by large users. Panel B in Table 3 shows the hetero-

geneity across users. The median debt is less than 0.7% of the mean debt, i.e., a few extremely

large positions drive up the mean significantly. A similar pattern emerges for the assets and equity.

In terms of leverage, the sample does not look as skewed. The average leverage of a wallet is

1.6, while the median is 1.4 and the top quantile is 1.9. However, the maximum leverage could

reach above 7.5. Regarding the LTV-implied leverage, the mean and median are materially higher,

amounting to 4.3 and 4.0 respectively. The maximum implied leverage, however, is just slightly

above the maximum actual leverage.

Table 3. Summary statistics. In panel A, #Wallets is the number of wallets, #Obs is the number of observations and
ratio represents the ratio between the number of observations and the number of wallets. For debt, assets, and equity,
we first aggregate across days for each wallet and report the average across users. In panel B, we report the distribution
statistics across users.

Panel A: Overall sample
Platform #Wallets (Unit) #Obs (Unit) Ratio (Unit) Avg daily debt ($) Avg daily asset ($) Avg daily equity ($)
AAVEV1 4,629 1,358,940 293 224,498 607,759 383,261
AAVEV2 42,123 9,625,813 228 340,479 685,142 344,662
CompoundV2 16,836 5,862,197 348 985,870 1,752,627 766,757
Total 57,555 13,094,094 227 580,497 1,168,491 587,995

Panel B: Heterogeneity across users
Variable Mean Std 25% Median 75% Max
Debt ($) 580,497 13,258,569 72 4,038 36,644 1,123,007,715
Assets ($) 1,168,492 22,937,139 1,080 15,824 121,712 2,828,857,418
Equity ($) 587,995 11,825,693 793 10,069 76,905 1,833,842,618
Leverage (Unit) 1.644 0.731 1.140 1.431 1.861 7.554
LeverageI (Unit) 4.229 1.130 3.428 4.000 5.068 7.692

Figure 2 presents the time variation of user leverage (blue solid line) and juxtaposes it with

crypto market price movements (grey dotted line) and LTV-implied leverage (black dashed line).

In the same spirit in Liu, Tsyvinski, and Wu (2022), the crypto market index is calculated as an

outstanding-debt-weighted average of crypto assets that are available on the three DeFi lending

platforms.

There are three takeaways from this figure. First, the overall leverage ranges from 1.4 to 1.9

in our sample period6. It is similar to the level of hedge fund leverage, which is around 1.5 after
6Note that Table 3 reports distribution statistics across users, while Figure 2 first aggregates leverage across wallet
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the Great Financial Crisis (Ang, Gorovyy, and Van Inwegen, 2011). Second, DeFi user leverage

appears to track the crypto market price movements closely, but with around a 3-month lag. This

is consistent with the speculative trading motives in crypto documented in Biais, Bisiere, Bouvard,

Casamatta, and Menkveld (2020) and Auer, Cornelli, Doerr, Frost, and Gambacorta (2023).

Third, the actual leverage taken by DeFi users is significantly lower than the LTV-implied

leverage, which ranges from 3.5 to 4.8 in our sample period. This suggests that DeFi users are

very conservative in taking up leverage. There could be two potential reasons. The first relates to

the loss generated from the automatic close-out process, i.e., the liquidation loss. When a user’s

LTV ratio rises above a certain threshold, their collateral will be auctioned to liquidators at a

considerable discount, incurring material losses for the borrower (as explained in Section 2 and

in Appendix A). Hence, borrowers tend to be conservative and maintain a sizeable buffer. The

second reason could be a search-for-yield motive. Users may be attracted to these pools because

deposits in DeFi lending pools can deliver relatively high returns and they are not actively using

these deposits as collateral to borrow. Thus, their actual leverage is not as high as the LTV-implied

leverage.

Figure 2. Leverage vs LTV-implied leverage. We plot the time series of average daily leverage (blue solid line) and
implied leverage (black dashed line) across all wallets with outstanding debts. The grey dotted line in the background
indicates the market-wide price movements of crypto assets.
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for each day and then report the average across time.
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3.2 Leverage of different user groups

Given the heterogeneity across users, we classify them into the following three groups to under-

stand how leverage varies. The first group is the largest users, which are the 1000 users with the

largest average outstanding debts. The second group is the most active users, which are the 1000

users with the highest number of borrowing activities during the sample period. The third group

is the earliest users, which are the first 1000 wallets that took out debt on each lending platform.

There is overlap between the groups: 194 wallets are both amongst the largest and most active.

The overlap between the earliest users and the largest and most active is very small. Appendix B

provides more detail on the distribution across the three groups.

Panel A of Figure 3 presents the time series of leverage of the three groups. The largest and

most active users have higher leverage compared to the rest. Their average leverage tends to

exceed 2, potentially reflecting economies of scale. Typically, larger and more active borrowers

are better able to monitor their positions in real time, which enables them to effectively access

higher leverage. The earliest users, on the other hand, exhibit a lower leverage than the rest. The

underlying reason could be that these users are testing accounts as they typically have very small

debt positions (< $100). Additionally, given all three lending platforms launched before the start

of our sample period, a significant fraction of the earliest users are no longer active during our

sample period.

Furthermore, we differentiate two types of users: the ones with long leverage and those with

short leverage. A user that deposits volatile coins (VC) such as Bitcoin and borrows stablecoins

(SC) such as USDC has long leverage. This trade is similar to a repurchase agreement (repo). VC

is on the asset side and SC is on the liability side. We consider a user with long leverage if at least

80% of their debt are SC and at least 80% of the collateral are VC. Alternatively, a user can deposit

SC and use that claim of the pool as collateral to borrow VC. The user has short leverage and this

transaction is similar to securities borrowing. VC is on the liability side and SC is on the asset side.

We consider a user with short leverage if at least 80% of their collateral are SC and at least 80% of

the debt are VC.

Panel B of Figure 3 shows the time series of the average leverage of the long users (red solid

line) and that of the short users (green dashed line). One striking feature is that the leverage
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Figure 3. Leverage across groups.

(a) Leverage of the most active, the largest, and the earliest. We plot the mean daily leverage of the most active
(black dotted line), the largest (blue solid line), the earliest (yellow dashed-dotted line), and all (grey dashed line)
wallets with open loans across time.
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(b) Long and short leverage time series. We plot the mean daily leverage of long (red solid line) and short (green
dotted line) leverage wallets with open loans across time. The grey dashed line in the background indicates the average
leverage of all wallets.
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of the short and long users are negatively correlated. This likely reflects the impact of crypto

asset price fluctuations on DeFi user leverage. When VC price appreciates, the collateral value

of long users increases while their SC debt value remains unchanged, leading to a decrease in

their leverage. On the contrary, in this case, the collateral value of short users remains unchanged,

while their VC debt value increases, leading to an increase in their leverage. Thus, the VC price

movements have opposite effects on the leverage of the long and short users, giving rise to a

negative correlation between the leverage of the two groups. An additional observation is that
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the long users experienced significant deleveraging after the Celsius bankruptcy in June 2022. A

similar pattern, however, does not hold for the short users.

Table 4 reports the distribution of leverage amongst users with long and short leverage. The

first observation is that users typically have long leverage. The number of observations with long

leverage exceeds that with short leverage by more than a factor of ten. The long leverage users

tend to be more active, with an average of active day reaching about 200 days, which is twice as

much as that for the short leverage users. Secondly, on average and across the various quantiles,

the leverage of the short users is higher than that of the long users, even though this is not apparent

in Figure 3b (because the reported statistics weigh the average leverage of each wallet equally

independent of the number of days they were active for).

Table 4. Distribution of leverage amongst wallets with long and short leverage. We first aggregate the leverage
across days for each wallet and report the statistics across wallets. We further report the number of observations and
unique wallets with long and short leverage, as well as the ratio to indicate the mean number of observations per wallet.

Mean Std 25% 50% 75% #Wallets #Obs Ratio

Long 1.511 0.516 1.119 1.380 1.730 42,647 8,615,139 202
Short 1.725 0.736 1.190 1.532 2.015 4,554 526,361 115

3.3 Factors that are associated with high leverage

3.3.1 Hypothesis development

Next, we are going to study the factors associated with high DeFi leverage. There are two critical

contractual terms in collateralised borrowing: haircuts (implied by LTV) and borrow rates. When

an asset has a lower haircut, a user can pledge it to borrow a higher amount of debt, i.e., with a

higher LTV ratio and thus a higher implied leverage (Fostel and Geanakoplos, 2014). As indicated

in Figure 2, one would expect that a user that faces a higher LTV-implied leverage (i.e., a looser

haircut requirement) will have higher actual leverage.

Hypothesis 1. A user has higher leverage when the LTV-implied leverage is higher.

To test Hypothesis 1, we construct a wallet-day level variable of the LTV-implied leverage. We

first get the daily time series of the LTV ratio for each crypto asset j and convert them into a time
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series of the implied leverage:

LeverageI
j,t =

1
1 − LTV j,t

. (1)

For each wallet i, we then calculate the debt-weighted implied leverage across all crypto assets

that are in the wallet’s debt portfolio J (in which Debti, j,t is the outstanding debt of crypto asset j

of wallet i on day t):

LeverageI
i,t =

∑
J(Debti, j,t × LeverageI

j,t)∑
J Debti, j,t

. (2)

Thus, LeverageI
i,t captures the LTV-implied leverage for wallet i on day t. For the actual leverage,

we get the total asset and total debt for each wallet-day, and calculate the equity as the difference

between the asset and debt. Leveragei,t is the asset-to-equity ratio for wallet i on day t. Hypothesis

1 implies that Leveragei,t increases in LeverageI
i,t−1.

The second hypothesis pertains to the borrowing cost. In the case of floating rate debts, when

the cost of taking leverage is higher, that should suppress a user’s actual leverage.

Hypothesis 2. A user has lower leverage when they face higher borrowing costs.

To test Hypothesis 2, we first get the daily time series of the (floating) borrow rate and deposit

rate for each crypto asset. For each wallet-day, we calculate the debt-weighted average borrow

rate across all crypto assets that are in the wallet’s floating debt portfolio for that day (similar to

Equation 2). Thus, BorrowRatei,t captures the borrowing cost faced by wallet i on day t. Similar

to the construction of BorrowRatei,t, we build DepoRatei,t, i.e., the deposit-weighted average of

deposit rate across all crypto assets that are deposited by wallet i on day t. Then NetBorrowCosti,t

is the difference between BorrowRatei,t and DepoRatei,t, capturing the net borrowing cost faced

by wallet i on day t. Note that most debts on DeFi lending platforms are floating rate debts (as

known as “variable rate debts” in the crypto terminology). In our sample, over 95% of the debts

are floating rate debts. Hypothesis 2 implies that Leveragei,t decreases in NetBorrowCosti,t−1.

The third hypothesis relates to a typical feature of crypto activities: speculation and momen-

tum types of trading. Auer, Cornelli, Doerr, Frost, and Gambacorta (2023) document that crypto

price movements are closely related to the enthusiasm, or sentiment, in crypto markets. They show
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that a key driving factor for Bitcoin price movements is the number of active users of crypto ex-

changes. This is consistent with the earlier literature that reports the speculative activities/motives

in crypto market (Biais, Bisiere, Bouvard, Casamatta, and Menkveld, 2020; Aramonte, Huang,

and Schrimpf, 2021). In the context of DeFi lending, Chiu, Ozdenoren, Yuan, and Zhang (2022)

models some key features in DeFi lending and finds that sentiment matters. Thus, we hypothesise

that market sentiment will increase a user’s actual leverage.

Hypothesis 3. A user has higher leverage when the sentiment is higher.

To test Hypothesis 3, we construct a market sentiment variable that is particularly relevant for

DeFi lending. We first get the daily time series of the utilisation rate for each crypto asset, i.e.,

the proportion of a crypto asset that has been lent out in the total deposit amount of that asset. A

high utilisation rate, thus, indicates that the crypto asset is “popular” in the lending platform. For

each wallet-day, we then calculate the debt-weighted utilisation rate across all crypto assets that

are in the wallet’s floating debt portfolio for that day (in the same spirit of Equation 2). Thus,

Utilisationi,t captures the popularity, or the market sentiment, of the debt portfolio of wallet i on

day t. Thus, it is a user-specific measure of market sentiment, which reflects individual users’ own

exposures to market sentiment. Hypothesis 3 implies that Leveragei,t increases in Utilisationi,t−1.

There is a closely related, yet fundamentally different, mechanism on how crypto price move-

ments could affect user leverage. As shown in Panel B of Figure 3, price movements of the volatile

coins (VC), which also captures essentially the crypto market price movements given the stable-

coin (SC) prices are relatively stable, have opposite effects on the actual leverage of a long user and

that of a short user. When VC depreciates, a long user has higher leverage as their VC collateral

value decreases and SC debt value remains unchanged. On the contrary, a short user has higher

leverage when VC appreciates. Hypothesis 4 summarises these effects.

Hypothesis 4. A long user has lower leverage when (volatile) crypto assets appreciate. On the

opposite, a short user has higher leverage when crypto assets appreciate.

To test Hypothesis 4, we first construct a variable that indicates a user’s direction of lending on

a given day: +1 for long position and −1 for short position, following the categorisation method-

ology in Figure 3b and Table 4.
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Signi,t =


+1, if at least 80% of debt are SC and at least 80% of collateral are VC;

−1, if at least 80% of debt are VC and at least 80% of collateral are SC;

0, others.

(3)

We then multiply Signi,t with the crypto market price index on day t shown in Figure 2, which

is the outstanding-debt weighed average of prices across all crypto assets that can be borrowed in

the three lending platforms. Thus, we have a wallet-day level variable that captures the opposite

effects of crypto price movements on long and short users: SignedVCPricei,t. Hypothesis 4 implies

that Leveragei,t decreases in SignedVCPricei,t−1.

Our final two hypotheses aim to elucidate the gap between actual and LTV-implied leverage

as shown in Figure 2. In traditional finance, the LTV-implied leverage is typically also the actual

leverage taken out by a borrower. This discrepancy in the DeFi lending sphere could be attributed

to two distinguishing features. The first is the automatic close-out process and the associated ma-

terial liquidation loss for borrowers. Different from traditional finance in which intermediaries

like dealers or central counterparties issue margin calls when the LTV ratio of a debt position

rises, DeFi lending deploys automatic liquidation algorithms – i.e., auctioning off the collateral to

liquidators at a discount as soon as a user’s LTV ratio rises above a certain threshold. Such liqui-

dation algorithms expose borrowers to great risks of unexpected liquidation, especially in volatile

markets. Furthermore, Lehar and Parlour (2022) document that there are “predatory liquidations”,

i.e., liquidators strategically target debt positions teetering on the brink of liquidation thresholds,

artificially suppress the collateral price to trigger a liquidation event, and subsequently acquire and

resell the collateral at a profit. Given these unique factors, DeFi users may avoid leverage to the

maximum extent and the volatility of a user’s collateral will affect such conservativeness. Thus,

we hypothesize that all else being equal, users with more volatile collateral will opt for a more

conservative approach, hence lower actual leverage.

Hypothesis 5. A user has lower leverage when their collateral is more volatile.

To test Hypothesis 5, we first construct daily time series of the realised volatility for all crypto

assets that are eligible as collateral in DeFi lending platforms. Then, we calculate the collateral-
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weighted average volatility across all assets that are deposited by wallet i on day t: Volatilityi,t.

Hypothesis 5 suggests that Leveragei,t decreases in Volatilityi,t−1.

The other feature of DeFi lending that could lead to the gap between the actual leverage and

the LTV-implied leverage relates to a search-for-yield motive. As crypto markets are rather self-

referential (Aramonte, Huang, and Schrimpf, 2021), asset holders do not have many real use cases

but hope that their crypto assets may appreciate. Thus, when users experience higher return of

their crypto assets, they are incentivised to deposit even more to these platforms, anticipating for

future price appreciations. Instead of using them to borrow actively, users only deposit the assets

to reach for yields. Such behaviours increase their assets without expanding their debt, leading to

lower leverage.

Hypothesis 6. A user has lower leverage when they face higher collateral returns.

Similar to the construction of BorrowRatei,t, we build CollateralReturni,t in two steps. First,

we calculate the time series of the past 30-day returns for crypto assets that can be deposited on the

three DeFi lending platforms. Then, we calculate the deposit-weighted return CollateralReturni,t

across all crypto assets that are deposited by wallet i on day t. Hypothesis 6 implies that Leveragei,t

decreases in CollateralReturni,t−1.

3.3.2 Regression results

To formally test these hypotheses, we estimate the following panel regressions:

Leveragei,t = β0 + β1LeverageI
i,t−1 + β2NetBorrowCosti,t−1 + β3Utilisationi,t−1 (4)

+ β4SignedVCPricei,t−1 + β5Volatilityi,t−1 + β6CollateralReturni,t−1 + γi + µt + εi,t

We include time and user fixed effects to capture the omitted variations across time (i.e.,

market-wide developments like interest rate movements of fiat currencies and concentration in

borrowing and lending) and across users (i.e., user-specific but time-invariant characteristics). To

ensure robustness, we estimate the double-clustered standard errors following Petersen (2008).

Table 5 reports the regression results. The first column is estimated on the whole sample. As
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expected, leverage increases in LTV-implied leverage and decreases in the net borrowing cost.

When utilisation – the proxy for sentiment and popularity – is higher, leverage increases. For long

(short) leverage wallets, their leverage decreases (increases) when VC collateral (debt) appreciates.

In addition, users’ actual leverage decreases when their collateral is more volatile and when the

collateral return is higher, suggesting that the gap between the actual leverage and the LTV-implied

leverage is driven by both the looming threat of automatic liquidation and the search-for-yield

motive.

Given the skewness of the sample, we exclude the largest 1% and smallest 1% wallets and

run the regression on a winsorised sample (the second column in Table 5) and find that the results

are robust. We further examine the three groups of wallets identified before (the third to the last

columns) and observe that the patterns are mostly consistent. The noticeable exception is on the

impact of collateral volatility, indicating that the looming threat of automatic liquidation does not

lower these three groups’ leverage. Particularly, for the earliest users, their leverage is higher

when their collateral is more volatile. However, this is likely due to the fact that these wallets are

typically testing accounts, most of which are no longer active during our sample period.

Additionally, we conduct several robustness tests in Appendix C. One concern could be the

multicollinearity between NetBorrowCost and Utilisation given these variables are interlinked in

the pre-defined interest rate functions (see Appendix A). Although multicollinearity still yields un-

biased estimated coefficients, it inflates their variance. To address this issue, we run panel regres-

sions in which these variables are included separately. The results remain qualitatively unchanged.

Another concern could stem from the construction of SignedBVCPrice, in which the 80% cut-

off is an ad-hoc choice. We rerun all the regressions in the main analysis with various cut-off levels.

The results are not sensitive to the cut-off choices.

4 The systemic impact of leverage on lending resilience

We next investigate the effect of leverage on the resilience of DeFi lending pools. As discussed in

Section 2, DeFi lending relies on overcollateralisation to prevent defaults and the associated losses.

When collateral values decline, however, borrowers could still default. To mitigate such risk, DeFi
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Table 5. Driving factors of DeFi leverage. We report the regression results for the following model
Leveragei,t = β0+β1LeverageI

i,t−1+β2NetBorrowCosti,t−1+β3Utilisationi,t−1+β4SignedVCPricei,t−1+β5Volatilityi,t−1+

β6CollateralReturni,t−1 + γi + µt + εi,t. We estimate the double-clustered standard errors following Petersen (2008).
T-stats are reported in brackets.

All Winsorised Largest MostActive Earliest

LeverageI 0.074*** 0.074*** 0.082 0.181*** 0.093***
(16.030) (15.989) (1.609) (6.293) (4.204)

NetBorrowCost -0.021*** -0.021*** -0.232** -0.124*** -0.056**
(-3.300) (-3.200) (-1.965) (-4.230) (-2.395)

Utilization 0.031** 0.028** 0.436*** 0.367*** 0.010
(2.456) (2.159) (2.692) (3.494) (0.224)

SignedVCPrice -0.043*** -0.042*** -0.103*** -0.056*** -0.014
(-17.108) (-16.394) (-4.678) (-3.819) (-1.438)

Volatility -3.697** -3.8882** 14.439 0.176 7.347***
(-2.418) (-2.426) (1.144) (0.029) (3.124)

CollateralReturn -0.154*** -0.155*** -0.269*** -0.172*** -0.049***
(-20.658) (-20.794) (-7.012) (-5.076) (-3.435)

Time FE ✓ ✓ ✓ ✓ ✓

User FE ✓ ✓ ✓ ✓ ✓

No. Observations 12345871 12026304 173034 327793 435770
R-squared 0.0181 0.0175 0.0429 0.0459 0.0205

platforms allow anyone to liquidate a loan when the loan-to-value ratio exceeds a certain threshold,

i.e., the so-called “liquidation threshold”. The liquidation threshold is higher than the LTV ratio

but remains below 1 to ensure the loan stays overcollateralised.

To understand how borrower leverage may generate systemic risk for the lending platforms,

We examine two DeFi-lending-specific resilience measures. One is the value-at-risk (VaR) of the

pool, i.e., the share of the pool that is close to being liquidated. The other is the share of the pool

that has been actually liquidated. The former indicates how many debt positions in a given crypto

asset pool are at risk of liquidation, while the latter signals the materialisation of such risk.

Panel A of Figure 4 shows the average VaR on Aave v2 (black dotted line) and juxtaposes

that with the borrower leverage (blue solid line) and the crypto price index (grey dashed line). It is

remarkable that the VaR of the pool tracks closely the debt-weighted average of borrower leverage,
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especially in the first half of the sample. It suggests that when the borrowers take higher leverage, a

higher share of the pool is close to being liquidated. In other words, lending resilience deteriorates

when borrower leverage increases.

Panel B of Figure 4 shows the share of liquidation volume in the outstanding debt (yellow

solid line). Large liquidation spikes often coincide with significant price fluctuations in crypto

assets. Notably, before mid-2021, the spikes of liquidation share were more frequent as the lending

pools were relatively small. However, since 2022, these spikes have become more event-driven, as

evidenced by incidents such as the USD Terra crash (the first vertical line), the Celsius bankruptcy

(second vertical line), the FTX collapse (third vertical line), an attack on Aave in November 2022

(fourth vertical line), and the USDC depegging due to the SVB collapse (fifth vertical line). It

appears that the spiky share of liquidation volume is not that closely related to borrower leverage.

To better understand the impact of leverage on pool resilience, we estimate the following panel

regressions:

PoolResilience j,t = α + βBorrowerLeverage j,t−1 + θControl j,t−1 + γ j + µt + ε j,t (5)

where the dependent variable is the pool-day resilience measure (i.e., Value-at-Risk or liquidation

share), and the key explanatory variable is borrower leverage. We include relevant control variables

such as the liquidation threshold, the loan-to-value ratio (LTV), the realised volatility, and the

concentration index (HHI) of borrowers, as well as the time and pool fixed effects.

Table 6 reports the regression results. Panel A is for the lending pools in Aave v2 and Panel

B is for Compound. The first three columns present the results of the panel regressions with the

dependent variable being pool VaR and the sample being the full, VC only, and SC only. The

key take-away is that when borrower leverage is higher, VaR is higher, signaling higher risk in

lending pools. This pattern is broadly consistent in Aave v2 and in Compound pools. The last

three columns report the results of the regressions with the dependent variable being liquidation

share. Coefficients of borrower leverage are generally positive but not significant, likely due to

the fact that liquidations are rather event-driven and tend to be self-amplifying (Lehar and Parlour,

2022). The pattern is consistent with Figures 4. When the borrower leverage is higher, a large
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Figure 4. Lending resilience.

(a) Daily proportion of debt at risk on Aave v2. We consider a debt position at risk if the position’s health factor
drops below 1.1 (see Appendix A). The black dotted line is the value-at-risk of the pool. The blue solid line is the
debt-weighted average of borrower leverage. The grey dashed line is the crypto market price index.
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(b) Daily proportion of liquidated debt on Aave v2. The grey line in the background indicates the ETH price and
the vertical lines indicate major events.
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share of the pool is close to being liquidated. However, the higher leverage does not significantly

affect the share of the pool that has actually been liquidated.

In Appendix C, we conduct robustness checks around the cut-off values in the pool VaR mea-

sure. The results are not sensitive to the cut-off choices.
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Table 6. DeFi leverage and pool resilience. We report the regression results for the following model
PoolResilience j,t = α + βBorrowerLeverage j,t−1 + θControl j,t−1 + γ j + µt + ε j,t where the dependent variable is the
pool-day resilience measure (i.e., Value-at-Risk or liquidation share), and the key explanatory variable is borrower
leverage. Control variables include the liquidation threshold, the loan-to-value ratio (LTV), the realised volatility,
and the concentration index (HHI) of borrowers. We also include the time and pool fixed effects. We estimate the
double-clustered standard errors following Petersen (2008). T-stats are reported in brackets.

Pool Value-at-Risk Liquidation share

All Volatile coins Stablecoins All Volatile coins Stablecoins

Panel A: Aave v2
BorrowLeverage 0.9178*** 0.6265*** 1.0833*** 0.0055* 0.0074 0.0034

(6.0587) (2.6351) (7.4830) (1.9227) (1.6242) (0.9485)
Controls ✓ ✓ ✓ ✓ ✓ ✓

Time FE ✓ ✓ ✓ ✓ ✓ ✓

Pool FE ✓ ✓ ✓ ✓ ✓ ✓

No. Observations 21157 13952 7205 22816 15568 7248
R-squared 0.3473 0.1435 0.6554 0.0018 0.0028 0.0015

Panel B: Compound
BorrowLeverage 1.2050*** 1.1563*** 0.4677* 0.0035* 0.0037* 0.0004

(4.1348) (2.8542) (1.7666) (1.7078) (1.7215) (0.2164)
Controls ✓ ✓ ✓ ✓ ✓ ✓

Time FE ✓ ✓ ✓ ✓ ✓ ✓

Pool FE ✓ ✓ ✓ ✓ ✓ ✓

No. Observations 11137 7286 3851 11848 7928 3920
R-squared 0.2685 0.3371 0.5272 0.0003 0.0011 0.0013

5 Collateral selection at liquidation

One unique feature of DeFi lending is the pooling of collateral across borrowers. Figure 5 illus-

trates how this works via a simple example. Suppose there are two borrowers B1 and B2 and two

lenders L1 and L2 for the pool of USDC. Borrower B1 collateralises their USDC loan with Bitcoin

(BTC) while B2 uses Doge coin (DOGE) as collateral. Consider the following three cases, each as

a more stressful case than the previous one.

Case 1 is when the DOGE price decreases and B2’s loan-to-value (LTV) ratio rises above the

liquidation threshold. In this case, B2’s DOGE collateral is auctioned off to liquidators at a discount

to repay their USDC debt. The lenders can choose to redeem their claims of the USDC pool, but

only to the extent that is available in the USDC pool as some of the USDC are still “occupied” by
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Figure 5. Pooling of collateral across borrowers. This figure shows a stylised example of how collateral is pooled
across borrowers, focusing on the users of the USDC pool (green). Wallet B1 and B2 are borrowers of USDC, using
BTC (yellow) and DOGE (red) as collateral, respectively. Wallet L1 and L2 are the lenders of USDC.

B1’s debt positions.

Case 2 is when both BTC and DOGE prices decrease and both B1’s and B2’s USDC debt

positions are liquidated. Similar to case 1, both BTC and DOGE collateral are auctioned off to

liquidators at discounts to repay the USDC debt. The lenders can choose to redeem all their claims.

Case 3 is when both BTC and DOGE prices plummeted and only B1’s debt position was liq-

uidated successfully while B2’s position turned to bad debt. In other words, the DOGE price

decreases so fast that the collateral value falls below the debt value. In this case, whoever among

the two lenders redeems first their claim of the USDC pool will make it whole, while the other

lender will end up with bad debt.

This simple example shows that the composition of the collateral that backs the debt positions

is extremely fluid and difficult to monitor by lenders, which also features in the novel setup in

Chiu, Ozdenoren, Yuan, and Zhang (2022). The authors find that with this feature, there exists

self-fulfilling sentiment equilibria, i.e., the overall quality of the collateral declines when the mar-

ket sentiment deteriorates. The reason is that, due to the pooling of collateral across borrowers,

borrowers have information advantage over lenders on the quality of the collateral. Thus, bor-

rowers can substitute low quality collateral for high quality collateral when they expect their debt

positions to be liquidated. In the example in Figure 5 in which the quality of BTC is assumed to be

higher than that of DOGE, borrower B1 could potentially choose to deposit DOGE and withdraw

23



BTC – hence swapping BTC collateral for DOGE collateral without affecting their USDC debt –

when they expect their debt positions to be liquidated due to bad sentiment.

The granular wallet-level data allows us to investigate if borrowers who are about to be liq-

uidated adjust their collateral composition towards lower quality assets. In total 1,526 wallets

were liquidated in our sample. For each one of these wallets, we calculate the portfolio-weighted

collateral volatility 30 days ahead of its liquidation CollateralVoli,t where t runs from -29 to 0.

In addition, we construct a “simulated” volatility measure SimulatedVoli,t that fixes the portfolio

composition on day -29.

CollateralVoli,t =

∑
K(CollateralValuek,i,t × Volk,t)∑

K CollateralValuek,i,t
, (6)

SimulatedVoli,t =

∑
K(CollateralValuek,i,−29 × Volk,t)∑

K CollateralValuek,i,−29
, (7)

Diffi = CollateralVoli,0 − SimulatedVoli,0. (8)

where K is the set of collateral of wallet i on day t, CollateralValuek,i,t is the collateral value of

crypto asset k of wallet i on day t and Volk,t is the volatility of crypto asset k on day t.

If SimulatedVoli,0 is lower than CollateralVoli,0 – i.e., Diffi > 0 – it means that wallet i tilts

towards more volatile, hence lower quality, assets as collateral on the day when it was liquidated.

Figure 6a shows the distribution of Diffi across all wallets that were liquidated in our sample. The

key result is that most of these wallets did not modify their collateral composition 30 days ahead of

the final liquidation, i.e., no strategic collateral selection at close to liquidation. This result likely

reflects the fact that the LTV requirement of more volatile collateral is more stringent than that of

less volatile one. For instance, in the example above, when borrower B1 swaps DOGE collateral

for BTC collateral, they would need to put in more DOGE than BTC they withdraw because the

LTV requirement for DOGE is more restrictive than that for BTC. Hence, to the extent that the LTV

requirements take into account the quality of collateral perfectly, such strategic collateral selection

should not take place and should not expose lenders to higher risk even if that type of activity takes

place.

That said, a small amount of wallets indeed tilted towards to more volatile collateral as indi-
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cated by the right tail of the distribution. Figure 6b zooms in on the wallets that have positive Diffi,

i.e., those that tilted towards volatile collateral, and plots Diffi against leverage. The plot indicates

some positive correlation between the two variables, i.e., when a wallet’s leverage is higher, it tilts

towards more volatile collateral.

Figure 6. Collateral selection. Panel A plots the histogram for Diffi of all wallets that were liquidated in our sample.
Panel B is a scatter plot. The x-axis is the actual leverage 30 days ahead of the liquidation. The y-axis is Diffi. The
sample includes only the wallets that have positive Diffi.
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We run the following cross-sectional regression to investigate the relationship between leverage

and the behaviour of collateral selection:

Diffi = β0 + β1Leveragei + Debti + εi (9)

where Leveragei is the wallet’s leverage 30 days ahead of the liquidation, and Debti is the wallet’s

outstanding debt 30 days ahead of the liquidation.

Table 7 reports the regression results. The first column shows that when the wallet’s leverage

is higher, the difference between the actual collateral volatility and the simulated one that keeps

the collateral composition unchanged is higher. In addition, when the wallet’s implied-leverage

requirement (from the LTV ratio) is higher, it is also titled towards more volatile collateral, as

indicated by the second column. This is likely due to the fact that crypto assets that are more stable

typically have higher implied-leverage from the LTV ratio. When a user initially has more stable
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collateral, it is easier to move to more volatile collateral. Column 3, to some extent, confirms this

intuition. When the difference between the implied leverage and the actual leverage is higher for a

wallet, it has more “room” to migrate to volatile collateral and thus has a higher Diff.

Table 7. The impact of leverage on collateral selection. We report the regression results for the following cross-
sectional regression Diffi = β0 + β1Leveragei + Debti + εi where the dependent variable is Diffi defined in Equation 8,
Leveragei is the wallet’s leverage 30 days ahead of the liquidation, and Debti is the wallet’s outstanding debt 30 days
ahead of the liquidation. T-stats are reported in brackets.

Diff Diff Diff
Leverage 0.0078***

(4.561)
LeverageI 0.0050***

(5.594)
LeverageI - Leverage 0.0100***

(6.067)
Debt -0.0001 -0.0002 0.0000

(-0.595) (-0.990) (0.214)
No. Observation 145 145 145
R-squared 0.1754 0.1836 0.1383

6 Conclusion

In this paper, we document individual wallets’ leverage in DeFi for the first time in the literature.

Throughout our sample period between January 2021 and March 2023, the overall leverage of

DeFi lending protocol users ranges from 1.4 to 1.9. Users with the highest volume of activity and

those managing the largest amounts of outstanding debt consistently demonstrate higher levels of

leverage compared to their counterparts, with average leverage frequently surpassing 2.

Our analysis reveals that user-level leverage is primarily influenced by LTV-implied leverage

and borrow rates, as well as the crypto market sentiment and price movements. However, the actual

leverage is markedly lower than the LTV-implied leverage. This discrepancy may be attributed to

the distinctive feature of automatic liquidation inherent in DeFi lending. The looming risk of

liquidation and the subsequent potential losses appear to prompt DeFi borrowers to maintain a
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more conservative approach, ensuring a substantial buffer. These behaviours suggest that while the

automation of traditional intermediaries may curtail the rents extracted by these intermediaries, it

may concurrently give rise to new forms of friction.

We investigate the impact of high borrower leverage on DeFi lending platforms. While higher

borrower leverage raises the proportion of loans nearing liquidation, it does not significantly impact

the incidence of liquidation itself, as liquidations entail substantial costs and are typically triggered

by specific events. In addition, although DeFi borrowers can modify their collateral portfolios as

long as meeting the LTV ratio requirements, we find that most borrowers nearing liquidation do

not shift towards more volatile collateral, probably due to more stringent LTV requirements for

such assets. However, among borrowers that do tilt towards volatile collateral, higher borrower

leverage is associated with more aggressive strategic collateral adjustment.

Our findings in DeFi lending also contribute to improvement and adaptation within traditional

financial systems. Notably, major global banks are pioneering in blockchain networks for intraday

repo transactions (see e.g., Bloomberg (2021)). Large asset managers are also venturing into the

realm of tokenized collateral settlements (see e.g., Bloomberg (2023)). Our results highlight the

importance of considering user behaviour, market dynamics, and automated risk mitigation in the

design and management of collateralized borrowing platforms with emerging tokenized assets.
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A Lending Protocol Background

Lending protocols utilise pre-defined rules executed through smart contracts, which automate and

regulate the protocol’s operations. To become a lender, individuals must lock their assets in the

protocol’s smart contract and will receive a deposit rate in return for providing the collateral. On

the other hand, borrowers can obtain loans by depositing collateral and borrowing against it. It is

important to note that borrowers are subject to a substantial collateral haircut, ranging from 10% to

40%, based on the type of collateral provided. The haircut is expressed by the loan-to-value ratio

in lending protocols and is pre-defined by the protocol governance7. A unique feature of DeFi

lending is that borrowers pay a borrow rate on their debt, but also receive a deposit rate for their

collateral.

DeFi lending protocols typically offer loans with an open-ended repayment period, allowing

borrowers to repay the loan at their convenience. A user can take out debt, as long as the value of

value of the collateral after the collateral haircut is applied, exceeds the value of the debt. To be

precise, a user can take out debt, as long as

∑
i∈A

(Ci · LTVi) ≥
∑
i∈A

Di,

where A are the platform’s assets, while Ci is the collateral amount in asset i and Di is the debt

amount in asset i. Additionally, LTVi is the loan-to-value ratio for asset i.

The LTV ratio is voted by the decentralised autonomous orgranisation (DAO) based on risk

rating analysis (conducted by the lending platform or related third-party risk consultants) that looks

into three risk factors: smart contract risk, counterparty risk, and market risk. Smart contract risk

assesses the technical safety of an asset and its vulnerability to potential hacks. Counterparty risk

examines the governance and control of the asset. Market risks look into liquidity and volatility,

alongside market size and demand fluctuations. Based on the assessment, a rating is assigned to

each asset ranging from A+ (lowest risk) to D- (highest risk). Voting coin holders can propose and

vote on the LTV ratio for each asset.
7Aave and Compound are governed by a decentralized autonomous organization (DAO). A DAO decision-making

process is governed by code. The stakeholders in a DAO hold voting power that is proportional to their stake in the
DAO’s native token, enabling them to participate in the decision-making process and propose changes to the protocol’s
rules or parameters.
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The interest rate charged on the borrowed amount is applied periodically and is typically a

floating rate, determined by the current utilisation of the borrowed asset. The borrow rate is applied

periodically by adjusting the borrower’s debt balance. An asset’s a utilisation at time t can be

calculated as the ratio of the total outstanding debt (Da
t ) to the collateral (Ca

t ), i.e.,

Ua
t =

Da
t

Ca
t
.

In the following we describe how borrow and deposit rates are set on Aave and Compound. As

the specifics vary slightly, we will go through them one by one. Aave allows borrowers to choose

between fixed and floating interest payments. A floating borrow rate loan is always charged at the

current fixed borrow rate, while a fixed borrow rate is supposed to remain fixed for the duration of

the loan. It can only be adjusted in special circumstances8. The borrow rate for asset a at time t is

given by

ra
t =


ra

0 +
Ua

t

Ua
optimal

ra
slope1

if Ua
t ≤ Ua

optimal,

ra
0 + ra

slope1
+

Ua
t − Ua

optimal

1 − Ua
optimal

ra
slope2

if Ua
t > Ua

optimal.

In the previous, Ua
t is the asset’s utilisation. The remaining parameters (ra

0, ra
slope1

, ra
slope2

, Ua
optimal) are

parameters set by the protocol governance to reflect the risks related to the asset. It’s worth noting

that the parameters for fixed and floating loans of the same asset can vary, with the parameters

for fixed loans being more cautious. Moreover, Ua
optimal represents the desired utilisation of the

protocol, and if the utilisation surpasses Uoptimal, the borrowing rates increase rapidly.

The deposit rate da
t for lenders at time t is then determined as follows

da
t = Ua

t (Da,s
t r̃a,s

t + Da,v
t ra,v

t )(1 − Ra),

where Ds
t denotes the share of fixed loans, rs

t represents the average fixed borrow rate, Dv
t represents

the share of floating loans, and rv
t denotes the floating borrow rate. Additionally, Ra is the reserve

factor, which indicates the minimum shares of borrow rate payments that are directed towards

the protocol’s treasury. It is important to note that lenders can withdraw their assets at any time,

8https://medium.com/aave/aave-borrowing-rates-upgraded-f6c8b27973a7
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provided that the utilisation level allows it. In other words, there must be adequate funds available

that are not currently being borrowed.

As opposed to Aave, Compound only offers variable interest rate loans. Furthermore, while

Aave indicates annualized rates and then charges for the time the money was borrowed, Compound

charges a per block rate. The borrow rate of assets on Compound either follows the standard

interest rate model, where the borrow rate for asset a at time t is

ra
t = ra

0 + Ua
t · r

a
slope,

or using the jump interest rate model, where similarly to Aave, the borrow rate is computed as

ra
t =


ra

0 + Ua
t ra

slope1
if Ua

t ≤ Ua
optimal,

ra
0 + Ua

optimalr
a
slope1
+ Ua

t − Ua
optimalr

a
slope2

if Ua
t > Ua

optimal.

where Ua
t is again the asset’s utilisation and the configuration parameters (ra

0, ra
slope1

, ra
slope2

, Ua
optimal)

are pre-defined parameters set by the protocol governance. Finally, the deposit rate on Compound

follows a similar logic to the deposit rate on Aave and is then given by

da
t = ra

t · U
a
t (1 − Ra),

where ra
t is the borrow rate and Ra the reserve factor.

Liquidations. Both Aave and Compound have liquidation mechanisms in place for loans that

are close to becoming under-collateralized, i.e., the lower-than-market value of collateral no longer

exceeds the value of the debt. To express this lending protocols compute a position’s health factor.

To be precise, a position’s health factor is given by

H =

∑
i∈A

(Ci · li)∑
i∈A

Di
. (A1)

Here, A refers to the assets that are available on the platform, while Ci represents the collateral

amount of the loan position in asset i and Di represents the debt amount of the loan position in
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asset i. Additionally, li is a pre-defined parameter that represents the liquidation threshold for asset

i. In Compound, the liquidation threshold corresponds to the loan-to-value ratio, which determines

whether a position can be opened. On the other hand, Aave implements a more relaxed liquidation

threshold compared to the loan-to-value ratio.

A position becomes available for liquidation if the health factor drops below. Consider the

following example, if the value of the debt exceeds 80% of the collateral value, a position with a

liquidation threshold of 80% is considered under-collateralized. When a position becomes eligible

for liquidation, its collateral is auctioned off at a discount to liquidators in exchange for repaying

the debt.

B Data Collection and Cleaning

Wallet-Level Data. We collected information on daily debt, collateral, and asset balances for all

wallets that borrowed from any of the three protocols. The original dataset consisted of 19,618,615

observations of active wallets with outstanding debt, out of a total of 68,213 wallets. For the

wallet-level analysis, we removed observations with bad debt, which refers to a negative weighted

average health factor (cf. Appendix A) across the three lending protocols. This was necessary to

avoid distorting the data set due to the infinite or even negative leverage that can result from bad

debt. Additionally, we excluded observations from wallets whose debt never exceeds $1. After

this data cleaning process, we were left with 13,094,094 observations from 57,555 unique wallets.

Further, we identify three groups: (1) the 1000 most active users in terms of the number of

borrows during our observation period, (2) the biggest users in terms of average outstanding debt

on their active days, and (3) the 1000 earliest users on each of the three lending protocols. We

show the overlap between these three groups in Figure A1.

Pool-Level Data. In addition to gathering daily data for all lending protocol users, we also gather

daily data regarding the pool configuration, i.e., borrow rate, deposit rate, LTV, and liquidation

threshold. We combine this with the full wallet-level data (i.e., without removing small positions

or positions with bad debt) to obtain the pool-level variables outlined in Section 4.
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Figure A1. Venn diagram showing overlap between different groups.
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Decentralized Exchange Data. Finally, we gather data on the following decentralized exchange

platforms: Uniswap V2, Uniswap V3, SushiSwap, and Curve. For all lending protocol users, we

then collect information regarding their end-of-day liquidity positions in liquidity pools where all

the pool’s currencies are amongst ETH, BTC, DAI, USDT, and USDC. In total, there are ten pools

that fit this description on Uniswap V2, 63 on Uniswap V3, eight on SushiSwap, and two on Curve.

We find that of the 57,555 unique wallets in our wallet-level dataset, we have observations for

16,593 of these having liquidity positions on decentralized exchanges during our data collection

period. In total, we have 4,146,041 observations with non-zero liquidity balances on decentralized

exchanges.

C Robustness

We run several robustness checks. The first set of regressions addresses issues in the analysis of

factors associated with high leverage (Section 3). The second set is for results in the pool level

analysis (Section 4).
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C.1 Robustness checks for factors associated with high leverage

To address the multicollinearity issue between NetBorrowCost and Utilisation, we run panel re-

gressions (i.e., Equation 4) in which these three variables are included separately. Table A1 shows

the results for the full sample (Column (1) to (3)) and for the winsorised sample (Column (4) to

(6)). Compared to Table 5, both the coefficients and the t-statistics remain relatively unchanged.

Table A1. Driving factors of DeFi leverage (addressing multicollinearity). We report the results for wallet level
regressions. The dependent variable is the actual leverage Leveragei,t. The independent variables include the LTV-
implied leverage LeverageI

i,t−1, the signed crypto market price movement SignedVCPricei,t−1, the collateral volatility
Volatilityi,t−1 and the collateral return CollateralReturni,t−1, as well as NetBorrowCosti,t−1 and Utilisationi,t−1 where the
latter two variables are added separately due to concerns on multicollinearity. Time and user fixed effects are included.
The regressions are run on the full sample and the winsorised sample that excludes the largest 1% and smallest 1%
wallets. We estimate the double-clustered standard errors following Petersen (2008). T-stats are reported in brackets.

All Winsorised

(1) (2) (3) (4)

LeverageI 0.0738*** 0.0737*** 0.0736*** 0.0734***
(16.051) (16.018) (16.015) (15.977)

NetBorrowCost -0.0168*** -0.0168***
(-2.9922) (-2.9348)

Utilization 0.0281** 0.0248**
(2.2605) (1.9644)

SignedVCPrice -0.0416*** -0.0430*** -0.0408*** -0.0420***
(-17.215) (-17.076) (-16.550) (-16.362)

Volatility -3.6362** -3.6934** -3.8265** -3.8780**
(-2.4136) (-2.4243) (-2.4074) (-2.4164)

CollateralReturn -0.1543*** -0.1540*** -0.1552*** -0.1549***
(-20.860) (-20.799) (-20.721) (-20.663)

Time FE ✓ ✓ ✓ ✓

User FE ✓ ✓ ✓ ✓

No. Observations 12345871 12345871 12026304 12026304
R-squared 0.0180 0.0180 0.0175 0.0175

Another concern of the wallet-level regressions could arise from the construction of SignedVCPricei,t,

in which the 80% cut-off is an ad-hoc choice. We rerun all the regressions in the main analysis
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with various cut-off levels. Table A2 and Table A3 report the results of a 70% cutoff and a 90%

cutoff, respectively. The results are not sensitive to the cut-off choices.

Table A2. Factors associated with high leverage (with a 70% cutoff in SignedVCPrice). We report the regres-
sion results for the following model Leveragei,t = β0 + β1LeverageI

i,t−1 + β2NetBorrowCosti,t−1 + β3Utilisationi,t−1 +

β4SignedVCPricei,t−1 + β5Volatilityi,t−1 + β6CollateralReturni,t−1 + γi + µt + εi,t. We estimate the double-clustered
standard errors following Petersen (2008). T-stats are reported in brackets.

All Winsorised Largest MostActive Earliest

LeverageI 0.0735*** 0.0732*** 0.0785 0.1785*** 0.0932***
(16.020) (15.977) (1.5580) (6.2361) (4.2133)

NetBorrowCost -0.0225*** -0.0221*** -0.2452* -0.1289*** -0.0543**
(-3.4397) (-3.3393) (-2.0579) (-4.3673) (-2.3418)

Utilization 0.0399*** 0.0365*** 0.4702*** 0.3870*** 0.0036
(3.1726) (2.8595) (2.9081) (3.6857) (0.0823)

SignedVCPrice -0.0462*** -0.0453*** -0.1136*** -0.0614*** -0.0109
(-18.098) (-17.375) (-5.0785) (-4.0787) (-1.0801)

Volatility -3.6910** -3.8725** 13.373 -0.1652 7.3714***
(-2.4263) (-2.4182) (1.0920) (-0.0273) (3.1474)

CollateralReturn -0.1537*** -0.1547*** -0.2615*** -0.1709*** -0.0491***
(-20.731) (-20.597) (-6.8972) (-5.0446) (-3.4392)

Time FE ✓ ✓ ✓ ✓ ✓

User FE ✓ ✓ ✓ ✓ ✓

No. Observations 12345871 12026304 173034 327793 435770
R-squared 0.0191 0.0185 0.0483 0.0471 0.0198

C.2 Robustness checks for results about pool-level regressions

The pool value-at-risk measure in the main analysis is constructed as the share of the pool out-

standing debt with a health factor lower than 1.1, in which the health factor is defined in Equation

A1. To ensure the robustness of the results in Section 4, we rerun the regressions with different

cut-off values. Table A4 reports the results when the pool VaR measures use 1.05 and 1.2 as the

cut-off values. The results are qualitatively unchanged compared to Table 6.
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Table A3. Driving factors of DeFi leverage (with a 90% cutoff in SignedVCPrice). We report the regression
results for the following model Leveragei,t = β0 + β1LeverageI

i,t−1 + β2NetBorrowCosti,t−1 + β3Utilisationi,t−1 +

β4SignedVCPricei,t−1 + β5Volatilityi,t−1 + β6CollateralReturni,t−1 + γi + µt + εi,t. We estimate the double-clustered
standard errors following Petersen (2008). T-stats are reported in brackets.

All Winsorised Largest MostActive Earliest

LeverageI 0.0742*** 0.0739*** 0.0833 0.1822*** 0.0933***
(16.079) (16.038) (1.6126) (6.3313) (4.2123)

NetBorrowCost -0.0193*** -0.0188*** -0.2253** -0.1154*** -0.0536**
(-3.1462) (-3.0435) (-1.9382) (-3.8174) (-2.3023)

Utilization 0.0210 0.0177 0.3988*** 0.3376*** 0.0021
(1.6679) (1.3812) (2.5393) (3.2321) (0.0475)

SignedVCPrice -0.0400*** -0.0389*** -0.0956*** -0.0501*** -0.0109
(-16.271) (-15.532) (-4.6445) (-3.4767) (-1.1104)

Volatility -3.6638** -3.8571** 16.467 1.3911 7.3622***
(-2.4214) (-2.4136) (1.3332) (0.2313) (3.1444)

CollateralReturn -0.1544*** -0.1553*** -0.2740*** -0.1735*** -0.0491***
(-20.879) (-20.743) (-7.1168) (-5.1216) (-3.4436)

Time FE ✓ ✓ ✓ ✓ ✓

User FE ✓ ✓ ✓ ✓ ✓

No. Observations 12345871 12026304 173034 327793 435770
R-squared 0.0171 0.0166 0.0396 0.0444 0.0199
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Table A4. DeFi leverage and pool resilience (with different cut-offs on pool Value-at-Risk). We report the
regression results for the following model VaR j,t = α + βBorrowerLeverage j,t−1 + θControl j,t−1 + γ j + µt + ε j,t where
the dependent variable VaR j,t has different cut-off values of 1.05 and 1.2. The key explanatory variable is borrower
leverage. Control variables include the liquidation threshold, the loan-to-value ratio (LTV), the realised volatility,
and the concentration index (HHI) of borrowers. We also include the time and pool fixed effects. We estimate the
double-clustered standard errors following Petersen (2008). T-stats are reported in brackets.

Pool Value-at-Risk at 1.05 Pool Value-at-Risk at 1.2

All Volatile coins Stablecoins All Volatile coins Stablecoins

Panel A: Aave v2
BorrowLeverage 0.6080*** 0.2379*** 0.7909*** 1.0190*** 0.8182*** 1.1098***

(2.9293) (3.2956) (3.0795) (7.2684) (3.3500) (7.5975)
Controls ✓ ✓ ✓ ✓ ✓ ✓

Time FE ✓ ✓ ✓ ✓ ✓ ✓

Pool FE ✓ ✓ ✓ ✓ ✓ ✓

No. Observations 20515 13420 7095 21963 14717 7246
R-squared 0.2751 0.0649 0.6067 0.2790 0.1533 0.5114

Panel B: Compound
BorrowLeverage 1.1304*** 1.1824*** 0.1976 1.3561*** 1.1794*** 0.8332***

(3.4044) (2.5736) (1.1110) (6.7055) (4.6142) (2.0698)
Controls ✓ ✓ ✓ ✓ ✓ ✓

Time FE ✓ ✓ ✓ ✓ ✓ ✓

Pool FE ✓ ✓ ✓ ✓ ✓ ✓

No. Observations 10925 7128 3797 11444 7563 3881
R-squared 0.2792 0.3946 0.5628 0.2722 0.2868 0.3860
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