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Abstract 

This thesis describes the Delta-Normal method of computing Value-at-Risk. The 

advantages and disadvantages of the Delta-Normal method compared to the Historical 

and Monte Carlo method of computing Value-at-Risk are discussed. The Delta-Normal 

method of computing Value-at-Risk is compared with the Historical Simulation method 

of Value-at-Risk using an implementation of portfolio consisting of ten stocks for 400 

time intervals.  

 

Based on the normality of the distribution of the portfolio risk factors, Delta-Normal 

would be suitable if the distribution is normal and Historical Simulation method of 

calculating Value-at-Risk would be ideally suited if the distribution is non-normal. 
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1. Introduction & Background 

Risk measurement is a classical problem in finance. Harry Markowitz’s work [2] 

was the first that gave a clear mathematical definition to “risk” in portfolio analysis. 

Markowitz did not actually use the word “risk” in his original paper but he only said that 

the variance (or standard deviation) in return on the portfolio is the quantity that an 

investor would like to minimize while maximizing the return on the portfolio. The 

intuitive definition of risk is the probability of suffering harm or loss. Any mathematical 

definition of risk must capture and quantify the idea that return is a random variable and 

risk is the probability or possibility of loss (References [4, 5, and 6]). 

1.1 Mean Variance Analysis 

Given a portfolio of  assets, the investor chooses to invest a fraction of total 

wealth  in each of  assets with (random) return . The expected return on the 

portfolio is the weighted average of the individual expected returns: 
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The risk associated with the portfolio is the variance (or standard deviation) of the return 

on the portfolio (see [2]) : 
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To say that the return on a portfolio is a random variable means that the (future) return is 

not known in advance but the analyst has some way of modeling the distribution of 

possible returns and their associated probabilities. 

1.2 Alternate Risk Measures 
 

In some applications, variance may not be the best measure of risk for a stock or 

portfolio. There are other risk measures that are easier to interpret and easier to explain to 

a client. These other risk measures have been developed and applied (see, for example, 

Chapter 3 in [3]). These risk measures include: 

• Semivariance (also called downside risk or downside variance); 

• Target semivariance; 

• Shortfall probability; 

• Value at Risk. 

Semivariance simply assumes that the investor only cares about large shifts in the 

price of a stock if the large shifts are below the mean. If the distribution is symmetric, 

then semivariance is simply a multiple of variance and so no new information is 

recorded. If the distribution is not symmetric, then semivariance does capture useful 

information which variance would miss. 

Target semivariance goes one step further and records only drops in price larger 

than a certain (target) threshold. It is a generalization of semivariance that focuses on 

returns below a target, such as zero or the risk free rate instead of just below the mean.  

Shortfall probability records the part of the distribution in returns that is below a 

certain threshold. It answers the question “What is the probability that returns will be 

below X ?” for a specified X . 
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One of the most used alternative risk measure is Value at Risk (VaR).  It records 

the actual loss that would occur if the returns were below a certain probability threshold 

of the distribution.  Note that, as with the semivariance, when the distribution of returns is 

normal, then the value at risk is a multiple of the variance. Even in this situation where 

the two measures really provide the same information, some clients will demand a report 

of value at risk for a portfolio. 

1.3 Need for Value-at-Risk  

The concept and use of Value-at-Risk is recent. Value-at-Risk was first used by 

major financial firms in the late 1980’s to measure the risk of their trading portfolios. 

Since that time, the use of Value-at-Risk has exploded. 

Value-at-Risk is now a widely used quantitative tool to measure market risk. 

“VaR answers the question: how much can one lose with X % probability over a pre-set 

horizon” [8]. More precisely VaR is an amount (say V dollars), where the probability of 

losing more than V dollars is  over some future time interval, T  days. Value at Risk 

measures the amount of risk in dollars. Investors can then decide whether they feel 

comfortable with this level of risk.  

∗p

Value-at-Risk asks the simple question “How bad can things get?” All managers 

would like this question to be answered. Value-at-Risk has become widely used by 

corporate treasurers and fund managers as well as by financial institutions. Value-at-Risk 

is used by bank regulators in determining how much capital a bank should possess to 

reflect the market risks it is bearing [8]. Today, many banks, brokerage firms and 

investment funds use similar methods to gauge their financial risk. A 1995 Institutional 

Investor survey found that 32% of all firms use VaR as a measure of market risk, and 
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60% of pension funds responding to a survey by the New York University Stern School 

of Business reported using VaR (chapter 9, [9] ) . 

1.4 Criticism of Value-at-Risk 

 The widespread adoption of VaR has been accompanied by frequent criticism of 

VaR as a measure of risk. Any attempt to summarize a distribution in a single number is 

open to criticism, but VaR has a particular deficiency. Combining two portfolios into a 

single portfolio may result in a VaR that is larger than the sum of the VaRs for the two 

original portfolios. This fact contradicts the idea that diversification reduces the risk [7]. 

VaR assumes that the sigma and covariance matrix do not change. VaR fails when 

you need it the most i.e, it is uninformative about extreme tails. One good example is 

Long Term Capital Management (LTCM). Due to its shortcomings, it should not be used 

as a standalone risk measure, but one of many risk measures to be considered in firm 

wide risk management 

1.5 Overview of this Report 

Our goal is to study in detail the Delta-Normal Method of computing Value-at-

Risk. This project report focuses on computing Value-at-Risk for a portfolio of ten stocks 

using the Delta-Normal Method and the Historical Simulation Method. The next section 

gives the definition of Value-at-Risk and the steps involved in computing it. We then 

give an overview of the different methods used to compute Value-at-Risk. We then turn 

to the details of computing Value-at-Risk using the Delta-Normal method. The final 

section provides a complete implementation analysis of computing Value-at-Risk (in 

 4



dollars) of a portfolio of ten stocks using the Delta-Normal and Historical Simulation 

Methods.  
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2 Value-at-Risk Definition 

Value-at-risk, as defined by Phillipe Jorion is “the worst loss over a target horizon 

with a given level of target probability” (See chapter 5 in [9]).  

From a mathematical point of view, Value-at-Risk is just a quantile of a return 

distribution function. The portfolio’s Value-at-Risk (VaR) is a percentile of its return 

distribution over a fixed horizon t∆ . For example, the value-at-risk for a target 

probability of 99% is a point  satisfying ∗p
x

t∆ = risk-measurement time horizon 

S  = vector of m  market prices 

S∆  = Change in  over time horizon S t∆  

),( tSV = portfolio value at time  and market prices  t S

L = loss over time horizon t∆  = - V∆ = ),(),( ttSSVtSV ∆+∆+−  

)()(1 ∗∗ >=−
ppL xLPxF =  with =0.01 ∗p ∗p

The number  of relevant risk factors could be very large, potentially reaching 

the hundreds or thousands. The risk factors represent market variables such as prices, 

interest rates, spreads or implied volatilities. We therefore focus on the more fundamental 

issue of measuring the tail of the loss distribution, particularly at large losses- i.e., on 

finding  for large thresholds Y . A target probability provides a simple way of 

summarizing information about the tail of the loss distribution, and this particular value 

of the target probability is often interpreted as a reasonable worst-case loss level. The 

significance of Value-at-Risk lies in its focus on the tail of the loss distribution.  

m

)( YLP >
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Value-at-Risk has two important parameters. These are t∆ , the time horizon, and 

, the target probability. These two major parameters should be chosen in a way 

appropriate to the overall goal of risk measurement. For example, in bank supervision the 

interval  is usually quite short, with regulatory agencies requiring measurement over a 

two-week horizon. In other areas of market risk, such as asset-liability management for 

pension funds and insurance companies, the relevant time horizon is far longer than two 

weeks. These parameters can change depending upon the risk manager’s tolerance for 

loss, the particular asset whose risk is being measured, or the business division’s 

contribution to the firm’s overall operations.  

∗p

t∆

There are several different methods for calculating Value-at-Risk, which can be 

distinguished by their two main assumptions, the probability distribution for risk factors 

and the valuation methods. Probability distribution for the risk factors is discussed first 

followed by the second assumption i.e, the valuation methods.  

Probability distribution for the risk factors:  The distribution is either normal 

distribution or a nonnormal distribution (i.e., an asymmetric distribution). The normal 

distribution has (at least) two more crucial properties: 

• The distribution is symmetric about the mean; 

• Two parameters, the mean µ  and the variance . The first 

parameter represents the location and the second parameter represents the 

dispersion.  

),(: 22 σµσ N

  For completeness, we should also mention two other moments i.e., Skewness and 

Kurtosis. Skewness is a parameter that describes asymmetry in a random variable’s 
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probability distribution. Its value is 0 for a normal distribution. The skewness of a 

random variable X  defined by 

( )[ ]
3

3

)(
σ

µ−
=

XEXskew  

Where µ  and σ  are the mean and standard deviation of X . Both the probability density 

functions in Figure 1 have the same expectation and variance.  

 

Figure 1: Positive Vs Negative Skewness 

Figure 1 (obtained from [12]) shows the positive and negative skewness of the 

probability distribution of X . The one on the left is positively skewed ( ) 

and the one on the right is negatively skewed (

0)( >Xskew

0)( <Xskew ).  

 Kurtosis is a parameter that describes the “flatness” of a random variable’s 

probability distribution. The kurtosis of a normal distribution is 3. The kurtosis of a 

random variable X is given by.  

( )[ ]
4

4

)(
σ

µ−
=

XEXkurt  

The shapes of the two probability distribution functions in Figure 2 (obtained from [12]) 

illustrate kurtosis:  
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Figure 2: Low vs. Higher Kurtosis 

The probability distribution function of X  on the right is more peaked than one on the 

left and it has fatter tails. The distribution on the right has a greater kurtosis than the 

distribution on the left. The distributions that are both peaked and have fat tails at the 

same time have a . The distribution that are less peaked and have thinner 

tails at the same time have a 

3)( >Xkurt

3)( <Xkurt  [12]. Skewness and Kurtosis can be used to 

check whether the given sample distribution is close to normal distribution or not.  

The probability density function of a normal distribution: 

[ ])2/()(

2

2 22
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for 0>σ ,  and  ∞<<∞− x ∞<<∞− µ  

The Student t distribution and the generalized error distribution (GED) are 

examples of a nonnormal distribution. The probability density function of a student t 

distribution: 
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Where is the gamma function and Γ ν  is the shape defining parameter known as the 

degrees of freedom [11]. The Student t distributions with 6=ν  have a probability 

distribution close to the normal distribution.  

The probability density function of a generalized error distribution (GED) is given 

as follows: 
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where ν is a shape-defining parameter. The pdf of the generalized error distribution 

includes the normal pdf as a special case with .2=ν  The pdf of the generalized error 

distribution has fatter tails for .2<ν  The generalized error distribution with 3.1=ν  have 

a probability distribution close to the normal distribution. Both the student t distribution 

and the generalized error distribution have fatter tails than the normal distribution. This 

feature may be important when determining the potential losses using Value-at-Risk 

because Value-at-Risk quantifies the tail loss. Fatter tails indicate higher potential loss for 

a given investment.  

Linear vs. Full valuation: Valuation is the process of estimating the value of an asset. 

For example, the single-index model is the simplest valuation model which states that the 

return of a portfolio ( ) is the sum of an assets Beta, or systematic risk to movement in 

the market, plus an error term, referred to as idiosyncratic or residual risk  

Pr

PmPP rr θβ +=  

Linear valuation approximates the exposure to risk factors by a linear model. The 

delta normal method is an example of a linear valuation method. The full valuation 

method is potentially the most accurate because it accounts for nonlinearities, income 

payments, and even time-decay effects that are usually ignored in the delta-normal 

approach. For portfolios with substantial option components (such as mortgages) or 

longer horizons, a full-valuation method may be required. The Monte Carlo simulation 

approach and the historical simulation approach are examples of full-valuation methods.  
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2.1 Computation of Value-at-Risk

The Value-at-Risk is computed using the following procedure: 

The Portfolio’s current value is denoted as  and it is known. The Portfolio’s future 

value is not known in advance and it is a random variable denoted by . We need to 

estimate the distribution of  to calculate VaR. If we assume a standard distribution such 

as a normal distribution, the problem reduces from one of estimating an entire 

distribution to that of estimating the parameters necessary to specify that distribution. The   

risk factors such as prices, interest rates, spreads or implied volatilities being considered 

are then specified. 

p

P

P

R  is an  dimensional vector which contains the values of these risk 

factors in future. We need to make sure that the historical data is available for these risk 

factors. Based on the historical data, we can characterize the distribution of 

N

R . We then 

need to convert that characterization of the distribution of R  into a characterization of the 

distribution of P . This is achieved by the portfolio mapping function. Portfolio’s future 

value can be expressed in terms of R  by using a function θ  called the portfolio mapping 

function.  

)(RP θ=  

This relationship is called portfolio mapping. Portfolio mapping function θ  maps the -

dimensional space of the risk factors to the one-dimensional space of the portfolio’s 

future market value.  

N

If R  holds the prices of the different stocks then it is a very simple portfolio 

mapping. However, if R  holds many different risk factors such as prices, interest rates 

and implied volatilities, then the portfolio mapping function will be complicated. So, we 
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need to apply the portfolio mapping function θ to the entire distribution of R  to obtain 

the entire distribution of .  P

If θ  is a linear polynomial and P  is normally distributed then all we need to do is 

to calculate Pµ  and Pσ  for the portfolio. If we assume that R  contains the prices of a set 

of stocks, then the portfolio’s standard deviation can be computed from the asset level: 

∑∑∑∑ ===
i j

jiijji
i j

ijji
T

P hhhhhCh σσρσσ                                                     (1) 

=h N x1 vector of asset weights, 

C = x  covariance matrix for the asset returns, and  N N

jiijij σσρσ =  introduces the correlation coefficient. 

For any linear portfolio, we are able to compute its risk if we know the weights and the 

covariance matrix of the assets.  

A linear mapping function θ  is applied to a normal vector R . This is illustrated 

in the Figure 3 (obtained from [12]) intuitively by mapping evenly spaced values for R  

through the mapping function θ . The output values for P  after the mapping are also 

evenly spaced, indicating that the portfolio mapping does not cause any distortion. 

Therefore, since R  is normal,  now is normally distributed. P

 

Figure 3: Linear Portfolio 

If θ , the portfolio mapping function, is not a linear polynomial. A portfolio of 

options is one such example where θ  is given by the Black Scholes’s option pricing 
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formula. This is a non-linear case, so we cannot compute Pσ  using (1). Therefore,  

cannot be assumed to be normally distributed. Options limit the downside risk, hence 

they skew the probability distribution of 

P

P .  

A nonlinear mapping function θ is now applied to a normal vector R . This is 

illustrated in Figure 4 intuitively by mapping evenly spaced values for R  through the 

mapping function θ. The corresponding output values for P  after the mapping are not 

evenly spaced, indicating how the portfolio mapping distorts the distribution of P . 

Therefore, P  now has a non-normal distribution. The left graph in the Figure 4 (obtained 

from [12]) depicts the familiar “hockey stick” price function of a call option.  

 

Figure 4: Nonlinear Portfolio 

The mapping procedure accepts a portfolio’s composition as an input and its 

output is the mapping function θ that defines P  as a function of R . The inference 

procedure accepts historical data of the corresponding risk factors of the -dimensional 

vector 

N

R  as its input. The purpose of the inference procedure is to characterize the  

probability distribution of R  based on its input. The output of the inference is the 

characterization of the distribution of R . The transformation procedure then combines 

the outputs from the mapping procedure and the inference procedure and uses them to 

characterize the distribution of . Based on the distribution of  and the current 

portfolio value , the transformation procedure then determines the value of VaR. A 

P P

p
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Schematic representation of how the Value-at-Risk is calculated is shown in Figure 

5[12]. 

 

Figure 5: Schematic representation of a VaR calculation. 
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3 Value-at-Risk Methods 
 

The different methods used to compute value-at-risk are discussed in detail in this 

section.  

3.1 Historical Simulation Method 
 

The Historical simulation method is a popular method of estimating VaR. It 

involves using past data in a very direct way as a guide to what might happen in the 

future. We apply the current weights to the historical asset returns by going back in time 

such as over the last 100 days. The current portfolio weights are computed using standard 

mathematical optimization.  

RhRhR
TN

i
iiP == ∑

=1

 

A distribution of portfolio returns is obtained. These portfolio returns are then sorted and 

depending on the target probability the corresponding quantile of the distribution is taken. 

This gives us the 1-day VaR using Historical Simulation method.  

 Hypothetical portfolios can also be generated using the current portfolio weights 

and the historical asset returns. This approach is called bootstrapping. An another 

procedure of generating scenarios for tomorrow for the market variables (such as equity 

prices, interest rates and so on) based on their today’s values is discussed in (chapter 16, 

[8]). 

3.1.1 Advantages: 

Historical simulation method is relatively simple to implement if the past data is 

readily available for estimating Value-at-Risk. Historical simulation method allows 
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nonlinearities and nonnormal distribution by relying on the actual prices. It does not rely 

on underlying stochastic structure of the market or any specific assumptions about 

valuation models. Historical simulation method does not rely on valuation models and is 

not subjected to the risk that the models are wrong [9].  

3.1.2 Disadvantages: 

The Historical Simulation method assumes the availability of sufficient historical  

price data. This is a drawback because some of the assets may have a short history or in 

some cases no history at all. There is also an assumption that the past represents the 

immediate future which is not always true. The Historical Simulation method quickly 

becomes cumbersome for large portfolios with complicated structures.  

3.2 Monte Carlo Simulation Method: 

The Monte Carlo simulation method can be briefly summarized in two steps. In 

the first step, a stochastic process is specified for the financial variables. In the second 

step, fictitious price paths are simulated for all financial variables of interest. Each of 

these “pseudo” realizations is then used to compile a distribution of returns from which a 

Value-at-Risk (VaR) figure can be measured.  

3.2.1 Advantages: 

The Monte Carlo method can incorporate nonlinear positions, nonnormal 

distributions, implied parameters, and even user-defined scenarios. As the price of 

computing power continues to fall, this method is bound to take on increasing importance 

[9].  
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3.2.2 Disadvantages: 

The biggest disadvantage of the Monte Carlo method is its computational time. If 

1000 sample paths are generated with a portfolio of 1000 assets, the total number of 

valuations amounts to 1 million. In addition, if the valuation of assets on the target date 

involves itself a simulation, the method requires “simulation within a simulation.” 

Therefore, computer and data requirements are much higher than that required by the 

other approaches.  

The method is the most expensive to implement in terms of systems 

infrastructure. Another potential weakness of the Monte Carlo method is that it is subject 

to the risk that the models are wrong. The Monte Carlo method relies on specific 

stochastic processes for the underlying risk factors as well as the pricing models for 

securities such as options or mortgages. Simulation results should be complemented with 

some sensitivity analysis to check if the results are robust to changes in the model. 

3.3 Delta-Normal Method 
 

The Delta-normal method is the best method to compute VaR for portfolios with 

linear positions and whose distributions are close to the normal probability density 

function. The Delta-Normal method may not be appropriate for portfolios with non linear 

positions such as options and nonnormal distributions. In such cases, one should use 

Monte Carlo method to calculate the Value-at-Risk of the portfolio.   

Using Delta-Normal method, Value-at-Risk would be relatively easy to compute, 

fast, and accurate. In addition, it is not too prone to model risk (due to faulty assumptions 

or computations). Because the method is analytical, it allows easy analysis of the VaR 

results using marginal and component VaR measures.  
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3.3.1 Advantages: 

The Delta-Normal method is easy to implement because it involves a simple 

matrix multiplication. It is also computationally fast, even with a large number of assets, 

because it replaces each position by its linear exposure. Portfolios that are linear 

combinations of normally distributed risk factors are themselves normally distributed. It 

only requires the market values and exposures of current positions, combined with risk 

data. Also, in many situations, the delta-normal method provides adequate measurement 

of market risks. As a parametric approach, VaR is easily amenable to analysis, since 

measures of marginal and incremental risk are a by-product of the VaR computation. This 

method is important not only for its own sake but also because it illustrates the 

“mapping” principle in risk management. 

3.3.2 Disadvantages: 

A first problem is the existence of fat tails in the distribution of returns on most 

financial assets. These fat tails are particularly worrisome precisely because VaR 

attempts to capture the behavior of the portfolio return in the left tail. In this situation, a 

model based on a normal distribution would underestimate the proportion of outliers and 

hence the true Value-at-Risk.  

  Another problem is that the method inadequately measures the risk of nonlinear 

instruments, such as options or mortgages. Under the delta normal method, options 

positions are represented by their “deltas” relative to the underlying asset. Asymmetry in 

the distribution of options is not captured by the delta-normal VaR.  

All of these methods present some advantages. The Monte Carlo method is the 

most comprehensive approach to measuring market risk if modeling is done correctly. 
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The method can even handle credit risks. A recent survey by Britain’s Financial Services 

Authority has revealed that 42 percent of banks use the Delta-Normal approach, 31 

percent use Historical Simulation, and 23 percent use the Monte Carlo approach. The 

Monte Carlo analysis of linear positions with normal returns, for instance should yield the 

same result as the Delta-Normal method [9].   

3.3.3 Implementation of Delta-Normal Method: 
 

This implementation is a special case of the previous algorithm mentioned in the 

computation of Value-at-Risk with the following key differences. In this thesis, the risk 

factors consist of the prices of the stocks. The Portfolio’s current return is denoted as  

and it is known. The Portfolio’s future return (or forecasted return) is not known advance 

and it is a random variable denoted by . We need to estimate the distribution of  to 

calculate VaR. Now since the delta-normal method assumes a standard normal 

distribution, we assume a standard distribution such as a normal distribution for . The 

problem reduces from one of estimating an entire distribution to that of estimating the 

parameters necessary to specify that distribution 

p

P P

P

Pµ  and Pσ . R  is an dimensional 

vector which contains the values of these risk factors. Based on the historical data, we 

can characterize the distribution of 

−N

R . 

We then need to convert that characterization of the distribution of R  into a 

characterization of the distribution of P . This is achieved by the portfolio mapping 

function. Portfolio’s future value can be expressed in terms of R  by using a function θ  

called the portfolio mapping function. Portfolio mapping function θ  maps the -

dimensional space of the returns of the stocks to the one-dimensional space of the 

portfolio’s future market value where corresponds to the number of stocks chosen.  

N

N
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)(RP θ=  

This relationship is called portfolio mapping. Now, since R  holds the prices of the 

different stocks then it is a very simple portfolio mapping. So, we need to apply the 

portfolio mapping function θ  to the entire distribution of R  to obtain the entire 

distribution of .  P

θ  is a linear polynomial and P  is normally distributed and then all we need to do 

is calculate Pµ  and Pσ  for the portfolio. If we assume that R  contains the prices of a set 

of stocks, then the portfolio’s risk can be computed from the asset level: 

∑∑∑∑ ===
i j

jiijji
i j

ijji
T

P hhhhhCh σσρσσ  

=h Nx1 vector of asset weights, 

      C = NxN covariance matrix for the asset returns, and  

      jiijij σσρσ =  introduces the correlation coefficient. 

The output of the mapping procedure in the delta-normal method is a linear 

mapping function θ that is applied to a normal vector R . The output values for P  after 

the mapping are also evenly spaced, indicating that the portfolio mapping does not cause 

any distortion. Therefore, since R  is normal, P  now is normally distributed. The 

inference procedure accepts historical data of the stock returns of the -dimensional 

vector

N

R  as its input. Since the returns of the stocks are normally distributed, a linear 

combination of these is also normally distributed.  

The output of the inference procedure is that the characterization of  the  

distribution of R  is a normal distribution. The transformation procedure then combines 

the outputs from the mapping procedure and the inference procedure and uses them to 
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characterize the distribution of . In the delta-normal method, the transformation 

procedure determines that the distribution of  is a normal distribution. Based on the 

distribution of 

P

P

P  and the current portfolio value , the transformation procedure then 

determines the value of VaR. Since  is normally distributed then the VaR for a target 

probability  is calculated: 

p

P

∗p

)()(
1 PPp

pZpVaR µσ −+= ∗−
∗  

With  is equal to 1.645 for a target probability of 95%. The other values of target 

probabilities i.e.,  

∗− p
Z

1

∗p are 90%, 97.5% and 99%. Over a short time horizon, such as a day, 

it is reasonable to assume the portfolio’s forecasted return equals to its current return. In 

such cases, VaR is calculated: 

PpZpVaR σ∗−
∗ = 1)(  

3.3.4 Proof of the VaR formula using the VaR definition: 
 

The portfolio’s Value-at-Risk (VaR) is a percentile of its loss distribution over a 

fixed horizon ∆t. For example, the value-at-risk for a target probability of 99% is a point 

 satisfying ∗p
x

t∆ = risk-measurement time horizon 

S  = vector of m market prices 

S∆  = Change in  over time horizon S t∆  

),( tSV = portfolio value at time  and market prices  t S

L = loss over time horizon t∆  = - V∆ = ),(),( ttSSVtSV ∆+∆+−  

)()(1 ∗∗ >=−
ppL xLPxF =  with =0.01 ∗p ∗p
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The probability  can be computed in terms of the standard random 

variable Z , 

∗=> ∗ pxLP
p

)(

∗=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
>

− ∗

p
xLP

L

Lp

L

L

σ

µ

σ
µ  

∗=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
>

∗

p
x

ZP
L

Lp

σ

µ
 

The Central Limit Theorem is applied to L  assuming that L is normally distributed and 

that it is a sum of independent and identically distributed random variables. Therefore, 

the above expression can then be written as: 

∗

∗

−
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
p

L

Lp Z
x

1σ

µ
 

So,  is given by: ∗p
x

∗∗ −
+=

pLLp
Zx

1
σµ  

Where Lµ  is the expected value of the portfolio’s loss over the risk-measurement time 

horizon .  t∆ )(LEL =µ  

Lµ = Current Portfolio Return – Forecasted Portfolio Return =  Pp µ−  

Lσ = Standard deviation of the forecasted portfolio of stocks at the end of the risk-

measurement time horizon t∆ . 

The value of  gives the Value-at-Risk for a particular target probability  

Therefore, the Value-at- Risk for the target probability is computed: 

∗p
x ∗− p1 .

∗p

∗∗ −
+=

pLLp
Zx

1
σµ  
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For example, for =0.95 the VaR is computed: ∗p

645.105.0 LLLLp
Zx σµσµ +=+=∗  

The value-at-risk computed here is a daily VaR. Over a short time horizon such as one 

day, the daily VaR is calculated: 

∗∗ −
=

pLdailydailyp
Zx

1
σ                                                                                    (2) 

If Ldailyσ  is the daily return standard deviation of the portfolio, we convert this to 100-day 

standard deviation if the risk-measurement time horizon t∆  is considered to be 100 days 

through: 

dailyLdaysL σσ 100100 =  

Now, the 100-day Value-at-Risk is calculated:  

LdailypLdailydaysp
Zx µσ += ∗∗ −1100

100  

Over a short time horizon, the current portfolio return is almost equal to the forecasted 

portfolio return. So, we assume that 0=Ldailyµ . In that case, the 100-day Value-at-Risk is 

calculated: 

*1100
100

pLdailydaysp
Zx

−
=∗ σ                                                                          (3) 

Using (2), equation (3) can be written in terms of the daily VaR as: 

dailypdaysp
xx ∗∗ = 100

100  

The above formula is true only when the current portfolio return is equal to the forecasted 

portfolio return. This is equivalent to the following formula (see chapter 16, [8]) 

NdayVaRdayVaRN ∗−=− 1  
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3.3.4 Optimization: 
 

Markowitz defined efficient portfolios as portfolios that minimized risk for a 

given level of return and maximized return for a given level of risk. The set of all 

efficient (feasible) portfolios is called the efficient frontier ([2, 4, 6]). Markowitz had also 

developed computer algorithms that could efficiently find the efficient frontier. The 

search for good portfolios is reduced to a standard mathematical optimization problem 

and this problem can be formulated in several equivalent forms.   

(1) Minimize:  2
Pσ  = Var(Rp) = ,subject to the constraint   Chhhh T

jij

N

i

N

j
i =∑∑

= =

σ
1 1

Pµ  = E[Rp] =  is equal to a specified level of return, µµ T
i

N

i
i hh =∑

=1

and   1
1

=∑
=

N

i
ih

(2) Maximize   Pµ  = E[Rp] = , subject to the constraint µµ T
i

N

i
i hh =∑

=1

2
Pσ  = Var(Rp) =  is equal to a specified level of risk, Chhhh T

jij

N

i

N

j
i =∑∑

= =

σ
1 1

and    1
1

=∑
=

N

i
ih

We can impose additional constraints in the above two forms such as: 

ihi ∀≥ ,0 (Short Selling is forbidden) 

ishi ∀≤ , (Each asset cannot have more than a fraction of the total investment) 

(3) Minimize , subject to  pEPU µλσ −= 2 1
1

=∑
=

N

i
ih
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The first two forms simply require that the “optimal” portfolio is efficient. The 

third problem introduces the notion of a utility function where U is the utility function 

and the parameter Eλ  is a measure of the risk aversion for the investor (the reciprocal of 

the risk tolerance). We may add additional constraints of the form: 

•  bAh =

•  bAh ≥

• (short selling is forbidden) ihi ∀≥ ,0

The minimum-variance portfolio weights in the implementation are computed by 

using quadratic programming for the following problem: 

Minimize:  = , subject to the constraint  ( PP RVar=2σ ) Chhhh T
jij

i j
i =∑∑

= =

σ
10

1

10

1

1
10

1

=∑
=i

ih  and (short selling is not allowed). ihi ∀≥ ,0

 Matlab’s quadprog uses quadratic programming to solve for portfolio weights 

for a minimum variance portfolio with specified returns along the efficient frontier and it 

has been used for this project. In this project, we consider minimum variance portfolios 

on the efficient frontier. A sample of efficient frontiers and portfolio allocation bar charts 

are plotted for a couple of different time intervals (see Appendix B). The minimum 

variance portfolio lies at the bottom of the efficient frontier curve. An investor should 

only consider the portfolios that are on the efficient frontier. The portfolio  

allocation bar charts depict the different portfolio allocations over time. Portfolios during 

certain time intervals are fully diversified compared to the other time intervals where the 

portfolios do not include all the ten stocks.  
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4. Results and Analysis 

4.1 Implementation of the Delta-Normal Method 
 
Our data consists of 500 daily prices of ten stocks dated from 2nd Jan, 2001 (01/02/2001) 

to 27th May, 2003 (05/27/2003). The portfolio consisting of ten stocks is listed: 

HITK Hi-Tech Pharmacal Inc 
WTSLA Wet Seal Inc 
MSEX Middlesex Water Co 
NWPX Northwest Pipe Co 
CMGI CMGI Inc 
NITE Knight Trading Group Inc 
BOKF BOK Financial Corp 
SMSC Standard Microsystems Corp 
GBND General Binding Corp 
ASIA Asia Info Holdings, Inc. 

 

The daily returns are computed as follows: 

)(/))()1(()( tPtPtPtR iiii −+=  , for t=1, ……, 499 and i=1,…….10. 

The 500 days are divided into disjoint time periods of 100 daily returns each. The mean 

return, the standard deviation and the covariance matrix of the daily returns for the first 

100 days are computed as follows:   

)()100/1()100(
100

1
tR

t
ii ∑

=

=µ , for i = 1,.……,10 

2
100

1

2 ))100()(()99/1()100()100( i
t

iii tR µσσ −== ∑
=

, for i = 1,.……,10 

))100()())(100()(()99/1()100(
100

1
jji

t
iij tRtR µµσ −−= ∑

=

, for i,j=1,……,10 

The minimum-variance portfolio weights h  are computed by using quadratic 

programming for the problem stated as follows: 

 26



Minimize :   ( PP RVar=2σ )  = , subject to the constraint  Chhhh T
jij

i j
i =∑∑

= =

σ
10

1

10

1

  and  (short selling is forbidden) 1
10

1

=∑
=i

ih ihi ∀≥ ,0

 The current return  is computed by multiplying the minimum-variance portfolio 

weights times the daily returns of the ten stocks for the 100

p

th day. 

)100()100(
10

1
RhRhp

T

i
ii == ∑

=

 

The risk measurement time horizon in the computation of Value-at-Risk is 100days. To 

compute the forecasted return P , we consider a moving window size of 100 days. So, P  

is the forecasted return of the portfolio for the 101st day :  

)100(µ
T

hP =  

The standard deviation of the portfolio , denoted as P Pσ  , is given by.  

( ) 2
1

hChP =σ  

where h  is the minimum-variance portfolio weights vector and ijσ  is the covariance 

matrix using the first 100 days. To compute the Value-at-Risk, we compute the standard 

deviation through: 

dailyPdaysP σσ *100100 =  

The Value-at-Risk at the 101st for the portfolio at a target probability of 95% is given by: 

)(645.1%)95( PP pVaR µσ −+=  

Now, the next time interval is considered by taking the next 100 daily returns (i.e, from 

the 2nd day – 101st day’s returns) of the ten stocks and the same procedure is repeated for 
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computing Value-at-Risk at the 102nd Day. The minimum-variance portfolio weights h  

are recomputed for each time interval by using quadratic programming. 

The same procedure is repeated for 399 more time intervals and the corresponding 

VaR is computed for each time interval. Therefore, we compute Value-at-Risk for 400 

time intervals. Finally, for a $1000 investment in the portfolio of ten stocks we calculate 

the Value-at-Risk in dollars.  

4.2 Implementation of the Historical Simulation Method  
 
The same procedure is repeated for computing the mean return, the standard deviation, 

the covariance matrix of the daily returns and minimum-variance portfolio weights for 

the first 100 days as described in the implementation of the Delta-Normal Method 

(Section 4.1). The portfolio weights are applied to the daily returns from day 1 to day 100 

to obtain a vector of 100 daily portfolio returns. 

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

10

1
)()(

i
iiP RthtR  

)(tRP  is a vector of 100 daily portfolio returns and it is computed for each time interval. 

The distribution of daily portfolio returns is sorted and the 5% quantile of the distribution 

is taken since we consider a target probability of 95% i.e.,  =0.95. We compute the 1-

day VaR of the portfolio returns and we convert it into 100-day VaR by multiplying the 

1-day VaR by square root of 100. The same procedure is repeated for 399 more time 

intervals and the corresponding VaR is computed in dollars for an investment of $1000.  

∗p
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4.3 Results 
 

VaR has been computed for the Delta-Normal method and the Historical 

Simulation method. The values of a 100-day VaR for an investment of $1000 for the 400 

time intervals are obtained. Figure 6 shows the plot of the VaR in dollars for Historical 

Simulation method versus VaR in dollars for Delta Normal method against the 

corresponding date on which VaR was computed. Delta-Normal method curve oscillates 

more than the Historical Simulation method curve.  

Delta-Normal VaR vs Historical Simulation VaR
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Figure 6: Delta-Normal Method VaR vs Historical Simulation Method VaR 
 

The Delta-Normal method predicts a maximum loss of $92.38 more than the 

Historical Simulation method on March 6th 2003. The Historical Simulation method 

predicts a maximum loss of $59.87 more than the Delta-Normal method on December 

11th 2002.  
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The distribution of the VaR computed by the Delta-Normal Method for the 400 

time intervals is shown in Figure 7 and it is non-normal from the normality test. 
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Figure 7: Distribution of VaR for Delta-Normal Method 
 

The distribution of the VaR computed by the Historical Simulation method for the 400 

time intervals is shown in Figure 8 and it is non-normal from the normality test.  
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Figure 8: Distribution of VaR for Historical Simulation Method 
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4.4 Analysis: 

 The difference between the values of VaR obtained by the two methods is 

computed by the Delta-Normal VaR minus the Historical Simulation VaR in dollars.  The 

Figure 9 below shows the plot of the difference in dollar VaR for Historical Simulation 

method versus the Delta-Normal Method against the corresponding date on which VaR 

was computed.   

 Difference Plot between Delta Normal  VaR vs Historical Simulation VaR
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Figure 9: Plot of the difference between Delta-Normal VaR vs Historical Simulation  

VaR 
 

The distribution of the difference in VaR between the Delta-Normal method and 

the Historical Simulation method is shown in the Figure 10. The distribution of the 

difference is normally distributed from the normality test (see Appendix C). 
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Figure 10: Plot of the distribution of the difference between Delta-Normal VaR and 
Historical Simulation VaR 

 

On an average, an investor loses about $220 from Figure 6 with an initial 

investment of $1000. The maximum amount that an investor loses is $330 using the 

Delta-Normal method. Similarly, the maximum amount an investor loses is $255 using 

the Historical Simulation method. From Figure 9, we observe that a difference between 

Delta-Normal and Historical Simulation VaR is noticed during the beginning and the 

ending time intervals. For the time intervals in between, the Delta-Normal and Historical 

Simulation VaR appear to be quite close from Figure 6 but the largest percentage 

difference occurs on December 11th , 2002 when the Historical Simulation method 

exceeds the Delta method by 41.57% from Figure 11. 
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Percentage Difference of the Historical Simulation VaR vs Delta Normal Method VaR
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Figure 11: Plot of the Percentage difference between Delta-Normal VaR vs 
Historical Simulation VaR 

 

The plot in Figure 11 oscillates much more on the positive phase (above 0%) than 

on the negative phase. The VaR computed by the Delta-Normal method exceeds 

Historical Simulation by a maximum value of 36.93%. The VaR computed by the 

Historical Simulation exceeds the Delta-Normal method by a maximum value of 41.57%.  

The normality of the returns of the stocks is tested. The Shapiro-Wilk p-value is 

an indicator of the normality of the returns being considered. According to the Shapiro-

Wilk normality test, we reject normality if p-value is less than 0.05 and we accept 

normality if the p-value is greater than 0.05. The results for the normality test for the 

different Phases can be seen in Appendix C. The results for the normality test for the 

whole data of returns of the ten stocks can be seen in Appendix D. 
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We divide the plot in Figure 6 into three phases. During phase I i.e., between the 

time interval November 5th, 2001 and February 12th, 2002 the Delta-Normal method 

predicts higher losses in VaR than the Historical Simulation method.  

Percentage Difference of the Historical Simulation VaR vs Delta Normal Method VaR
During Phase I
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Figure 12: Plot of the Percentage difference between Delta-Normal VaR vs 
Historical Simulation VaR during Phase I 

 

In the Phase I, we observe that the curve is only oscillating in the positive side. A 

difference in the estimates of VaR using the two methods is observed in Phase I from 

Figure 6. The results of the normality test in the Phase I show that the returns of the data 

are normally distributed (see Appendix C). Since the returns of the data are normally 

distributed during this phase, the Delta-Normal method would be a better approach to 

calculate VaR over Historical Simulation method. The VaR computed by the Delta-

Normal method exceeds Historical Simulation method by a maximum value of 37%. 
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Percentage Difference of the Historical Simulation VaR vs Delta Normal Method VaR
During Phase II
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Figure 13: Plot of the Percentage difference between Delta-Normal VaR vs 
Historical Simulation VaR during Phase II 

 
During Phase II i.e, between February 13th, 2002 and March 3rd, 2003, the results 

of the normality test show that the returns of the data are non-normal. The returns are 

positively skewed. With regards to kurtosis, half of the returns of the data are peaked 

with  and half of the returns are flat with 3)( >Xkurt 3)( <Xkurt . More oscillations in 

the plot are observed in the positive phase. Since the returns of the data are not normally 

distributed during this phase, the Historical-Simulation approach might be having an 

advantage over the Delta-Normal approach in calculating VaR. The VaR computed by 

the Historical Simulation exceeds the Delta-Normal method by a maximum value of 

41.57%. The VaR computed by the Delta-Normal method exceeds Historical Simulation 

by a maximum value of 36.86%.  
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During Phase III i.e, between March 4th, 2003 and May 8th, 2003 the returns of the 

data are normally distributed (as shown in the Appendix C) 

Percentage Difference of the Historical Simulation VaR vs Delta Normal Method VaR
During Phase III
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Figure 14: Plot of the Percentage difference between Delta-Normal VaR vs 
Historical Simulation VaR during Phase III 

 
Since the returns of the data are normally distributed during this phase, the Delta-Normal 

method would be a better approach to calculate VaR. The VaR computed by the 

Historical Simulation exceeds the Delta-Normal method by a maximum value of 5%. The 

VaR computed by the Delta-Normal method exceeds Historical Simulation by a 

maximum value of 28%. For an initial investment of $1000, Figures 15 and 16 depict that 

the actual portfolio value during a particular time interval versus the (Investment –VaR). 

An investor is   certain that the actual return on his investment will be atleast )%1( ∗− p
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($1000 - VaR). 

Actual Portfolio Value vs VaR (Delta-Normal Method)

0

200

400

600

800

1000

1200

1400
10

/2
2/

20
01

11
/2

2/
20

01

12
/2

2/
20

01

1/
22

/2
00

2

2/
22

/2
00

2

3/
22

/2
00

2

4/
22

/2
00

2

5/
22

/2
00

2

6/
22

/2
00

2

7/
22

/2
00

2

8/
22

/2
00

2

9/
22

/2
00

2

10
/2

2/
20

02

11
/2

2/
20

02

12
/2

2/
20

02

1/
22

/2
00

3

2/
22

/2
00

3

3/
22

/2
00

3

4/
22

/2
00

3

5/
22

/2
00

3

Date

D
ol

la
rs

Actual Portfolio Value VaR_DeltaNormal  

Figure 15: Plot of the Actual Portfolio Value vs (Investment – VaR) for Historical 
Simulation Method. 

 
Actual Portfolio Value vs VaR (Historical)
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Figure 16: Plot of the Actual Portfolio Value vs (Investment – VaR) for Delta-
Normal Method 
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5. Conclusion 

The Delta-Normal Method is a suitable method to estimate VaR for linear portfolios and 

normally distributed returns. The Historical Simulation method is used to compute VaR 

both for linear and non-linear portfolios. The returns of the stock data considered in this 

project are normally distributed during Phase I and Phase III. So based on the normality 

of the returns of the data, the Delta-Normal Method is a better approach to calculate VaR 

compared to the Historical Simulation Method. Delta-Normal Method has an advantage 

of being easy to be implemented.  

The actual return on the portfolio is greater than the Value-at-Risk for the Delta-

Normal method for all the time intervals except from October 4th 2002 to October 11th 

2002. The actual return on the portfolio is greater than the Value-at-Risk for the 

Historical Simulation method for all the time intervals except for the time intervals from 

September 20th 2002 to September 27th 2002 and from October 3rd 2002 to October 11th 

2002 . Thus, any investor who would invest in this portfolio would go with the Delta-

Normal Method of computing the Value-at-Risk.  
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% Matlab Code to Calculate VaR using Delta-Normal Method 
% ReadTenStocks 
Data = xlsread('Historical_Data.xls'); 
alpha=0.95; 
m=100; 
  
for i=1:400 
mu = mean(Data(1+(i-1):100+(i-1),:))'; 
dim = size(mu,1); 
C = cov(Data(1+(i-1):100+(i-1),:)); 
  
% Quadratic Programming to calculate the minimum-variance  
% optimal portfolio weights. 
% Start with small risk tolerance to approximate the min 
variance portfolio 
  
minrt = 0.001; 
  
% You need an initial feasible point:  force the fully  
% invested constraint. 
x0 = zeros(dim,1); 
slack = 1-sum(x0); 
UB=[1 1 1 1 1 1 1 1 1 1]; 
LB=[0 0 0 0 0 0 0 0 0 0]; 
  
for j=1:dim 
    x0(j) = min(slack,UB(j)); 
    slack = 1-sum(x0); 
end 
    
    rt = minrt; 

x=gmqp(rt,mu,C,LB,UB,x0); 
    muP = mu'*x; 
    VarP = x'*C*x; 
    PlotPoint = [muP, VarP]; 
    StackX = x; 
     
% Now loop through the risk tolerances 
  
numsteps = 100; 
for rt= minrt : .005 : numsteps+minrt, 
    x0 = x; 
    x=gmqp(rt,mu,C,LB,UB,x0); 
    muP = mu'*x; 
    VarP = x'*C*x; 
    PlotPoint = [PlotPoint; muP, VarP]; 
    StackX = [StackX,x]; 
end 
  
% Plot the efficient frontier 
figure(1); 
last = size(PlotPoint,1); 

http://www.riskglossary.com/index.htm
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xmax = 1.2*PlotPoint(last,1); 
ymax = 1.2*PlotPoint(last,2); 
xlim([0,xmax]); 
ylim([0,ymax]); 
plot(PlotPoint(:,2),PlotPoint(:,1),'-r','LineWidth',3); 
grid on 
title('Efficient Frontier') 
xlabel('Risk = Portfolio Variance') 
ylabel('Return') 
%  
% Plot the efficient portfolios in a bar chart 
figure(2); 
bar(StackX','stack') 
grid on 
xlim([0,numsteps]) 
ylim([0,1]) 
title('Efficient Portfolio Allocations') 
xlabel('Different Portfolio Allocations') 
Ylabel('Sum of Portfolio Allocations') 
  
% Quadratic Programming using Optimization toolbox to calculate  
% the minimum-variance Portfolio Weights. 
  
c=[0 0 0 0 0 0 0 0 0 0]; 
Aeq =[1 1 1 1 1 1 1 1 1 1]; 
Beq =[1]; 
UB=[1 1 1 1 1 1 1 1 1 1]; 
LB=[0 0 0 0 0 0 0 0 0 0]; 
[x,fval,EXITFLAG,OUTPUT,lambda] = 
quadprog(C,c,[],[],Aeq,Beq,LB,UB); 
g2=Aeq*x; 
fprintf('\nFinal Values\n') 
fprintf('Optimum Design Variables\n') 
fprintf('-------------------------\n'),disp(x'),disp(sum(x')) 
fprintf('Optimum function value\n') 
fprintf('----------------------\n'),disp(fval) 
fprintf('\nLagrange Multipliers for equality constraint\n') 
fprintf('------------------------------------------------\n')... 
   ,disp(lambda.eqlin') 
fprintf('\nEquality constraint\n') 
fprintf('----------------------\n'),disp(g2) 
  
% Multiply the minimum-variance portfolio weights by the  
% next 100 daily returns 
% p - Current Portfolio Return 
% P - Forecasted Portfolio Return 
p=Data(100+(i-1),:)*x; 
P=x'*mu; 
stdP=sqrt(x'*C*x); 
  
% Compute the 100-Day VaR 
VatHist(i,1)=(1.645*stdP*sqrt(100)+(p-P)); 
% Compute the Dollar Amount of VaR 
Dollar_VatHist(i,1)=VatHist(i)*1000; 
  
end 
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Code for Calculating VaR using the Historical-Simulation Method 

% Matlab Code to Compute the VaR using Historical Simulation Method.
% ReadTenStocks 
Data = xlsread('Historical_Data.xls'); 
alpha=0.95; 
m=100; 
  
for i=1:400 
mu = mean(Data(1+(i-1):100+(i-1),:))'; 
dim = size(mu,1); 
C = cov(Data(1+(i-1):100+(i-1),:)); 
  
% Quadratic Programming to calculate the minimum-variance optimal 
% portfolio weights. 
% Start with small risk tolerance to approximate the min variance 
portfolio 
minrt = 0.001; 
  
% You need an initial feasible point:  force the fully invested  
% constraint. 
x0 = zeros(dim,1); 
slack = 1-sum(x0); 
UB=[1 1 1 1 1 1 1 1 1 1]; 
LB=[0 0 0 0 0 0 0 0 0 0]; 
  
for j=1:dim 
    x0(j) = min(slack,UB(j)); 
    slack = 1-sum(x0); 
end 
    rt = minrt; 
    x=gmqp(rt,mu,C,LB,UB,x0); 
    muP = mu'*x; 
    VarP = x'*C*x; 
    PlotPoint = [muP, VarP]; 
    StackX = x; 
     
% Now loop through the risk tolerances 
numsteps = 100; 
for rt= minrt : .005 : numsteps+minrt, 
    x0 = x; 
    x=gmqp(rt,mu,C,LB,UB,x0); 
    muP = mu'*x; 
    VarP = x'*C*x; 
    PlotPoint = [PlotPoint; muP, VarP]; 
    StackX = [StackX,x]; 
end 
  
% Plot the effecient frontier 
figure(1); 
last = size(PlotPoint,1); 
xmax = 1.2*PlotPoint(last,1); 
ymax = 1.2*PlotPoint(last,2); 
xlim([0,xmax]); 
ylim([0,ymax]); 
plot(PlotPoint(:,2),PlotPoint(:,1),'-r','LineWidth',3); 
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grid on 
title('Efficient Frontier') 
xlabel('Risk = Portfolio Variance') 
ylabel('Return') 
  
% Plot the efficient portfolios in a bar chart 
figure(2); 
bar(StackX','stack') 
grid on 
xlim([0,numsteps]) 
ylim([0,1]) 
title('Efficient Portfolio Allocations') 
xlabel('Different Portfolio Allocations') 
Ylabel('Sum of Portfolio Allocations') 
  
% Quadratic Programming using Optimization toolbox to calculate the 
% minimum 
% variance Portfolio Weights. 
c=[0 0 0 0 0 0 0 0 0 0]; 
Aeq =[1 1 1 1 1 1 1 1 1 1]; 
Beq =[1]; 
UB=[1 1 1 1 1 1 1 1 1 1]; 
LB=[0 0 0 0 0 0 0 0 0 0]; 
[x,fval,EXITFLAG,OUTPUT,lambda] = 
quadprog(C,c,[],[],Aeq,Beq,LB,UB); 
g2=Aeq*x; 
fprintf('\nFinal Values\n') 
fprintf('Optimum Design Variables\n') 
fprintf('-------------------------\n'),disp(x'),disp(sum(x')) 
fprintf('Optimum function value\n') 
fprintf('----------------------\n'),disp(fval) 
fprintf('\nLagrange Multipliers for equality constraint\n') 
fprintf('------------------------------------------------\n')... 
   ,disp(lambda.eqlin') 
fprintf('\nEquality constraint\n') 
fprintf('----------------------\n'),disp(g2) 
  
% Multiply the minimum-variance optimal portfolio weights by the  
% next 100 daily returns 
FutureData=Data(1+(i-1):100+(i-1),:); 
Hist=FutureData*x; 
% Sort the Portfolio Returns  
sortHist=sort(Hist); 
% Compute the Index for the specified quantile 
index=round((1-alpha)*m); 
% Compute the 100-day VaR 
VatHist(i,1)=sortHist(index)*sqrt(100); 
% Compute the Dollar Amount of VaR 
Dollar_VatHist(i,1)=VatHist(i)*1000; 
  
end 
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Appendix B: Efficient Frontiers and Portfolio Bar Allocations Charts for Different 

Time Intervals 

Efficient Frontier (Risk Vs Return) and Efficient Portfolio Allocations Bar Chart for the 

portfolio of ten stocks between 01/02/2001 and 05/25/2001 

 
 

                 
 
 
Efficient Frontier (Risk Vs Return) and Efficient Portfolio Allocations Bar Chart for the 

portfolio of ten stocks between 02/01/2001 and 06/26/2001 
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Efficient Frontier (Risk Vs Return) and Efficient Portfolio Allocations Bar Chart for the 

portfolio of ten stocks between 03/05/2001 and 07/26/2001 

 
 

   
  
 
 

Efficient Frontier (Risk Vs Return) and Efficient Portfolio Allocations Bar Chart for the 

portfolio of ten stocks between 04/03/2001 and 08/24/2001 
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Efficient Frontier (Risk Vs Return) and Efficient Portfolio Allocations Bar Chart for the 

portfolio of ten stocks between 05/03/2001 and 10/01/2001 

 

   
 
 
 
Efficient Frontier (Risk Vs Return) and Efficient Portfolio Allocations Bar Chart for the 

portfolio of ten stocks between 06/04/2001 and 10/30/2001 
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Appendix C: SAS Results I 
Phase I: The normality test for the returns of the data from November 5th, 2001 to 

February 12th, 2002.  

r1

r1

r1

D
e
n
s
i
t
y

N_r1

r
1

Moment s
N    68. 0000
Mean     0. 0022
St d Dev     0. 0425
Skewness     0. 6279
USS     0. 1216
CV  1944. 2537

Sum Wgt s    68. 0000
Sum     0. 1488
Var i ance     0. 0018
Kurt osi s     1. 6520
CSS     0. 1213
St d Mean     0. 0052

Quant i l es
100% Max      0. 1419
 75% Q3       0. 0253
 50% Med      0. 0014
 25% Q1      -0. 0215
  0% Mi n     -0. 0986
     Range     0. 2405
     Q3-Q1     0. 0468
     Mode      .     

   99. 0%    0. 1419
   97. 5%    0. 1161
   95. 0%    0. 0727
   90. 0%    0. 0469
   10. 0%   -0. 0514
    5. 0%   -0. 0630
    2. 5%   -0. 0743
    1. 0%   -0. 0986

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 965062
0. 073749
0. 073865
0. 572427

p-val ue
  0. 0536
  >. 1500
  0. 2476
  0. 1371
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r2

r2

r2

D
e
n
s
i
t
y

N_r2

r
2

Moment s
N    68. 0000
Mean     0. 0051
St d Dev     0. 0307
Skewness     0. 8355
USS     0. 0649
CV   603. 1218

Sum Wgt s    68. 0000
Sum     0. 3460
Var i ance     0. 0009
Kurt osi s     2. 3925
CSS     0. 0631
St d Mean     0. 0037

Quant i l es
100% Max      0. 1154
 75% Q3       0. 0199
 50% Med           0
 25% Q1      -0. 0131
  0% Mi n     -0. 0781
     Range     0. 1935
     Q3-Q1     0. 0331
     Mode          0

   99. 0%    0. 1154
   97. 5%    0. 0803
   95. 0%    0. 0694
   90. 0%    0. 0461
   10. 0%   -0. 0248
    5. 0%   -0. 0331
    2. 5%   -0. 0454
    1. 0%   -0. 0781

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 946095
0. 114516
0. 187583
1. 129527

p-val ue
  0. 0053
  0. 0250
  0. 0076
  0. 0057
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r3

r3

r3

D
e
n
s
i
t
y

N_r3

r
3

Moment s
N    68. 0000
Mean     0. 0006
St d Dev     0. 0096
Skewness    -0. 3614
USS     0. 0062
CV  1524. 2441

Sum Wgt s    68. 0000
Sum     0. 0428
Var i ance  9. 206E-05
Kurt osi s     0. 5339
CSS     0. 0062
St d Mean     0. 0012

Quant i l es
100% Max      0. 0245
 75% Q3       0. 0070
 50% Med      0. 0007
 25% Q1      -0. 0046
  0% Mi n     -0. 0245
     Range     0. 0490
     Q3-Q1     0. 0116
     Mode          0

   99. 0%    0. 0245
   97. 5%    0. 0179
   95. 0%    0. 0136
   90. 0%    0. 0129
   10. 0%   -0. 0126
    5. 0%   -0. 0173
    2. 5%   -0. 0235
    1. 0%   -0. 0245

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 978457
0. 101250
0. 097814
0. 559790

p-val ue
  0. 2872
  0. 0833
  0. 1210
  0. 1463

 

 50



r4

r4

r4

D
e
n
s
i
t
y

N_r4

r
4

Moment s
N    68. 0000
Mean     0. 0014
St d Dev     0. 0290
Skewness     1. 3839
USS     0. 0563
CV  2058. 4513

Sum Wgt s    68. 0000
Sum     0. 0957
Var i ance     0. 0008
Kurt osi s     4. 4404
CSS     0. 0562
St d Mean     0. 0035

Quant i l es
100% Max      0. 1208
 75% Q3       0. 0097
 50% Med     -0. 0016
 25% Q1      -0. 0139
  0% Mi n     -0. 0592
     Range     0. 1801
     Q3-Q1     0. 0236
     Mode          0

   99. 0%    0. 1208
   97. 5%    0. 0926
   95. 0%    0. 0476
   90. 0%    0. 0342
   10. 0%   -0. 0341
    5. 0%   -0. 0364
    2. 5%   -0. 0452
    1. 0%   -0. 0592

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 902218
0. 149775
0. 313700
1. 687083

p-val ue
  0. 0001
  <. 0100
  <. 0050
  <. 0050
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r5

r5

r5

D
e
n
s
i
t
y

N_r5

r
5

Moment s
N    68. 0000
Mean     0. 0010
St d Dev     0. 0811
Skewness     1. 1247
USS     0. 4407
CV  7993. 4217

Sum Wgt s    68. 0000
Sum     0. 0690
Var i ance     0. 0066
Kurt osi s     3. 4432
CSS     0. 4406
St d Mean     0. 0098

Quant i l es
100% Max      0. 3043
 75% Q3       0. 0311
 50% Med     -0. 0058
 25% Q1      -0. 0448
  0% Mi n     -0. 2009
     Range     0. 5052
     Q3-Q1     0. 0760
     Mode      .     

   99. 0%    0. 3043
   97. 5%    0. 2538
   95. 0%    0. 1573
   90. 0%    0. 0765
   10. 0%   -0. 0909
    5. 0%   -0. 0957
    2. 5%   -0. 1410
    1. 0%   -0. 2009

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 917076
0. 129856
0. 246902
1. 553019

p-val ue
  0. 0002
  <. 0100
  <. 0050
  <. 0050
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r7

r7

r7

D
e
n
s
i
t
y

N_r7

r
7

Moment s
N    68. 0000
Mean     0. 0003
St d Dev     0. 0180
Skewness    -1. 3433
USS     0. 0217
CV  6222. 4908

Sum Wgt s    68. 0000
Sum     0. 0197
Var i ance     0. 0003
Kurt osi s     5. 7264
CSS     0. 0217
St d Mean     0. 0022

Quant i l es
100% Max      0. 0365
 75% Q3       0. 0083
 50% Med      0. 0014
 25% Q1      -0. 0063
  0% Mi n     -0. 0822
     Range     0. 1186
     Q3-Q1     0. 0146
     Mode          0

   99. 0%    0. 0365
   97. 5%    0. 0355
   95. 0%    0. 0262
   90. 0%    0. 0239
   10. 0%   -0. 0192
    5. 0%   -0. 0284
    2. 5%   -0. 0348
    1. 0%   -0. 0822

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 901789
0. 145857
0. 275569
1. 461733

p-val ue
  0. 0001
  <. 0100
  <. 0050
  <. 0050

 

 53



r8

r8

r8

D
e
n
s
i
t
y

N_r8

r
8

Moment s
N    68. 0000
Mean     0. 0093
St d Dev     0. 0399
Skewness     0. 9386
USS     0. 1124
CV   429. 8851

Sum Wgt s    68. 0000
Sum     0. 6309
Var i ance     0. 0016
Kurt osi s     1. 4774
CSS     0. 1066
St d Mean     0. 0048

Quant i l es
100% Max      0. 1368
 75% Q3       0. 0299
 50% Med      0. 0048
 25% Q1      -0. 0175
  0% Mi n     -0. 0637
     Range     0. 2005
     Q3-Q1     0. 0474
     Mode      .     

   99. 0%    0. 1368
   97. 5%    0. 1126
   95. 0%    0. 1018
   90. 0%    0. 0599
   10. 0%   -0. 0371
    5. 0%   -0. 0482
    2. 5%   -0. 0571
    1. 0%   -0. 0637

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 943650
0. 093203
0. 140357
0. 979630

p-val ue
  0. 0040
  0. 1474
  0. 0325
  0. 0141
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r9

r9

r9

D
e
n
s
i
t
y

N_r9

r
9

Moment s
N    68. 0000
Mean     0. 0038
St d Dev     0. 0404
Skewness    -0. 5024
USS     0. 1104
CV  1067. 2390

Sum Wgt s    68. 0000
Sum     0. 2574
Var i ance     0. 0016
Kurt osi s     2. 6285
CSS     0. 1094
St d Mean     0. 0049

Quant i l es
100% Max      0. 1297
 75% Q3       0. 0239
 50% Med      0. 0102
 25% Q1      -0. 0143
  0% Mi n     -0. 1272
     Range     0. 2569
     Q3-Q1     0. 0382
     Mode      .     

   99. 0%    0. 1297
   97. 5%    0. 0772
   95. 0%    0. 0616
   90. 0%    0. 0489
   10. 0%   -0. 0452
    5. 0%   -0. 0535
    2. 5%   -0. 1205
    1. 0%   -0. 1272

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 947254
0. 094858
0. 161865
1. 007328

p-val ue
  0. 0061
  0. 1318
  0. 0175
  0. 0115
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r10

r10

r10

D
e
n
s
i
t
y

N_r10

r
1
0

Moment s
N    68. 0000
Mean    -0. 0015
St d Dev     0. 0585
Skewness    -0. 2394
USS     0. 2294
CV -3839. 7879

Sum Wgt s    68. 0000
Sum    -0. 1036
Var i ance     0. 0034
Kurt osi s     0. 4216
CSS     0. 2293
St d Mean     0. 0071

Quant i l es
100% Max      0. 1218
 75% Q3       0. 0387
 50% Med     -0. 0026
 25% Q1      -0. 0329
  0% Mi n     -0. 1621
     Range     0. 2839
     Q3-Q1     0. 0715
     Mode          0

   99. 0%    0. 1218
   97. 5%    0. 1158
   95. 0%    0. 0932
   90. 0%    0. 0831
   10. 0%   -0. 0728
    5. 0%   -0. 0946
    2. 5%   -0. 1476
    1. 0%   -0. 1621

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 982241
0. 078841
0. 053257
0. 359895

p-val ue
  0. 4434
  >. 1500
  >. 2500
  >. 2500
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Phase II: The normality test for the returns of the data from November Feb13th, 2002 to 

Mar 3rd, 2003.  

r1

r1

r1

D
e
n
s
i
t
y

N_r1

r
1

Moment s
N   264. 0000
Mean     0. 0030
St d Dev     0. 0375
Skewness     0. 7336
USS     0. 3714
CV  1257. 6326

Sum Wgt s   264. 0000
Sum     0. 7863
Var i ance     0. 0014
Kurt osi s     4. 2281
CSS     0. 3690
St d Mean     0. 0023

Quant i l es
100% Max      0. 1640
 75% Q3       0. 0166
 50% Med     -0. 0009
 25% Q1      -0. 0153
  0% Mi n     -0. 1504
     Range     0. 3144
     Q3-Q1     0. 0319
     Mode          0

   99. 0%    0. 1401
   97. 5%    0. 0991
   95. 0%    0. 0677
   90. 0%    0. 0481
   10. 0%   -0. 0345
    5. 0%   -0. 0476
    2. 5%   -0. 0575
    1. 0%   -0. 0644

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 913339
0. 114482
1. 027240
5. 830583

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050
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r2

r2

r2

D
e
n
s
i
t
y

N_r2

r
2

Moment s
N   264. 0000
Mean    -0. 0034
St d Dev     0. 0399
Skewness    -0. 3201
USS     0. 4223
CV -1185. 5829

Sum Wgt s   264. 0000
Sum    -0. 8891
Var i ance     0. 0016
Kurt osi s     2. 9217
CSS     0. 4193
St d Mean     0. 0025

Quant i l es
100% Max      0. 1657
 75% Q3       0. 0185
 50% Med     -0. 0031
 25% Q1      -0. 0240
  0% Mi n     -0. 1725
     Range     0. 3382
     Q3-Q1     0. 0425
     Mode          0

   99. 0%    0. 1008
   97. 5%    0. 0710
   95. 0%    0. 0559
   90. 0%    0. 0407
   10. 0%   -0. 0478
    5. 0%   -0. 0685
    2. 5%   -0. 1020
    1. 0%   -0. 1213

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 959154
0. 070372
0. 370503
2. 412135

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050
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r3

r3

r3

D
e
n
s
i
t
y

N_r3

r
3

Moment s
N   264. 0000
Mean     0. 0002
St d Dev     0. 0256
Skewness     0. 6579
USS     0. 1722
CV 16631. 4519

Sum Wgt s   264. 0000
Sum     0. 0406
Var i ance     0. 0007
Kurt osi s     6. 2874
CSS     0. 1721
St d Mean     0. 0016

Quant i l es
100% Max      0. 1559
 75% Q3       0. 0099
 50% Med           0
 25% Q1      -0. 0107
  0% Mi n     -0. 1009
     Range     0. 2567
     Q3-Q1     0. 0206
     Mode          0

   99. 0%    0. 0727
   97. 5%    0. 0575
   95. 0%    0. 0393
   90. 0%    0. 0271
   10. 0%   -0. 0264
    5. 0%   -0. 0403
    2. 5%   -0. 0586
    1. 0%   -0. 0628

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 920442
0. 112552
0. 940599
4. 991225

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050
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r4

r4

r4

D
e
n
s
i
t
y

N_r4

r
4

Moment s
N   264. 0000
Mean    -0. 0005
St d Dev     0. 0276
Skewness     0. 1609
USS     0. 2007
CV -5589. 1318

Sum Wgt s   264. 0000
Sum    -0. 1305
Var i ance     0. 0008
Kurt osi s     2. 6753
CSS     0. 2006
St d Mean     0. 0017

Quant i l es
100% Max      0. 1108
 75% Q3       0. 0116
 50% Med      0. 0011
 25% Q1      -0. 0139
  0% Mi n     -0. 0989
     Range     0. 2097
     Q3-Q1     0. 0255
     Mode          0

   99. 0%    0. 0883
   97. 5%    0. 0658
   95. 0%    0. 0400
   90. 0%    0. 0273
   10. 0%   -0. 0335
    5. 0%   -0. 0463
    2. 5%   -0. 0598
    1. 0%   -0. 0860

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 949599
0. 103886
0. 731882
4. 076214

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050
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r5

r5

r5

D
e
n
s
i
t
y

N_r5

r
5

Moment s
N   264. 0000
Mean     0. 0015
St d Dev     0. 0964
Skewness     3. 5226
USS     2. 4446
CV  6343. 1705

Sum Wgt s   264. 0000
Sum     0. 4012
Var i ance     0. 0093
Kurt osi s    26. 9238
CSS     2. 4440
St d Mean     0. 0059

Quant i l es
100% Max      0. 8710
 75% Q3       0. 0319
 50% Med     -0. 0116
 25% Q1      -0. 0476
  0% Mi n     -0. 2710
     Range     1. 1420
     Q3-Q1     0. 0796
     Mode          0

   99. 0%    0. 3462
   97. 5%    0. 2000
   95. 0%    0. 1300
   90. 0%    0. 0820
   10. 0%   -0. 0806
    5. 0%   -0. 1136
    2. 5%   -0. 1280
    1. 0%   -0. 1586

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 769678
0. 132268
1. 526938
9. 056801

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050
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r6

r6

r6

D
e
n
s
i
t
y

N_r6

r
6

Moment s
N   264. 0000
Mean    -0. 0015
St d Dev     0. 0452
Skewness    -0. 2252
USS     0. 5376
CV -2962. 1083

Sum Wgt s   264. 0000
Sum    -0. 4027
Var i ance     0. 0020
Kurt osi s     2. 3983
CSS     0. 5370
St d Mean     0. 0028

Quant i l es
100% Max      0. 1456
 75% Q3       0. 0213
 50% Med     -0. 0022
 25% Q1      -0. 0254
  0% Mi n     -0. 2162
     Range     0. 3618
     Q3-Q1     0. 0467
     Mode          0

   99. 0%    0. 1242
   97. 5%    0. 0916
   95. 0%    0. 0673
   90. 0%    0. 0542
   10. 0%   -0. 0585
    5. 0%   -0. 0695
    2. 5%   -0. 0897
    1. 0%   -0. 1382

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 971241
0. 072551
0. 325473
1. 752683

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050
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Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 971241
0. 072551
0. 325473
1. 752683

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050

r7

r7

r7

D
e
n
s
i
t
y

N_r7

r
7

Moment s
N   264. 0000
Mean     0. 0003
St d Dev     0. 0161
Skewness     0. 0002
USS     0. 0681
CV  5638. 1436

Sum Wgt s   264. 0000
Sum     0. 0753
Var i ance     0. 0003
Kurt osi s     4. 0222
CSS     0. 0680
St d Mean     0. 0010

Quant i l es
100% Max      0. 0749
 75% Q3       0. 0096
 50% Med           0
 25% Q1      -0. 0077
  0% Mi n     -0. 0718
     Range     0. 1467
     Q3-Q1     0. 0172
     Mode          0

   99. 0%    0. 0414
   97. 5%    0. 0312
   95. 0%    0. 0248
   90. 0%    0. 0167
   10. 0%   -0. 0178
    5. 0%   -0. 0251
    2. 5%   -0. 0307
    1. 0%   -0. 0437

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 950404
0. 074254
0. 334442
2. 198921

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050
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r8

r8

r8

D
e
n
s
i
t
y

N_r8

r
8

Moment s
N   264. 0000
Mean    -0. 0003
St d Dev     0. 0418
Skewness    -0. 2223
USS     0. 4591
CV -13897. 575

Sum Wgt s   264. 0000
Sum    -0. 0794
Var i ance     0. 0017
Kurt osi s     1. 4223
CSS     0. 4590
St d Mean     0. 0026

Quant i l es
100% Max      0. 1137
 75% Q3       0. 0275
 50% Med     -0. 0015
 25% Q1      -0. 0256
  0% Mi n     -0. 1811
     Range     0. 2948
     Q3-Q1     0. 0531
     Mode          0

   99. 0%    0. 1097
   97. 5%    0. 0858
   95. 0%    0. 0704
   90. 0%    0. 0518
   10. 0%   -0. 0474
    5. 0%   -0. 0590
    2. 5%   -0. 0832
    1. 0%   -0. 1181

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 983378
0. 054229
0. 143009
0. 844311

p-val ue
  0. 0036
  0. 0576
  0. 0304
  0. 0304
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r9

r9

r9

D
e
n
s
i
t
y

N_r9

r
9

Moment s
N   264. 0000
Mean    -0. 0007
St d Dev     0. 0405
Skewness    -0. 2881
USS     0. 4322
CV -5838. 1076

Sum Wgt s   264. 0000
Sum    -0. 1833
Var i ance     0. 0016
Kurt osi s     2. 1616
CSS     0. 4321
St d Mean     0. 0025

Quant i l es
100% Max      0. 1190
 75% Q3       0. 0191
 50% Med           0
 25% Q1      -0. 0207
  0% Mi n     -0. 1579
     Range     0. 2769
     Q3-Q1     0. 0397
     Mode          0

   99. 0%    0. 1050
   97. 5%    0. 0905
   95. 0%    0. 0690
   90. 0%    0. 0436
   10. 0%   -0. 0464
    5. 0%   -0. 0694
    2. 5%   -0. 0962
    1. 0%   -0. 1394

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 955806
0. 082538
0. 632481
3. 644373

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050
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r10

r10

r10

D
e
n
s
i
t
y

N_r10

r
1
0

Moment s
N   264. 0000
Mean    -0. 0014
St d Dev     0. 0604
Skewness    -0. 7546
USS     0. 9609
CV -4459. 5150

Sum Wgt s   264. 0000
Sum    -0. 3577
Var i ance     0. 0037
Kurt osi s    21. 2881
CSS     0. 9604
St d Mean     0. 0037

Quant i l es
100% Max      0. 3032
 75% Q3       0. 0217
 50% Med     -0. 0046
 25% Q1      -0. 0253
  0% Mi n     -0. 4937
     Range     0. 7969
     Q3-Q1     0. 0470
     Mode          0

   99. 0%    0. 2739
   97. 5%    0. 0974
   95. 0%    0. 0750
   90. 0%    0. 0539
   10. 0%   -0. 0559
    5. 0%   -0. 0713
    2. 5%   -0. 0932
    1. 0%   -0. 1137

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 780821
0. 112125
1. 488802
9. 087392

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050
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Phase III: The normality test for the returns of the data from November Mar 4th, 2003 to 

Mar 8th, 2002.  

r1

r1

r1

D
e
n
s
i
t
y

N_r1

r
1

Moment s
N    47. 0000
Mean     0. 0201
St d Dev     0. 0493
Skewness     0. 7961
USS     0. 1309
CV   246. 0573

Sum Wgt s    47. 0000
Sum     0. 9426
Var i ance     0. 0024
Kurt osi s     2. 5975
CSS     0. 1120
St d Mean     0. 0072

Quant i l es
100% Max      0. 1797
 75% Q3       0. 0451
 50% Med      0. 0192
 25% Q1      -0. 0068
  0% Mi n     -0. 1004
     Range     0. 2801
     Q3-Q1     0. 0519
     Mode      .     

   99. 0%    0. 1797
   97. 5%    0. 1395
   95. 0%    0. 1374
   90. 0%    0. 0634
   10. 0%   -0. 0305
    5. 0%   -0. 0569
    2. 5%   -0. 0635
    1. 0%   -0. 1004

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 928885
0. 123031
0. 149104
1. 047707

p-val ue
  0. 0069
  0. 0747
  0. 0237
  0. 0088
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r2

r2

r2

D
e
n
s
i
t
y

N_r2

r
2

Moment s
N    47. 0000
Mean     0. 0079
St d Dev     0. 0389
Skewness     0. 3045
USS     0. 0724
CV   494. 6081

Sum Wgt s    47. 0000
Sum     0. 3693
Var i ance     0. 0015
Kurt osi s    -0. 1174
CSS     0. 0695
St d Mean     0. 0057

Quant i l es
100% Max      0. 1092
 75% Q3       0. 0396
 50% Med      0. 0068
 25% Q1      -0. 0193
  0% Mi n     -0. 0689
     Range     0. 1781
     Q3-Q1     0. 0589
     Mode      .     

   99. 0%    0. 1092
   97. 5%    0. 0817
   95. 0%    0. 0700
   90. 0%    0. 0573
   10. 0%   -0. 0485
    5. 0%   -0. 0526
    2. 5%   -0. 0557
    1. 0%   -0. 0689

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 988303
0. 077942
0. 029883
0. 178227

p-val ue
  0. 9151
  >. 1500
  >. 2500
  >. 2500
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r3

r3

r3

D
e
n
s
i
t
y

N_r3

r
3

Moment s
N    47. 0000
Mean    -0. 0003
St d Dev     0. 0117
Skewness     0. 1265
USS     0. 0063
CV -4081. 0230

Sum Wgt s    47. 0000
Sum    -0. 0134
Var i ance     0. 0001
Kurt osi s     0. 3575
CSS     0. 0063
St d Mean     0. 0017

Quant i l es
100% Max      0. 0254
 75% Q3       0. 0062
 50% Med     -0. 0023
 25% Q1      -0. 0068
  0% Mi n     -0. 0307
     Range     0. 0561
     Q3-Q1     0. 0130
     Mode      .     

   99. 0%    0. 0254
   97. 5%    0. 0229
   95. 0%    0. 0207
   90. 0%    0. 0181
   10. 0%   -0. 0143
    5. 0%   -0. 0189
    2. 5%   -0. 0194
    1. 0%   -0. 0307

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 979179
0. 077947
0. 057325
0. 389317

p-val ue
  0. 5588
  >. 1500
  >. 2500
  >. 2500
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r4

r4

r4

D
e
n
s
i
t
y

N_r4

r
4

Moment s
N    47. 0000
Mean    -0. 0011
St d Dev     0. 0363
Skewness     1. 8062
USS     0. 0607
CV -3372. 3369

Sum Wgt s    47. 0000
Sum    -0. 0506
Var i ance     0. 0013
Kurt osi s     9. 1172
CSS     0. 0607
St d Mean     0. 0053

Quant i l es
100% Max      0. 1646
 75% Q3       0. 0081
 50% Med     -0. 0008
 25% Q1      -0. 0163
  0% Mi n     -0. 0821
     Range     0. 2467
     Q3-Q1     0. 0244
     Mode      .     

   99. 0%    0. 1646
   97. 5%    0. 0668
   95. 0%    0. 0387
   90. 0%    0. 0294
   10. 0%   -0. 0353
    5. 0%   -0. 0470
    2. 5%   -0. 0757
    1. 0%   -0. 0821

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 827526
0. 204972
0. 353628
2. 026491

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050
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r5

r5

r5

D
e
n
s
i
t
y

N_r5

r
5

Moment s
N    47. 0000
Mean     0. 0073
St d Dev     0. 0509
Skewness     0. 0607
USS     0. 1216
CV   694. 0398

Sum Wgt s    47. 0000
Sum     0. 3446
Var i ance     0. 0026
Kurt osi s     0. 7065
CSS     0. 1191
St d Mean     0. 0074

Quant i l es
100% Max      0. 1376
 75% Q3       0. 0383
 50% Med      0. 0093
 25% Q1      -0. 0235
  0% Mi n     -0. 1290
     Range     0. 2666
     Q3-Q1     0. 0618
     Mode          0

   99. 0%    0. 1376
   97. 5%    0. 1064
   95. 0%    0. 0920
   90. 0%    0. 0811
   10. 0%   -0. 0562
    5. 0%   -0. 0789
    2. 5%   -0. 0806
    1. 0%   -0. 1290

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 987718
0. 087038
0. 047568
0. 283878

p-val ue
  0. 8979
  >. 1500
  >. 2500
  >. 2500
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r6

r6

r6

D
e
n
s
i
t
y

N_r6

r
6

Moment s
N    47. 0000
Mean     0. 0050
St d Dev     0. 0393
Skewness     0. 0566
USS     0. 0723
CV   787. 9661

Sum Wgt s    47. 0000
Sum     0. 2346
Var i ance     0. 0015
Kurt osi s     1. 1848
CSS     0. 0711
St d Mean     0. 0057

Quant i l es
100% Max      0. 1108
 75% Q3       0. 0283
 50% Med      0. 0047
 25% Q1      -0. 0108
  0% Mi n     -0. 0987
     Range     0. 2095
     Q3-Q1     0. 0391
     Mode      .     

   99. 0%    0. 1108
   97. 5%    0. 0963
   95. 0%    0. 0623
   90. 0%    0. 0495
   10. 0%   -0. 0490
    5. 0%   -0. 0601
    2. 5%   -0. 0703
    1. 0%   -0. 0987

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 974621
0. 110193
0. 091511
0. 524577

p-val ue
  0. 3925
  >. 1500
  0. 1443
  0. 1802
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r7

r7

r7

D
e
n
s
i
t
y

N_r7

r
7

Moment s
N    47. 0000
Mean     0. 0026
St d Dev     0. 0103
Skewness     0. 3251
USS     0. 0052
CV   397. 6993

Sum Wgt s    47. 0000
Sum     0. 1218
Var i ance     0. 0001
Kurt osi s     0. 6333
CSS     0. 0049
St d Mean     0. 0015

Quant i l es
100% Max      0. 0343
 75% Q3       0. 0089
 50% Med      0. 0043
 25% Q1      -0. 0061
  0% Mi n     -0. 0167
     Range     0. 0510
     Q3-Q1     0. 0150
     Mode      .     

   99. 0%    0. 0343
   97. 5%    0. 0214
   95. 0%    0. 0158
   90. 0%    0. 0139
   10. 0%   -0. 0110
    5. 0%   -0. 0136
    2. 5%   -0. 0137
    1. 0%   -0. 0167

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 964238
0. 094373
0. 074981
0. 495097

p-val ue
  0. 1583
  >. 1500
  0. 2395
  0. 2132
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r8

r8

r8

D
e
n
s
i
t
y

N_r8

r
8

Moment s
N    47. 0000
Mean     0. 0001
St d Dev     0. 0330
Skewness     0. 4113
USS     0. 0501
CV 23701. 3160

Sum Wgt s    47. 0000
Sum     0. 0065
Var i ance     0. 0011
Kurt osi s     0. 1581
CSS     0. 0501
St d Mean     0. 0048

Quant i l es
100% Max      0. 0845
 75% Q3       0. 0176
 50% Med      0. 0007
 25% Q1      -0. 0235
  0% Mi n     -0. 0645
     Range     0. 1490
     Q3-Q1     0. 0411
     Mode      .     

   99. 0%    0. 0845
   97. 5%    0. 0704
   95. 0%    0. 0656
   90. 0%    0. 0465
   10. 0%   -0. 0402
    5. 0%   -0. 0537
    2. 5%   -0. 0556
    1. 0%   -0. 0645

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 981665
0. 084278
0. 039325
0. 264965

p-val ue
  0. 6620
  >. 1500
  >. 2500
  >. 2500
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r9

r9

r9

D
e
n
s
i
t
y

N_r9

r
9

Moment s
N    47. 0000
Mean -3. 129E-06
St d Dev     0. 0280
Skewness     0. 7097
USS     0. 0361
CV -894858. 91

Sum Wgt s    47. 0000
Sum    -0. 0001
Var i ance     0. 0008
Kurt osi s     1. 0845
CSS     0. 0361
St d Mean     0. 0041

Quant i l es
100% Max      0. 0882
 75% Q3       0. 0175
 50% Med     -0. 0012
 25% Q1      -0. 0205
  0% Mi n     -0. 0585
     Range     0. 1466
     Q3-Q1     0. 0380
     Mode          0

   99. 0%    0. 0882
   97. 5%    0. 0507
   95. 0%    0. 0469
   90. 0%    0. 0417
   10. 0%   -0. 0291
    5. 0%   -0. 0396
    2. 5%   -0. 0459
    1. 0%   -0. 0585

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 964025
0. 124990
0. 101355
0. 579608

p-val ue
  0. 1553
  0. 0657
  0. 1060
  0. 1297
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r10

r10

r10

D
e
n
s
i
t
y

N_r10

r
1
0

Moment s
N    47. 0000
Mean     0. 0149
St d Dev     0. 0450
Skewness     1. 2650
USS     0. 1035
CV   301. 7155

Sum Wgt s    47. 0000
Sum     0. 7008
Var i ance     0. 0020
Kurt osi s     3. 1747
CSS     0. 0931
St d Mean     0. 0066

Quant i l es
100% Max      0. 1840
 75% Q3       0. 0338
 50% Med      0. 0077
 25% Q1      -0. 0143
  0% Mi n     -0. 0583
     Range     0. 2423
     Q3-Q1     0. 0481
     Mode      .     

   99. 0%    0. 1840
   97. 5%    0. 1019
   95. 0%    0. 0923
   90. 0%    0. 0750
   10. 0%   -0. 0336
    5. 0%   -0. 0502
    2. 5%   -0. 0502
    1. 0%   -0. 0583

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 926853
0. 115185
0. 104073
0. 669338

p-val ue
  0. 0058
  0. 1184
  0. 0973
  0. 0795
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Distribution of the difference of the VaR between the Delta-Normal method and the 
Historical Simulation method. 

r1

r1

r1

D
e
n
s
i
t
y

N_r1_1

r
1

Moment s
N   400. 0000
Mean    11. 9768
St d Dev    24. 2997
Skewness     0. 1576
USS 292977. 121
CV   202. 8889

Sum Wgt s   400. 0000
Sum  4790. 7353
Var i ance   590. 4743
Kurt osi s     0. 1834
CSS 235599. 259
St d Mean     1. 2150

Quant i l es
100% Max     92. 3762
 75% Q3      26. 3045
 50% Med     11. 1979
 25% Q1      -3. 4456
  0% Mi n    -59. 8667
     Range   152. 2429
     Q3-Q1    29. 7501
     Mode      .     

   99. 0%   73. 2942
   97. 5%   63. 3556
   95. 0%   52. 2329
   90. 0%   44. 3482
   10. 0%  -19. 6814
    5. 0%  -29. 1408
    2. 5%  -35. 3006
    1. 0%  -40. 8248

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 995499
0. 050205
0. 136841
0. 699356

p-val ue
  0. 3050
  0. 0155
  0. 0375
  0. 0712
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Appendix D: SAS Results II 
Test for normality for the whole historical data of the portfolio of ten stocks from 
01/02/2001 to 05/27/2003 
 
 

r1

r1

r1

D
e
n
s
i
t
y

N_r1

r
1

Moment s
N   599. 0000
Mean     0. 0054
St d Dev     0. 0441
Skewness     0. 8878
USS     1. 1810
CV   815. 5090

Sum Wgt s   599. 0000
Sum     3. 2399
Var i ance     0. 0019
Kurt osi s     3. 3834
CSS     1. 1635
St d Mean     0. 0018

Quant i l es
100% Max      0. 2308
 75% Q3       0. 0245
 50% Med           0
 25% Q1      -0. 0169
  0% Mi n     -0. 1504
     Range     0. 3812
     Q3-Q1     0. 0414
     Mode          0

   99. 0%    0. 1538
   97. 5%    0. 1272
   95. 0%    0. 0806
   90. 0%    0. 0545
   10. 0%   -0. 0411
    5. 0%   -0. 0573
    2. 5%   -0. 0705
    1. 0%   -0. 1058

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 935692
0. 091148
1. 675610
9. 804214

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050
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r2

r2

D
e
n
s
i
t
y

N_r2

r
2

Moment s
N   599. 0000
Mean     0. 0010
St d Dev     0. 0421
Skewness    -0. 4530
USS     1. 0586
CV  4006. 2249

Sum Wgt s   599. 0000
Sum     0. 6289
Var i ance     0. 0018
Kurt osi s     4. 4381
CSS     1. 0580
St d Mean     0. 0017

Quant i l es
100% Max      0. 1657
 75% Q3       0. 0245
 50% Med      0. 0011
 25% Q1      -0. 0210
  0% Mi n     -0. 2689
     Range     0. 4346
     Q3-Q1     0. 0455
     Mode          0

   99. 0%    0. 1092
   97. 5%    0. 0866
   95. 0%    0. 0671
   90. 0%    0. 0495
   10. 0%   -0. 0433
    5. 0%   -0. 0592
    2. 5%   -0. 0846
    1. 0%   -0. 1207

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 953752
0. 062355
0. 695312
4. 475988

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050

r2
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r3

r3

r3

D
e
n
s
i
t
y

N_r3

r
3

Moment s
N   599. 0000
Mean     0. 0003
St d Dev     0. 0212
Skewness     0. 5279
USS     0. 2682
CV  6320. 8848

Sum Wgt s   599. 0000
Sum     0. 2007
Var i ance     0. 0004
Kurt osi s     6. 8512
CSS     0. 2682
St d Mean     0. 0009

Quant i l es
100% Max      0. 1559
 75% Q3       0. 0089
 50% Med           0
 25% Q1      -0. 0082
  0% Mi n     -0. 1009
     Range     0. 2567
     Q3-Q1     0. 0171
     Mode          0

   99. 0%    0. 0607
   97. 5%    0. 0421
   95. 0%    0. 0346
   90. 0%    0. 0238
   10. 0%   -0. 0225
    5. 0%   -0. 0326
    2. 5%   -0. 0458
    1. 0%   -0. 0610

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 920364
0. 103566
2. 225156
11. 76144

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050

 

 80



r4

r4

r4

D
e
n
s
i
t
y

N_r4

r
4

Moment s
N   599. 0000
Mean     0. 0012
St d Dev     0. 0331
Skewness     0. 4496
USS     0. 6567
CV  2866. 1144

Sum Wgt s   599. 0000
Sum     0. 6922
Var i ance     0. 0011
Kurt osi s     4. 6753
CSS     0. 6559
St d Mean     0. 0014

Quant i l es
100% Max      0. 1646
 75% Q3       0. 0132
 50% Med   5. 848E-05
 25% Q1      -0. 0139
  0% Mi n     -0. 1500
     Range     0. 3146
     Q3-Q1     0. 0271
     Mode          0

   99. 0%    0. 1250
   97. 5%    0. 0714
   95. 0%    0. 0547
   90. 0%    0. 0348
   10. 0%   -0. 0346
    5. 0%   -0. 0482
    2. 5%   -0. 0671
    1. 0%   -0. 0915

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 919367
0. 114377
2. 411792
12. 95930

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050
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r5

r5

r5

D
e
n
s
i
t
y

N_r5

r
5

Moment s
N   599. 0000
Mean     0. 0019
St d Dev     0. 0932
Skewness     2. 5477
USS     5. 2019
CV  4857. 6172

Sum Wgt s   599. 0000
Sum     1. 1499
Var i ance     0. 0087
Kurt osi s    17. 0512
CSS     5. 1997
St d Mean     0. 0038

Quant i l es
100% Max      0. 8710
 75% Q3       0. 0387
 50% Med     -0. 0072
 25% Q1      -0. 0505
  0% Mi n     -0. 2710
     Range     1. 1420
     Q3-Q1     0. 0892
     Mode          0

   99. 0%    0. 3880
   97. 5%    0. 2000
   95. 0%    0. 1321
   90. 0%    0. 0909
   10. 0%   -0. 0950
    5. 0%   -0. 1221
    2. 5%   -0. 1410
    1. 0%   -0. 1630

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 843875
0. 100851
1. 886487
11. 96463

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050
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r6

r6

r6

D
e
n
s
i
t
y

N_r6

r
6

Moment s
N   599. 0000
Mean    -0. 0003
St d Dev     0. 0448
Skewness     0. 2925
USS     1. 2002
CV -13090. 764

Sum Wgt s   599. 0000
Sum    -0. 2050
Var i ance     0. 0020
Kurt osi s     2. 0289
CSS     1. 2001
St d Mean     0. 0018

Quant i l es
100% Max      0. 2009
 75% Q3       0. 0244
 50% Med     -0. 0029
 25% Q1      -0. 0269
  0% Mi n     -0. 2162
     Range     0. 4172
     Q3-Q1     0. 0513
     Mode          0

   99. 0%    0. 1290
   97. 5%    0. 0963
   95. 0%    0. 0763
   90. 0%    0. 0590
   10. 0%   -0. 0532
    5. 0%   -0. 0678
    2. 5%   -0. 0801
    1. 0%   -0. 1065

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 976002
0. 072686
0. 652545
3. 475965

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050
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r7

r7

r7

D
e
n
s
i
t
y

N_r7

r
7

Moment s
N   599. 0000
Mean     0. 0011
St d Dev     0. 0161
Skewness    -0. 0226
USS     0. 1550
CV  1422. 1070

Sum Wgt s   599. 0000
Sum     0. 6764
Var i ance     0. 0003
Kurt osi s     4. 4173
CSS     0. 1542
St d Mean     0. 0007

Quant i l es
100% Max      0. 0865
 75% Q3       0. 0097
 50% Med      0. 0006
 25% Q1      -0. 0067
  0% Mi n     -0. 0822
     Range     0. 1687
     Q3-Q1     0. 0164
     Mode          0

   99. 0%    0. 0414
   97. 5%    0. 0328
   95. 0%    0. 0260
   90. 0%    0. 0191
   10. 0%   -0. 0161
    5. 0%   -0. 0245
    2. 5%   -0. 0313
    1. 0%   -0. 0437

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 949485
0. 065481
0. 863140
5. 187065

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050
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r8

r8

r8

D
e
n
s
i
t
y

N_r8

r
8

Moment s
N   599. 0000
Mean  3. 257E-05
St d Dev     0. 0373
Skewness     0. 2204
USS     0. 8302
CV 114413. 276

Sum Wgt s   599. 0000
Sum     0. 0195
Var i ance     0. 0014
Kurt osi s     1. 9380
CSS     0. 8302
St d Mean     0. 0015

Quant i l es
100% Max      0. 1446
 75% Q3       0. 0176
 50% Med     -0. 0019
 25% Q1      -0. 0214
  0% Mi n     -0. 1811
     Range     0. 3256
     Q3-Q1     0. 0390
     Mode          0

   99. 0%    0. 1100
   97. 5%    0. 0840
   95. 0%    0. 0684
   90. 0%    0. 0456
   10. 0%   -0. 0429
    5. 0%   -0. 0548
    2. 5%   -0. 0684
    1. 0%   -0. 0900

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 974545
0. 072823
0. 704586
3. 902639

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050
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r9

r9

r9

D
e
n
s
i
t
y

N_r9

r
9

Moment s
N   599. 0000
Mean     0. 0011
St d Dev     0. 0396
Skewness    -0. 1206
USS     0. 9402
CV  3456. 2776

Sum Wgt s   599. 0000
Sum     0. 6869
Var i ance     0. 0016
Kurt osi s     2. 0294
CSS     0. 9394
St d Mean     0. 0016

Quant i l es
100% Max      0. 1297
 75% Q3       0. 0201
 50% Med           0
 25% Q1      -0. 0188
  0% Mi n     -0. 1579
     Range     0. 2876
     Q3-Q1     0. 0389
     Mode          0

   99. 0%    0. 1059
   97. 5%    0. 0909
   95. 0%    0. 0704
   90. 0%    0. 0474
   10. 0%   -0. 0440
    5. 0%   -0. 0620
    2. 5%   -0. 0833
    1. 0%   -0. 1237

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 961312
0. 081344
1. 285069
7. 288738

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050
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r10

r10

r10

D
e
n
s
i
t
y

N_r10

r
1
0

Moment s
N   599. 0000
Mean     0. 0010
St d Dev     0. 0677
Skewness     1. 2202
USS     2. 7399
CV  6541. 9368

Sum Wgt s   599. 0000
Sum     0. 6197
Var i ance     0. 0046
Kurt osi s    11. 1655
CSS     2. 7393
St d Mean     0. 0028

Quant i l es
100% Max      0. 4828
 75% Q3       0. 0262
 50% Med     -0. 0016
 25% Q1      -0. 0323
  0% Mi n     -0. 4330
     Range     0. 9158
     Q3-Q1     0. 0584
     Mode          0

   99. 0%    0. 2374
   97. 5%    0. 1554
   95. 0%    0. 1023
   90. 0%    0. 0676
   10. 0%   -0. 0669
    5. 0%   -0. 0910
    2. 5%   -0. 1154
    1. 0%   -0. 1417

Test s f or  Normal i t y
Test  St at i st i c

Shapi ro-Wi l k      
Kol mogorov-Smi rnov
Cramer-von Mi ses  
Anderson-Dar l i ng  

Val ue
0. 869578
0. 113823
2. 414629
13. 79627

p-val ue
  0. 0000
  <. 0100
  <. 0050
  <. 0050
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