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Abstract

We introduce and analyze a new algorithm for linear classifim which combines Rosen-
blatt's perceptron algorithm with Helmbold and Warmutleave-one-out method. Like Vap-
nik's maximal-margin classifier, our algorithm takes adage of data that are linearly sep-
arable with large margins. Compared to Vapnik's algorithowever, ours is much simpler
to implement, and much more efficient in terms of computatioe. We also show that our
algorithm can be efficiently used in very high dimensionaags using kernel functions. We
performed some experiments using our algorithm, and somania of it, for classifying im-
ages of handwritten digits. The performance of our algarnitbclose to, but not as good as, the
performance of maximal-margin classifiers on the same probivhile saving significantly on
computation time and programming effort.

1 Introduction

One of the most influential developments in the theory of machine learning in thievagears
is Vapnik's work on support vector machines (SVM) [18]. Vapnik's analysis sugdpestsltow-
ing simple method for learning complex binary classifiers. First, use somd fmapping® to
map the instances into some very high dimensional space in which the twescksslinearly
separable. Then use quadratic programming to find the vector that classifles @hta correctly
and maximizes thenargin i.e., the minimal distance between the separating hyperplane and the
instances.

There are two main contributions of his work. The first is a proof of a new bound on the
difference between the training error and the test error of a linear easdiat maximizes the

*A preliminary version of this paper appeared in Breceedings of the Eleventh Annual Conference on Computa-
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margin. The significance of this bound is that it depends only on the size of the margin (or the
number of support vectors) and not on the dimension. It is superior to the bounds that can be given
for arbitrary consistent linear classifiers.

The second contribution is a method for computing the maximal-margin classffieently
for some specific high dimensional mappings. This method is based on the idea of kertiehsjnc
which are described in detail in Section 4.

The main part of algorithms for finding the maximal-margin classifier is a coatjout of a
solution for a large quadratic program. The constraints in the program correspondttaitieg
examples so their number can be very large. Much of the recent practical wetkpport vector
machines is centered on finding efficient ways of solving these quadratic programrobigms.

In this paper, we introduce a new and simpler algorithm for linear classditathich takes
advantage of data that are linearly separable with large margins. We nameéw algorithm
thevoted-perceptromlgorithm. The algorithm is based on the well known perceptron algorithm of
Rosenblatt [16, 17] and a transformation of online learning algorithms to batchrigalgorithms
developed by Helmbold and Warmuth [9]. Moreover, following the work of Aizan, Braverman
and Rozonoer [1], we show that kernel functions can be used with our algorithm scetbatviun
our algorithm efficiently in very high dimensional spaces. Our algorithm andhatyais involve
little more than combining these three known methods. On the other hand, the realgorighm
is very simple and easy to implement, and the theoretical bounds on the expettedligation
error of the new algorithm are almost identical to the bounds for SVM's given by Vaprdk
Chervonenkis [19] in the linearly separable case.

We repeated some of the experiments performed by Cortes and Vapnik [6] on the u4d of S
on the problem of classifying handwritten digits. We tested both the voted-psynegdgorithm
and a variant based on averaging rather than voting. These experiments ititht#te use of ker-
nel functions with the perceptron algorithm yields a dramatic improvement fioqpeance, both
in test accuracy and in computation time. In addition, we found that, whemriggiime is limited,
the voted-perceptron algorithm performs better than the traditional way of usengdrceptron
algorithm (although all methods converge eventually to roughly the same levelfofipance).

Recently, Friess, Cristianini and Campbell [7] have experimentedaddifferent online learn-
ing algorithm called theadatron This algorithm was suggested by Anlauf and Biehl [2] as a
method for calculating the largest margin classifier (also calledrtieeximally stable perceptron”).
They proved that their algorithm converges asymptotically to the correatignl

Our paper is organized as follows. In Section 2, we describe the voted peraggorithm.

In Section 3, we derive upper bounds on the expected generalization error for bothethryli
separable and inseparable cases. In Section 4, we review the method of &athdéscribe how
it is used in our algorithm. In Section 5, we summarize the results of our exgetinon the
handwritten digit recognition problem. We conclude with Section 6 in which we sanamour

observations on the relations between the theory and the experiments and suggest\s@pen

problems.



2 The Algorithm

We assume that all instances are points R". We use]|x|| to denote the Euclidean length xf
For most of the paper, we assume that lalyedse in{—1,+1}.

The basis of our study is the classical perceptron algorithm invented by Rosdtblat7].
This is a very simple algorithm most naturally studied in the online learning mdde online
perceptron algorithm starts with an initial zero prediction veator 0. It predicts the label of
a new instance to beg = signv - x). If this prediction differs from the labe}, it updates the
prediction vector tov = v + yX. If the prediction is correct them is not changed. The process
then repeats with the next example.

The most common way the perceptron algorithm is used for learning from a batcirohg
examples is to run the algorithm repeatedly through the training set until it finadsdacpon vector
which is correct on all of the training set. This prediction rule is then usegredicting the labels
on the test set.

Block [3], Novikoff [15] and Minsky and Papert [14] have shown that if the da&almearly
separable, then the perceptron algorithm will make a finite number of mistakdsharefore, if
repeatedly cycled through the training set, will converge to a vector wlunlectly classifies all
of the examples. Moreover, the number of mistakes is upper bounded by a function of the gap
between the positive and negative examples, a fact that will be central emalysis.

In this paper, we propose to use a more sophisticated method of applying the onlinerpearcept
algorithm to batch learning, namely, a variation of the leave-one-out methoctlofibdld and
Warmuth [9]. In thevoted-perceptroralgorithm, we store more information during training and
then use this elaborate information to generate better predictions on theteestla algorithm
is detailed in Figure 1. The information we maintain during training is thteolisall prediction
vectors that were generated after each and every mistake. For edclvestior, we count the
number of iterations it “survives” until the next mistake is made; we refehts ¢ount as the
“weight” of the prediction vectot. To calculate a prediction we compute the binary prediction of
each one of the prediction vectors and combine all these predictions by a weightedywate.
The weights used are the survival times described above. This makes egehge as “good”
prediction vectors tend to survive for a long time and thus have larger weighé imajority vote.

3 Analysis

In this section, we give an analysis of the voted-perceptron algorithm for tleé/tasl in which
the algorithm runs exactly once through the training data. We also quote a theorem & &agni
Chervonenkis [19] for the linearly separable case. This theorem bounds the gextienakezror of
the consistent perceptron found after the perceptron algorithm is run to convergetarestingly,
for the linearly separable case, the theorems yield very similar bounds.

As we shall see in the experiments, the algorithm actually continues to ieperformance
afterT = 1. We have no theoretical explanation for this improvement.

If the data are linearly separable, then the perceptron algorithm will eaytconverge on

! Storing all of these vectors might seem an excessive wastewfory. However, as we shall see, when perceptrons
are used together with kernels, the excess in memory andwitiop is really quite minimal.



Training

Input: a labeled training sétx:, v1), ..., X, Ym))
number of epoch¥’
Output: a list of weighted perceptrofisry, ¢1), ..., (Vi, ¢k ))

e Initialize: k :=0, vy :=0, ¢; :=0.
e Repeafl' times:
—Fori=1,...,m
« Compute predictionf := sign(vy - X;)

« If § = ythenc, := ¢ + 1.
elser_H = Vi + Yy X,

Ch1 = 1,
k:=Fk+1.
Prediction
Given: the list of weighted perceptrongv,ci), ..., (Ve, cx))

an unlabeled instance:
compute a predicted labglas follows:

c; Sign(v; - X);  § = sign(s) .

||M?v

Figure 1: The voted-perceptron algorithm.

some consistent hypothesis (i.e., a prediction vector that is correct on ladl t&ining examples).
As this prediction vector makes no further mistakes, it will eventually cate the weighted vote
in the voted-perceptron algorithm. Thus, for linearly separable data, WWhen oo, the voted-
perceptron algorithm converges to the regular use of the perceptron algorithnh, iviicpredict
using the final prediction vector.

As we have recently learned, the performance of the final prediction vector Basabhalyzed
by Vapnik and Chervonenkis [19]. We discuss their bound at the end of this section.

We now give our analysis for the ca%e= 1. The analysis is in two parts and mostly com-
bines known material. First, we review the classical analysis of the openeeptron algorithm
in the linearly separable case, as well as an extension to the insepeaableSecond, we review
an analysis of the leave-one-out conversion of an online learning algorithm tcla learning
algorithm.

3.1 The online perceptron algorithm in the separable case

Our analysis is based on the following well known result first proved by BI8t&ifd Novikoff [15].
The significance of this result is that the number of mistakes does not depend on the aiimensi



of the instances. This gives reason to believe that the perceptron algoritgitmh perform well in
high dimensional spaces.

Theorem 1 (Block, Novikoff) Let((Xi,y1),-..,(Xm,yn)) be asequence of labeled examples with

[IX:]| £ R. Suppose that there exists a veatosuch that/|u|| = 1 andy;(u - x;) > ~ for all ex-

amples in the sequence. Then the number of mistakes made by the online perceptron algorithm on
this sequence is at mogk/~)*.

Proof: Although the proof is well known, we repeat it for completeness.

Let v, denote the prediction vector used prior to f#tih mistake. Thusy; = 0 and, if thekth
mistake occurs ofx;, y;) theny; (v - X;) <0 andvyy, = v + yiX;.

We have

Vit U =Vi-u+y(u-X)>vp-u+y.

Thereforeyy ;- u > kv.

Similarly,

[Vest 1 = [[Vell® + 2ui(vi - %) + [1%i][* < [[vel]* + B2

Therefore)|v, 1 ||> < kR

Combining, gives

VER > |[Vigi|| = Vigr - u > ky
which impliesk < (R/~)? proving the theorenl

3.2 Analysis for the inseparable case

If the data are not linearly separable then Theorem 1 cannot be used directigvétpwe now
give a generalized version of the theorem which allows for some mistakés tnaining set. As
far as we know, this theorem is new, although the proof technique is very simtlaattof Klasner
and Simon [11, Theorem 2.2].

Theorem 2 Let((X;,y1),- .-, (Xn,yn)) be a sequence of labeled examples With| < R. Letu
be any vector withju|| = 1 and lety > 0. Define the deviation of each example as

d; = max{0,y — yi(u-X;)},

and defineD = /37, d?. Then the number of mistakes of the online perceptron algorithm on this
sequence is bounded by
(R + D) ?
S :

Proof: The case) = 0 follows from Theorem 1, so we can assume that- 0.

The proof is based on a reduction of the inseparable case to a separable caghér dimen-
sional space. As we will see, the reduction does not change the algorithm.

We extend the instance spageto R+ by addingn new dimensions, one for each example.
Letx; € R"*™ denote the extension of the instanceWe set the first: coordinates ok’ equal to




X;. We set then + ¢)'th coordinate ta\ whereA is a positive real constant whose value will be
specified later. The rest of the coordinates/céire set to zero.

Next we extend the comparison vectoe R” tou’ € R**™. We use the constait, which we
calculate shortly, to ensure that the lengthubis one. We set the first coordinates ofx’ equal
tou/Z. We set thgn + ¢)'th coordinate tdy,d;)/(ZA). Itis easy to check that the appropriate
normalization isZ = /1 + D? /A2,

Consider the value af;(u’ - X!):

NI U yid;
ww' ) = (M al)

\u - X d;
yi(u-Xi) o

7 7
yi(u - X;) L= yi(u - X;)
A A

2l

Z
Thus the extended prediction vectaf achieves a margin of/,/1 + D?/A? on the extended
examples.

In order to apply Theorem 1, we need a bound on the length of the instanc&s>A$;|| for
all i, and the only additional non-zero coordinate has valyee get that|x!||* < R* + A?. Using
these values in Theorem 1 we get that the number of mistakes of the online percégdrdhra
if run in the extended space is at most

(R? + A%)(1 4+ D?*/A?)
72

SettingA = v/RD minimizes the bound and yields the bound given in the statement of the theo-
rem.

To finish the proof we show that the predictions of the perceptron algorithm in the egtende
space are equal to the predictions of the perceptron in the original space. We tosdenote
the prediction vector used for predicting the instarcen the original space and, to denote the
prediction vector used for predicting the corresponding instagde the extended space. The
claim follows by induction ovet < : < m of the following three claims:

1. The firstn coordinates of/; are equal to those of;.
2. The(n + 7)"th coordinate of/ is equal to zero.
3. signv) - x}) = signv; - X;).

|

3.3 Converting online to batch

We now have an algorithm that will make few mistakes when presented witbxdraples one
by one. However, the setup we are interested in here is the batch setungicimwe are given a
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training set, according to which we generate a hypothesis, which is thed teste seperate test
set. If the data are linearly separable then the perceptron algorithm elgtuaverges and we
can use this final prediction rule as our hypothesis. However, the data might not balde ma
we might not want to wait till convergence is achieved. In this case, wetoadecide on the best
prediction rule given the sequence of different classifiers that the online thigogenarates. One
solution to this problem is to use the prediction rule that has survived for the lomgedbefore it
was changed. A prediction rule that has survived for a long time is likely to berlib&n one that
has only survived for a few iterations. This method was suggested by Gallamh{Btalled it the
pocket methodLittlestone [13], suggested a two-phase method in which the performanceodf all
the rules is tested on a seperate test set and the rule with the leassehen used. Here we use
a different method for converting the online perceptron algorithm into a batchihggalgorithm;
the method combines all of the rules generated by the online algorithm after iuwdsrrjust a
single time through the training data.

We now describe Helmbold and Warmuth's [9] very simple “leave-one-out” methaohvert-
ing an online learning algorithm into a batch learning algorithm. Our voted-peareplgorithm
is a simple application of this general method. We start with the randomizstre Given a
training set((X1, y1), - .., (Xm, ¥ )) and an unlabeled instangewe do the following. We select
a number- in {0, ..., m} uniformly at random. We then take the firsexamples in the training
sequence and append the unlabeled instance to the end of this subsequence. We run the online
algorithm on this sequence of lengtht 1, and use the prediction of the online algorithm on the
last unlabeled instance.

In the deterministic leave-one-out conversion, we modify the randomized-@a®-out con-
version to make it deterministic in the obvious way by choosing the most liketligiren. That is,
we compute the prediction that would result for all possible choicesrof0, . . ., m}, and we take
majority vote of these predictions. It is straightforward to show that ta&ingajority vote runs the
risk of doubling the probability of mistake while it has the potential of significantlyrei@sing it.

In this work we decided to focus primarily on deterministic voting rathentteandomization.

The following theorem follows directly from Helmbold and Warmuth [9]. €Sdso Kivinen

and Warmuth [10] and Cesa-Bianchi et al. [5].)

Theorem 3 Assume all examplex, y) are generated i.i.d. Let be theexpectednumber of
mistakes that the online algorithrhmakes on a randomly generated sequence &fl examples.

Then givenn random training examples, the expected probability that the randomized leave-one-
out conversion oft makes a mistake on a randomly generated test instance is at47iost+ 1).

For the deterministic leave-one-out conversion, this expected probability iestda/(m + 1).

3.4 Putting it all together

It can be verified that the deterministic leave-one-out conversion of theeopdirceptron algorithm
is exactly equivalent to the voted-perceptron algorithm of Figure 1 With 1. Thus, combining
Theorems 2 and 3, we have:

Corollary 4 Assume all examples are generated i.i.d. at random{(xety, ), ..., (X, y.)) be a
sequence of training examples and(bef, .1, y,.+1) be a test example. Lét = maxi<;<mi1 ||Xi]|-



For ||u|| = 1 andy > 0, let

m+1
Dwzizxmwmv—wwn»ﬂ

=1

Then the probability (over the choice of all + 1 examples) that the voted-perceptron algorithm
with 7" = 1 does not predicy,,.; on test instance,, ;; is at most

Do\’
E inf b
[lul|]=1;v>0 ¥

(where the expectation is also over the choice ofiall- 1 examples).

2

m + 1

In fact, the same proof yields a slightly stronger statement which depends onlyraplesaon
which mistakes occur. Formally, this can be stated as follows:

Corollary 5 Assume all examples are generated i.i.d. at random. Suppose that we run the online
perceptron algorithm once on the sequefe], v1 ), . . ., (Xm+1, Ym+1)), and thatk mistakes occur
on examples with indices, . . . , i;. Redefing? = max; ;< ||X;;||, and redefine

k

2

J%WJ (max{0,y — v (u-x;)})
J=1

Now suppose that we run the voted-perceptron algorithm on training exafpies ), . . . , (X, Ym ))
for a single epoch. Then the probability (over the choice ofalk 1 examples) that the voted-
perceptron algorithm does not predigt,.; on test instance,,,,; is at most

2
inf (M)
[Jul[=1;v>0 0

(where the expectation is also over the choice ofiall- 1 examples).

2 2
— E[k] < ——E
m + 1 m + 1

A rather similar theorem was proved by Vapnik and Chervonenkis [19, Theoreno tthin-
ing the perceptron algorithm to convergence and predicting with the final pescegctor.

Theorem 6 (Vapnik and Chervonenkis) Assume all examples are generated i.i.d. at random.
Suppose that we run the online perceptron algorithm on the seqyénce; ), . .., (Xm+1, Ym+1))
repeatedly until convergence, and that mistakes occur on a totadxdmples with indices, . . . , i;.
Let R = max;<;< ||X;, ||, and let

= max min y;. (u-X;. ).
TS s i v ()

Assumey > 0 with probability one.



Now suppose that we run the perceptron algorithm to convergence on training examples
((X1,y1), ..., (Xm,ym)). Then the probability (over the choice of all + 1 examples) that the
final perceptron does not predigf, . ; on test instance,,, is at most

{4}

(where the expectation is also over the choice ofiall- 1 examples).

1
—F
1

m +

For the separable case (in whi¢h, ., can be set to zero), Corollary 5 is almost identical to
Theorem 6. One difference is that in Corolary 5, we lose a factor of 2. This isibesge use the
deterministic algorithm, rather than the randomized one. The other, more impdifference is
thatk, the number of mistakes that the perceptron makes, will almost certainlyger lahen the
perceptron is run to convergence than when it is run just for a single epoch. Thsugvwsome
indication that running the voted-perceptron algorithm wWitk= 1 might be better than running it
to convergence; however, our experiments do not support this prediction.

Vapnik [20] also gives a very similar bound for the expected error of supporbvewchines.
There are two differences between the bounds. First, the set of vectors dmtivaiperceptron
makes a mistake is replaced by the set of “essential support vectors.” Sduemnadiusr is the
maximal distance of any support vector from some optimally chosen vectory thtirefrom the
origin. (The support vectors are the training examples which fall closest ttettision boundary.)

4 Kernel-based Classification

We have seen that the voted-perceptron algorithm has guaranteed performance boumtteewhe
data are (almost) linearly separable. However, linear separaisilgyather strict condition. One
way to make the method more powerful is by adding dimensions or features to the inpet spa
These new coordinates are nonlinear functions of the original coordinates. Usuaky atla/
enough coordinates we can make the data linearly separable. If the separatiffitisntly good

(in the senses of Theorems 1 and 2) then the expected generalization eri sntlall (provided

we do not increase the complexity of instances too much by moving to the higher diménsiona
space).

However, from a computational point of view, computing the values of the additional coor-
dinates can become prohibitively hard. This problem can sometimes be solved blegaat
method of kernel functions. The use of kernel functions for classification problemprapssed
by suggested Aizerman, Braverman and Rozonoer [1] who specifically deseribexthod for
combining kernal functions with the perceptron algorithm. Continuing their work, B&eron
and Vapnik [4] suggested using kernel functions with SVM's.

Kernel functions are functions of two variabl&égx, y) which can be represented as an inner
product®(x) - ®(y) for some functiond : r* — rY and someV > 0. In other words, we can
calculatek’(x, y) by mappingx andy to vectors®(x) and®(y) and then taking their inner product.

For instance, an important kernel function that we use in this paper is the polynoipaalson

K(x,y) = (1+x-y)". (1)
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There exist general conditions for checking if a function is a kernel function. In thiplar case,
however, it is straightforward to construétwitnessing thaty” is a kernel function. For instance,
for n = 3 andd = 2, we can choose

®(x) = (1, 27,23, 23, V221,V 229, V23,V 28 29, V201 T3, \/§$2$3)-

In general, forl > 2, we can defin@(x) to have one coordinatel/ (x) for each monomial/(x)
of degree at most over the variables,, . .., z,, and where: is an appropriately chosen constant.

Aizerman, Braverman and Rozonoer observed that the perceptron algorithmfcambkated
in such a way that all computations involving instances are in fact in tefmisner products
X - y between pairs of instances. Thus, if we want to map each instatewe vector®(x) in a
high dimensional space, we only need to be able to compute inner prebipdts ¢(y), which
is exactly what is computed by a kernel function. Conceptually, then, with the kereilod,
we can work with vectors in a very high dimensional space and the algorithmitsipance only
depends on linear separability in this expanded space. Computationally, howeven}y need
to modify the algorithm by replacing each inner product computation with a kernel function
computationi’(x,y). Similar observations were made by Boser, Guyon and Vapnik for Vapnik's
SVM algorithm.

In this paper, we observe that all the computations in the voted-perceptromigatgorithm
involving instances can also be written in terms of inner products, whicmstbat we can apply
the kernel method to the voted-perceptron algorithm as well. Referring tod-ilguwve see that
both training and prediction involve inner products between instaxess! prediction vectors,.

In order to perform this operation efficiently, we store each predictiooveg, in an implicit
form, as the sum of instances that were added or subtracted in order to trddtatiis, each,
can be written and stored as a sum

k-1
VE= DY Xi,
i=1

for appropriate indices;. We can thus calculate the inner product witas
k—1
Vi X = Z yij(xij . X).
7=1

To use a kernel functiof’, we would merely replace eacfy - x by K (x;,, X).

Computing the prediction of the final vectey, on a test instance requiresk kernel calcu-
lations wherek is the number of mistakes made by the algorithm during training. Naively, the
prediction of the voted-perceptron would seem to reqeife*) kernel calculations since we need
to computev; - x for each; < k, and sincey; itself involves a sum of — 1 instances. However,
taking advantage of the recurreneg., - X = v, - X 4 y;,(X;, - X), itis clear that we can compute
the prediction of the voted-perceptron also using dnkernel calculations.

Thus, calculating the prediction of the voted-perceptron when using kernels is andymailly
more expensive than calculating the prediction of the final prediction vectarrasg that both
methods are trained for the same number of epochs.
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Figure 2: Learning curves for algorithms tested on NIST data.

5 Experiments

In our experiments, we followed closely the experimental setup used by Gortiegapnik [6] in
their experiments on the NIST OCR databas®@/e chose to use this setup because the dataset
is widely available and because LeCun et al. [12] have published a detailgghoson of the
performance of some of the best digit classification systems in this setup.

Examples in this NIST database consist of labeled digital images of individual hitew
digits. Each instance is& x 28 matrix in which each entry is an 8-bit representation of a grey
value, and labels are from the & . . ., 9}. The dataset consists of 60,000 training examples and
10,000 test examples. We treat each image as a vectétinand, like Cortes and Vapnik, we use
the polynomial kernels of Eq. (1) to expand this vector into very high dimensions.

To handle multiclass data, we essentially reduced to 10 binary problemssiattrained the
voted-perceptron algorithm once for each of the 10 classes. When training e, chasreplaced
each labeled example;, y;) (Wherey;, € {0,...,9}) by the binary-labeled example;, +1) if
Y, = { and by(Xi7 —1) if Y; 7£ {. Let

((viseh)se s (Vi ei,)
be the sequence of weighted prediction vectors which result from training @¥Yclas

To make predictions on a new instancewe tried four different methods. In each method,

we first compute a scorg for each? € {0,...,9} and then predict with the label receiving the

ZNational Institute for Standards and Technology, Specitbbase 3. See
http://ww. research. att. conf ~yann/ ocr/ for information on obtaining this dataset and for a list of
relevant publications.
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r=| 01 1 2 3 4 10 30
d=1 \ote 10.7 8.5 8.3 8.2 8.2 8.1
Avg. (unnorm)| 10.9 8.7 8.5 8.4 8.3 8.3
(norm) 10.9 8.5 8.3 8.2 8.2 8.1
Last  (unnorm)| 16.0 14.7 13.6 13.9 13.7 13.5
(norm) 15.4 14.1 13.1 13.5 13.2 13.0
Rand. (unnorm) 22.0 15.7 14.7 14.3 14.1 13.8
(norm) 21.5 15.2 14.2 13.8 13.6 13.2
SupVec 2,489 19,795 24,263 26,704 28,322 32,994
Mistake 3,342 25,461 48,431 70,915 93,090 223,657
d=2 \ote 6.0 2.8 24 2.2 2.1 1.8 1.8
Avg. (unnorm)| 6.0 2.8 2.4 2.2 2.1 1.9 1.8
(norm) 6.2 3.0 25 2.3 2.2 1.9 1.8
Last  (unnorm)| 8.6 4.0 3.4 3.0 2.7 2.3 2.0
(norm) 8.4 3.9 3.3 3.0 2.7 2.3 1.9
Rand. (unnorm) 13.4 5.9 4.7 4.1 3.8 2.9 2.4
(norm) 13.2 5.9 4.7 4.1 3.8 2.9 2.3
SupVec 1,639 8,190 9,888 10,818 11,424 12,963 13,861
Mistake 2,150 10,201 15,290 19,093 22,100 32,451 41,614
d=3 \ote 54 2.3 1.9 1.8 1.7 1.6 1.6
Avg. (unnorm)| 5.3 2.3 1.9 1.8 1.7 1.6 15
(norm) 55 25 2.0 1.8 1.8 1.6 15
Last  (unnorm)| 6.9 3.1 25 2.2 2.0 1.7 1.6
(norm) 6.8 3.1 25 2.2 2.0 1.7 1.6
Rand. (unnorm) 11.6 4.9 3.7 3.2 29 2.2 1.8
(norm) 115 4.8 3.7 3.2 29 2.2 1.8
SupVec 1,460 6,774 8,073 8,715 9,102 9,883 10,094
Mistake 1,937 8,475 11,739 13,757 15,129 18,422 19,473

Table 1: Results of experiments on NIST 10-class OCR datadvith1,2,3. The rows marked
SupVec and Mistake give average number of support vectors and average numberkd#snistia
other rows give test error rate in percent for the various methods.

highest score:
y = arg max s.

The first method is to compute each score using the respective final predietitwr:v
Sy = Vﬁz - X.
This method is denoted “last (unnormalized)” in the results. A variant of tkeitod is to compute

scores after first normalizing the final prediction vectors:

£
szX

Vil

S¢ =
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r=| 01 1 2 3 4 10 30

d=4 \ote 54 2.2 1.8 1.7 1.6 1.6 1.6
Avg. (unnorm)| 5.3 2.2 1.8 1.7 1.7 1.6 1.6

(norm) 55 2.3 1.9 1.7 1.6 1.6 1.6

Last  (unnorm)| 6.5 2.8 2.3 2.0 1.9 1.6 1.6

(norm) 6.5 2.8 2.3 2.0 1.9 1.6 1.6

Rand. (unnorm) 11.5 4.6 3.5 3.1 2.7 2.1 1.8
(norm) 11.3 45 3.4 3.0 2.7 2.1 1.8

SupVec 1,406 6,338 7,453 7,944 8,214 8,673 8,717
Mistake 1,882 7,977 10,543 11,933 12,780 14,375 14,538
d=5 \ote 5.7 2.2 1.9 1.8 1.8 1.7 1.7
Avg. (unnorm)| 5.7 2.3 1.9 1.8 1.7 1.7 1.7
(norm) 5.7 2.3 1.9 1.8 1.7 1.7 1.6
Last  (unnorm)| 6.6 3.0 2.2 1.9 1.9 1.8 1.7
(norm) 6.3 2.9 2.1 1.9 1.9 1.7 1.7

Rand. (unnorm) 11.9 4.7 3.5 3.0 2.7 2.1 1.9
(norm) 115 45 3.4 2.9 2.6 2.0 1.8

SupVec 1,439 6,327 7,367 7,788 7,990 8,295 8,313
Mistake 1,953 8,044 10,379 11,563 12,215 13,234 13,289
d=6 \ote 6.0 2.5 2.1 2.0 1.9 1.9 1.9
Avg. (unnorm)| 6.2 25 2.1 2.0 1.9 1.9 1.9
(norm) 6.0 25 2.1 2.0 1.9 1.8 1.8
Last  (unnorm)| 7.3 3.2 2.4 2.2 2.0 1.9 1.9
(norm) 6.9 3.0 2.3 2.1 2.0 1.9 1.9

Rand. (unnorm) 12.8 5.0 3.8 3.3 3.0 2.3 2.0
(norm) 12.1 4.8 3.6 3.2 2.8 2.2 2.0

SupVec 1,488 6,521 7572 7,947 8,117 8,284 8,285

Mistake 2,034 8,351 10,764 11,892 12,472 13,108 13,118

Table 2: Results of experiments on NIST 10-class OCR datadvith4, 5, 6. The rows marked
SupVec and Mistake give average number of support vectors and average numberkd#snistia
other rows give test error rate in percent for the various methods.

This method is denoted “last (normalized)” in the results. Note that normglizectors has no
effect for binary problems, but can plausibly be important in the multiclass.ca

The next method (denoted “vote”) uses the analog of the deterministic leave-onervet-
sion. Here we set

k¢
se =Y ¢ signvi - X).
=1

The third method (denoted “average (unnormalized)”) uses/arageof the predictions of the
prediction vectors



label| 0 1 2 3 4 5 6 7 8 9
T =0.1 \Vote 0.7 05 1.3 1.5 14 14 0.9 1.3 1.8 2.1
Avg. (unnorm)| 0.7 05 1.3 15 1.3 13 0.9 1.3 1.8 2.0
(norm) 0.7 05 1.3 1.5 14 14 0.9 1.3 1.8 2.1
Last 1.0 0.7 1.7 2.1 15 2.8 1.2 1.8 24 2.7
Rand. 21 13 3.0 3.7 3.0 3.2 2.2 2.7 4.7 4.5
SupVec 133 89 180 228 179 202 136 160 285 290
Mistake 133 89 180 228 179 202 136 160 285 290
T=1 \ote 03 03 0.6 0.5 0.5 0.5 0.5 0.6 0.7 0.9
Avg. (unnorm)| 0.3 0.2 0.6 0.5 0.5 0.5 0.4 0.6 0.7 0.9
(norm) 03 0.2 0.6 0.6 0.5 0.5 04 0.6 0.8 1.0
Last 05 05 1.0 1.1 0.7 0.8 0.5 1.0 1.2 1.3
Rand. 0.8 0.6 14 1.5 1.2 1.3 0.9 1.2 1.9 2.1
SupVec 506 407 782 996 734 849 541 738 1,183 1,240
Mistake 506 407 782 996 734 849 541 738 1,183 1,240
T =10 \ote 02 0.2 0.4 04 04 04 0.3 0.5 0.6 0.7
Avg. (unnorm)| 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.5 0.6 0.7
(norm) 02 0.2 0.4 04 04 04 0.3 0.5 0.6 0.7
Last 02 0.2 0.4 04 04 04 04 0.5 0.6 0.7
Rand. 03 03 0.5 0.6 0.5 0.6 0.5 0.6 0.8 0.9
SupVec 736 636 1,164 1504 1,075 1,271 817 1,103 1,833 1,899
Mistake 837 824 1,339 1,796 1,218 1,487 951 1,323 2,278 2,323
T =30 \ote 02 0.2 0.4 04 04 04 04 0.5 0.6 0.7
Avg. (unnorm)| 0.2 0.2 0.4 0.4 0.4 0.4 0.3 0.5 0.6 0.6
(norm) 02 0.2 0.4 04 04 04 0.3 0.5 0.6 0.6
Last 02 0.2 0.4 04 04 04 04 0.5 0.6 0.7
Rand. 02 03 0.5 0.5 04 0.5 04 0.5 0.6 0.7
SupVec 740 643 1,168 1,512 1,078 1,277 823 1,103 1,856 1,920
Mistake 844 843 1,345 1,811 1,222 1,497 960 1,323 2,326 2,367
Cortes & Vapnik 0.2 01 0.4 0.4 0.4 0.5 0.3 0.4 0.5 0.6
SupVec 1,379 989 1,958 1,900 1,224 2,024 1,527 2,064 2,332 2,765

Table 3: Results of experiments on individual classes using polynomial kerneld with. The
rows marked SupVec and Mistake give average number of support vectors and auardggr of
mistakes. All other rows give test error rate in percent for the varioubooks.

As in the “last” method, we also tried a variant (denoted “average (naxedl’) using normalized
prediction vectors:

k¢ , v
K3
=1

oy

[Ivill

).

The final method (denoted “random (unnormalized)”), is a possible analog of the randomize
leave-one-out method in which we predict using the prediction vectors thatadxastandomly
chosen “time slice.” That is, létbe the number of rounds executed (i.e., the number of examples
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T=|01 1 2 3 4 10 30
d=1 \ote 4.5 3.9 3.8 3.8 3.8 3.7
Avg. (unnorm)| 4.5 3.9 3.8 3.8 3.8 3.7
(norm) 4.6 3.9 3.9 3.8 3.8 3.8

Last 7.9 6.4 5.7 6.3 5.8 59
Rand. 8.3 6.7 6.5 6.3 6.2 6.2
SupVec 513 4,085 5,240 5,888 6,337 7,661
Mistake 513 4,085 7,880 11,630 15,342 37,408

d=2 \ote 24 1.2 1.0 0.9 0.9 0.8 0.8

Avg. (unnorm)| 2.4 1.2 1.0 1.0 0.9 0.9 0.8
(norm) 25 1.3 1.1 1.0 1.0 0.9 0.8

Last 4.1 1.8 1.6 1.6 13 1.1 1.0
Rand. 5.5 2.8 2.2 1.9 1.8 1.4 11
SupVec 337 1,668 2,105 2,358 2,527 2,983 3,290
Mistake 337 1,668 2,541 3,209 3,744 5,694 7,715
d=3 \ote 2.2 1.0 0.8 0.8 0.7 0.7 0.7

Avg. (unnorm)| 2.1 0.9 0.8 0.8 0.7 0.7 0.6
(norm) 2.2 1.0 0.8 0.8 0.8 0.7 0.6

Last 29 13 1.0 1.0 0.8 0.7 0.7
Rand. 4.9 2.2 1.7 15 14 1.0 0.8
SupVec 302 1,352 1,666 1,842 1,952 2,192 2,283
Mistake 302 1,352 1,867 2,202 2,448 3,056 3,318
d=4 \ote 21 0.9 0.8 0.7 0.7 0.7 0.7

Avg. (unnorm)| 2.0 0.9 0.8 0.7 0.7 0.7 0.6
(norm) 2.1 1.0 0.8 0.8 0.7 0.7 0.6

Last 2.7 13 1.0 0.8 0.8 0.7 0.7
Rand. 4.5 2.1 1.6 1.4 1.2 0.9 0.7
SupVec 290 1,240 1,528 1,669 1,746 1,899 1,920
Mistake 290 1,240 1,648 1,882 2,020 2,323 2,367
d=>5 \ote 2.2 0.9 0.8 0.7 0.7 0.7 0.7

Avg. (unnorm)| 2.2 0.9 0.8 0.7 0.7 0.7 0.7
(norm) 2.2 1.0 0.8 0.8 0.7 0.7 0.7

Last 2.7 13 1.0 0.9 0.8 0.7 0.7
Rand. 4.6 2.0 15 13 1.2 0.9 0.8
SupVec 294 1,229 1,502 1,628 1,693 1,817 1,827
Mistake 294 1,229 1,598 1,798 1,908 2,132 2,150
d=6 \ote 2.3 0.9 0.8 0.8 0.8 0.8 0.7

Avg. (unnorm)| 2.3 0.9 0.8 0.8 0.8 0.7 0.7
(norm) 2.3 1.0 0.8 0.8 0.8 0.7 0.7

Last 2.7 13 1.0 0.9 0.8 0.8 0.7
Rand. 4.7 2.1 1.6 13 1.2 0.9 0.8
SupVec 302 1,263 1,537 1,655 1,715 1,774 1,776
Mistake 302 1,263 1,625 1,810 1916 2,035 2,039

Table 4: Results of experiments on NIST data when distinguishing “9” from all otiggisdiThe
rows marked SupVec and Mistake give average number of support vectors and auaraggr of
mistakes. All other rows give test error rate in percent for the varioubouoks.
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processed by the inner loop of the algorithm) so that
ke
t= Z cf
=1
for all /. To classifyx, we choose a “time slice” € {0, ..., ¢} uniformly at random. We then set
Sy = sz - X

wherer, is the index of the final vector which existed at timdor label /. Formally,r, is the
largest number iq0, ..., k. } satisfying

Our analysis is applicable only for the cases of voted or randomly chosen predictidns a
whereT = 1. However, in the experiments, we ran the algorithm wWitlup to30. When using
polynomial kernels of degree 5 or more, the data becomes linearly separable. Tauseatral
iterations, the perceptron algorithm converges to a consistent predictitor @ec makes no more
mistakes. After this happens, the final perceptron gains more and more weight ftivéskathand
“average.” This tends to have the effect of causing all of the variants teecga eventually to the
same solution. By reaching this limit we compare the voted-perceptron algaathime standard
way in which the perceptron algorithm is used, which is to find a consistent pmedrale.

We performed experiments with polynomial kernels for dimensibasi (which corresponds
to no expansion) up t@ = 6. We preprocessed the data on each experiment by randomly permuting
the training sequence. Each experiment was repeated 10 times, eachthraefferent random
permutation of the training examples. Fkbe 1, we were only able to run the experiment for ten
epochs for reasons which are described below.

Figure 2 shows plots of the test error as a function of the number of epochs for four of the
prediction methods — “vote” and the unnormalized versions of “last,” “average!’ “random”
(we omitted the normalized versions for the sake of readability). Testseareraveraged over the
multiple runs of the algorithm, and are plotted one point for every tenth of an epoch.

Some of the results are also summarized numerically in Tables 1 and B shmev (average)
test error for several values @f for the seven different methods in the rows marked “Vote,” “Avg.
(unnorm),” etc. The rows marked “SupVec” show the number of “support vectors,isthae total
number of instances that actually are used in computing scores as above. wattigrthis is the
size of the union of all instances on which a mistake occured during training. Tremanked
“Mistake” show the total number of mistakes made during training for the 10 diftéabels. In
every case, we have averaged over the multiple runs of the algorithm.

The column corresponding t6 = 0.1 is helpful for getting an idea of how the algorithms
perform on smaller datasets since in this case, each algorithm has only tesetl of the available
data (about 6000 training examples).

16



Ironically, the algorithm runs slowest with small valuesiofor larger values of, we move to
a much higher dimensional space in which the data becomes linearly separaldendforalues
of d — especially forl = 1 — the data are not linearly separable which means that the perceptron
algorithm tends to make many mistakes which slows down the algorithm signtific@his is why,
for d = 1, we could not even complete a run out to 30 epochs but had to sfop-ait0 (after about
six days of computation). In comparison, &= 2, we can run 30 epochs in about 25 hours, and
for d = 5 or 6, a complete run takes about 8 hours. (All running times are on a single SGI MIPS
R10000 processor running at 194 MHZ.)

The most significant improvement in performance is clearly betwkenl andd = 2. The
migration to a higher dimensional space makes a tremendous difference companeding the
algorithm in the given space. The improvementsdor 2 are not nearly as dramatic.

Our results indicate that voting and averaging perform better than using thester. This
is especially true prior to convergence of the perceptron updatesd Fot, the data are highly
inseparable, so in this case the improvement persists for as long as eealerto run the algo-
rithm. For higher dimensions/(> 1), the data becomes more separable and the perceptron update
rule converges (or almost converges), in which case the performancefoé g@itédiction methods
is very similar. Still, even in this case, there is an advantage ittgusting or averaging for a
relatively small number of epochs.

There does not seem to be any significant difference between voting and averatgngs
of performance. However, using random vectors performs the worst in ak,cesptrary to the
worst-case analysis. Using normalized vectors seems to sometimpeslitiefor the “last” method,
but can help or hurt performance slightly for the “average” method; in any taselifferences in
performance between using normalized and unnormalized vectors are always mi

LeCun et al. [12] give a detailed comparison of algorithms on this dataset. Btebthe
algorithms that they tested is (a rather old version of) boosting on top of thelmairbeNet 4
which achieves an error rate of 0.7%. A version of the optimal margin @lassigorithm [6],
using the same kernel function, performs significantly better than ours, achietesgexror rate
of 1.1% ford = 4.

Table 3 shows how the variants of the perceptron algorithm perform on the ten piadtgms
corresponding to the 10 class labels. For this table, we ix4, and we also compare performance
to that reported by Cortes and Vapnik [6] for SVM's. Table 4 gives more detdihow the
perceptron methods perform on the single binary problem of distinguishing “9” from all other
images. Note that these binary problems come closest to the theory discussedrethe paper.

It is interesting that the perceptron algorithm generally ends up using fewer sweagtors than
with the SVM algorithm.

6 Conclusions and Summary

The most significant result of our experiments is that running the perceptron algonithimgher
dimensional space using kernel functions produces very significant improvementiimyzace,
yielding accuracy levels that are comparable, though still inferior, to tbbsgnable with support-
vector machines. On the other hand, our algorithm is much faster and easigri¢onemt than the
latter method. In addition, the theoretical analysis of the expected error of tbegben algorithm
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yields very similar bounds to those of support-vector machines. Itis an open prabtwdlop a
better theoretical understanding of the empirical superiority of support-ve@ohimes.

We also find it significant that voting and averaging work better than just usenfytal hypoth-
esis. This indicates that the theoretical analysis, which suggests using,vstcapturing some
of the truth. On the other hand, we do not have a theoretical explanation for the imnovem
performance following the first epoch.
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