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Abstract. For a long time moving averages has been used for a financial data 
smoothing. It is one of the first indicators in technical analysis trading. Many trad-
ers debated that one moving average is better than other. As a result a lot of mov-
ing averages have been created. In this empirical study we overview 19 most  
popular moving averages, create a taxonomy and compare them using two most  
important factors – smoothness and lag. Smoothness indicates how much an indi-
cator change (angle) and lag indicates how much moving average is lagging  
behind the current price. The aim is to have values as smooth as possible to avoid 
erroneous trades and with minimal lag – to increase trend detection speed. This 
large-scale empirical study performed on 1850 real-world time series including 
stocks, ETF, Forex and futures daily data demonstrate that the best smooth-
ness/lag ratio is achieved by the Exponential Hull Moving Average (with price 
correction) and Triple Exponential Moving Average (without correction). 

Keywords: moving average, smoothing, filer, time series, smoothness, lag, 
hull, exponential, TRIX. 

1 Introduction 

Moving averages are one of the key tools used to analyse financial time series. In a 
nutshell, moving average is simple weighted sum (mean) calculated over selected 
historical price range. Financial data usually is noisy, if we choose to represent to-
day’s price as mean of today’s price and 2 days before, all ups and downs will be 
averaged. Using more historical prices (increasing period), we can achieve more 
smoothed price that would show the trend, despite the price fluctuations. Let’s define 
xi as a price value at the time i. Let X= x1, x2,...,  xp  and p is the time series length. So 
most simple moving average at the time t would be  ݉ܽ௧௡ ൌ ଵ௡ ∑ ௧ିଵ௡௜ୀଵݔ  or ݉ܽ௧௡ ൌ ∑ ௧ି௜ାଵ௡௜ୀଵݔ w௜ , 
where ݓ௜ ൌ ଵ௡ , ݅ ൌ 1, … , ݊, and integer n determines the averaging window width. 

Moving averages are heavily used to show the trend in the noisy data. At the same 
time the smoothing plays role of regularisation, wide known in statistical data analy-
sis. Smoothing is often improving stability of conclusion/predictions as well. As pe-
riod (the window width), n, of moving average is increased, more noise can be filtered 
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from financial data, better smoothness is achieved. But sometimes price fluctuation is 
a trend reversal - not noise. Since moving average combines historical prices and a 
current price to get filtered price, for some time, depending on the period, it will show 
previous trend instead of a new one. This is called a lag. Raw price has zero lag, and 
n-bar moving average has n/2 bar lag. The most important question is how to reduce 
the lag, which causes missed trade opportunities or false trades, and keep reasonable 
smoothness remains unsolved problem, which immense armada of moving averages 
(ways to chose and techniques) try to solve.  

In [1], the problems that moving averages in financial data suffer are well ex-
plained. The main one is that nondeterministic unknown process is generating finan-
cial time series. But to filter and smooth this data, we can use one of many defined 
moving average processes, which fit differently from time to time, and by definition 
can’t be perfect. Still a lot of effort is thrown to invent and upgrade moving averages 
to get better results. Also complexity varies: from simple linear moving averages to 
higher order processes and neural networks. 

One of approaches is to dynamically adjust period of moving average. Authors in 
[2] use reinforced learning in their described trading strategy to alter period of moving 
average on the fly. All trading system is able beat the market by about 50 percentage 
points, according to authors. In [4] it is also claimed, that using variable period mov-
ing averages is possible to achieve profit, even during financial crisis. In [9] authors 
profiled investor risk using multitude of factors. The idea of adaptive moving  
averages has been extensively discussed in [3] and some trading strategies involving 
adaptive element has been assessed in [16]. 

Artificial neural networks are widely used in time series analysis and forecasting. 
In [5] authors use recursive Elman neural network to calculate moving average.  
The average is later used in proposed stop loss – maximum return (SLMR) trading 
strategy. Authors claim big success due to optimizations by joining a SLMR trading 
strategy with a moving average calculation inside an Elman neural network. 

Smoothing (blurring of the images or time series) was considered in statistical data 
analysis. Actually it is some sort of regularization. A degree of optimal smoothing 
depends on the velocity of time series changes: the more frequent are the changes the 
smaller window with (lag) should be chosen. In Parzen window multidimensional 
nonparametric features input density estimation used for classification purposes Mari-
na Skurikhina [17] compared 13 functions of smoothing window shape (Gausian, 
trapezoidal, three angle, rectangular etc.). She found and that most of the smoothing 
functions were approximately equally effective. The Gaussian shape appeared the 
best. The rectangular shape appeared to be the worst one. The main effect of smooth-
ing was obtained due to correct choose of lag - the window width. For financial data 
analysis we also have a number of diverse methods, however, there is a lack of com-
prehensive practical overview in the literature of moving averages for financial data 
smoothing, particularly paying attention to criterion “smoothens vs. lag ratio”.  
Authors try to fill this gap by analyzing numerous moving averages, on numerous 
instruments, their types and time frames. 
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The paper is organised as follows. In the next section we present evaluation me-
thodology, next we describe moving averages and methods. In the following sections 
we present data description, taxonomy, experiments results and conclusions.  

2 Evaluation Methodology 

We evaluate two opposite properties of moving averages: smoothness and lag. Trad-
ers want optimal filter so trend following would be nice and one could avoid whipsaw 
trades. Usually moving averages take one parameter – period p of past prices to use. 
As period increases, lag grows and edges smoothen. In Fig. 1, we see two different 
period moving averages. When trend changes, red one responds very slowly, value is 
far from real price. But the line is smooth. Blue follows price more aggressively, stays 
close to the price, but is bumpier. Not all bumps represent reverse of trend.  

 

Fig. 1. Two MA (red and blue). Red one is long period MA hence more lagging and smoother, 
while blue is shorter period and less lagging and bumpier. 

In this study we will investigate smoothness and lag in more detail. Assume we 
have prices X=(x1, x2, … xp), here p is the length of time series. Moving average of 

length n at time t would be ݉ܽሺݐ, ݊ሻ ൌ ଵ௡ ∑ ሺ௧ି௜ሻ௡ିଵ௜ୀ଴ݔ . We define lag as a distance 

between current bar and moving average at that point, then at time t lag is: ݈ܽ݃௧ ൌ|ݔ௧ െ ݉ܽሺݐ, ݊ሻ|. For entire dataset, average lag is calculated like: ்݈ܽ݃ ൌ ଵ௣ ∑ ݈ܽ݃௧௣௧ୀଵ , 

here p is the number of data points in time series, ݔ௜ is the data point at pos ݅ and ݉ܽ௜ 
is moving average of the n period at the position i. Lag estimate tells how moving 
average is lagging behind the price. Now smoothness needs to be measured. Assume 
we have moving average as vector of values (ma). First, we calculate how value 
changed from previous one: ݀݅ ௜݂ ൌ ൜݅ ൐ 1, ݉ܽ௜ െ ݉ܽ௜ିଵ݅ ൌ 1, 0  
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Now ݂݀݅ ൌ ሼ݀݅ ௜݂ሽ, ݅ ൌ 1 …  vector holds values of how much moving average ݌
changed during each time period. If some value is negative, it indicates a negative 
change of direction. If growth is not constant, it creates bumps. We define smoothness 
as average of difference changes: 

݋݉ݏ ൌ 1݊ െ 1 ෍|݀݅ ௜݂ െ ݀݅ ௜݂ିଵ|௣
௜ୀଶ  

Using mean of such vector, we average bumpiness/smoothness of our moving av-
erage. As we defined lag and smoothness we can calculate some moving averages, 
increasing period from 2 to 30, and evaluate their smoothness and lag. Results are 
visualised in Fig. 2. Having short period moving average is very bumpy – high 
smoothness value. But it follows price very well and the offset is low. As the period 
increases, average becomes very smooth, but lag increases. Alternatively, smoothness 
and lag can be plotted against each other, as in Fig. 3 (lower values are better).  

 

 

Fig. 2. Smoothness and lag of simple moving 
average can be plotted against each other (lower 
values are better) 

 

Fig. 3. In this figure we demonstrate how 
smoothness and lag are related. As MA pe-
riod increases smoothness value is decreasing 
(smaller-better) and increases the lag. 

Same situation is here, as lag grows, smoothness gets better and vice versa. 
Three different moving averages are plotted in Fig. 3, each calculated changing 
period from 2 to 30 over same dataset. One average looks slightly better. These two 
simple measurements can help to answer question, which moving average has best 
smoothness/lag ratio?  

3 Moving Average Methods 

In this paper we analyze 19 most popular moving averages (simple, exponential, 
weighted, sinus weighted, Spencers, median, Tilson, Hull, double exponential, 
TRIX/triple exponential, Ehlers, zero lag, Butterworth, Mesa, Savitzky-Golay, Kauf-
man, geometric, quadratic and harmonic moving average). In various sources one could 
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find even more, but in most cases same average comes under different names. Proprie-
tary moving averages (like Jurik Moving Average) are discarded from this paper.  

Simple moving average (SMA) is well known and widespread. It gives equal 
weights to all past prices and by definition is just average of them. Although very 
simple, it can solve serious problems. It will be used as a benchmark to compare 
against other averages. For it’s simplicity, formula is discarded. 

Exponential moving average (EMA) gives exponentially diminishing weights to 
all past prices. This moving average is very well known and used, therefore formula is 
not included. 

Weighted moving average (WMA) gives arithmetically diminishing weights for 
past prices, depending on length of the average.  

Sinus weighted moving average (SWMA) is a weighted average, based on moti-
vation, that price fluctuates following some unknown wave. As model, Sine wave is 
used to adjust price weights. SWMA is calculated using formula:  

௡ሺܺሻܣܯܹܵ ൌ ∑ sin ቀ݊ 1806 ቁ ܺ௡௠௡ୀଵ∑ sin ቀ݊ 1806 ቁ௠௡ୀଵ  

Where m is period of moving average, X is list of prices with X0 the most recent one. 
Spencers 15 point moving average (SpMA) is another version of WMA used by 

actuaries. It is fixed 15 position mean with weights 3, -6, -5, 3, 21, 46, 67, 74, 67, 46, 
21, 3, -5, -6, -3. The problem with this average is high lag. 

Double exponential moving average (DEMA) is whole different from described 
above. It is composite moving average and uses other moving averages to get the 
result [11]. In case of DEMA, the EMA is used. Also, DEMA is adaptive - it employs 
some mechanism to adapt to price swings dynamically. DEMA uses trick to get better 
smoothness by running moving average on itself. But this operation increases lag, so 
to counter this technique called twicing is used. It takes difference between price and 
moving average to adjust itself, making DEMA adaptive. Formula: ܣܯܧܦ௡ሺܺሻ ൌ ௡ሺܺሻܣܯܧ ൅ ௡൫ܺܣܯܧ െ  ௡ሺܺሻ൯ܣܯܧ

where n is length of moving average and X is the prices. 
Triple exponential moving average (TRIX) is similar to DEMA but uses expo-

nential moving average three times:  ܴܶܺܫ௡ሺܺሻ ൌ ௡ܣܯܧ ቀܣܯܧ௡൫ܣܯܧ௡ሺܺሻ൯ቁ 

Zero lag moving average (ZMA) sounds like a perfect moving average [9]. But 
the only thing without lag is the price, which this adaptive and composite moving 
average uses to correct itself. In a nutshell, ZMA ads portion of price to EMA to 
counter lag, while giving up some smoothness. Formula (n – period, X – prices ݂݅ ݊ ൐ 1, ߚ ൌ ௡ሺܺሻܣܯܼ 0,2 ൌ ߙ כ ሺܺ௡ିଵ ൅ ߚ כ ൫ܺ௡ െ ௡ିଵሺܺ௡ିଵሻ൯ܣܯܼ ൅ ሺ1 െ ሻߙ כ  ௡ିଵሺܺ௡ିଵሻܣܯܼ
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Tilson moving average (TMA) is also known as T3. It is both composite and 
adaptive. It is build using EMA [11]. To make notion more readable, formula is de-
composed. First one describes generalized DEMA average introducing parameters n 
and v. For Tilson moving average, v is 0,7. If v would be 1, then GD would be 
DEMA. To improve smoothness of TMA, moving average is applied over again. ܶܣܯ௡ሺܺሻ ൌ ௡ܦܩ  ቀܦܩ௡൫ܦܩ௡ሺܺሻ൯ቁ ܦܩ௡ሺܺሻ  ൌ ሺ1 ൅ ሻݒ כ ௡ሺܺሻܣܯܧ െ ௡ሺܺሻሻܣܯܧ௡ሺܣܯܧ כ ,ݒ ݒ ݁ݎ݄݁ݓ ൌ 0,7 

Hull moving average (HMA) is composite moving average made from composing 
WMA of various period lengths [12]. Formula: ܣܯܪ௡ ሺܺሻ ൌ ௡ ሺ2√ܣܯܹ כ ௡ଶሺܺሻܣܯܹ െ  ௡ሺܺሻሻܣܯܹ

Exponential Hull moving average (EHMA) is exactly the same as Hull MA but 
Exponential MA is used instead of Weighted MA: ܣܯܪܧ௡ ሺܺሻ ൌ ௡ ሺ2√ܣܯܧ כ ௡ଶሺܺሻܣܯܧ െ  ௡ሺܺሻሻܣܯܧ

Ehlers moving average (EhMA) is another adaptive moving average [8]. To use 
it, data must be first detrended subtracting SMA (of the same period as EhMA) from 
the price. Then EhMA coefficients are recalculated for each position, based on qua-
dratic distance. This makes EhMA computational expensive with large periods over 
bigger datasets. Formula (X – detrended prices, n – period of EhMA) is gives for de-
trended prices, after applying EhMA result is obtained adding SMA back to it: 

ܣ ൌ ;௡ሺܺሻܣܯܵ ܺ ൌ ܺ െ ;ܣ ܿ௜ ൌ  ෍ ሺ ௜ܺ െ ௜ܺି௠ሻ௡
௠ୀଵ ; 

ᇱ௡ሺܺሻܣܯ݄ܧ ൌ  ∑ ܿ௜ ௜ܺ௡ିଵ௜ୀ଴∑ ܿ௜௡ିଵ௜ୀ଴ ; ሻݔ௡ሺܣܯ݄ܧ ൌ ௡ᇱܣܯ݄ܧ  ሺݔሻ ൅  ܣ

Butterworth moving average (BMA) came from analogue circuits’ era [8]. Very 
well known there, works for trading as well. Formula (n – period, X - prices, i – cur-
rent bar) to calculate current bar BMA(i): ܣܯܤሺ݅ሻ ൌ ሺ ௜ܺ ൅ 2 כ ௜ܺିଵ ൅  ௜ܺିଶሻ ൅ ܽଵ כ ሺ݅ܣܯܤ െ 1ሻ ൅ ܽଶ כ ሺ݅ܣܯܤ െ 2ሻ; β ൌ 2.415 כ ቀ1 െ cos ቀଷ଺଴୬ ቁቁ ; α ൌ  െβ ൅ ඥሺβଶ ൅ 2 כ βሻ; 

ܿ଴ ൌ αଶ4 ; ܽଵ ൌ 2 כ ሺ1 െ αሻ; ܽଶ ൌ െሺ1 െ  αሻଶ;   
Mesa moving average (MAMA) uses Hilbert transform to make EMA adaptive. 

Because of Hilbert transform this moving average has complex formula, only main 
parts will be given. By definition MAMA is EMA with variable alpha: MAMA(i) = 
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alpha * Price + (1 – alpha) * MAMA(i-1), where alpha = FastLimit/DeltaPhase. 
FastLimit is the upper bound of a and DeltaPhase is the rate of change of the Hilbert 
Transform homodyne discriminator. The alpha value is kept within the range of Fas-
tLimit and SlowLimit. This moving average focused on very short periods and tries to 
show cycles in them [3 p. 737]. 

Savitzky-Golay moving average (SGMA) is polynomial smoother [15]. Given 
last n prices, i tries to fit k level polynomial over them using MSE. Then polynomial 
value is used as filtered value. SGMA has two parameters: n – period, and k –level of 
polynomial to fit. 

Kaufman moving average (KAMA) is adaptive one, which alters alpha of EMA 
using smoothing constant C to achieve addictiveness [3 p.731]. Formula (n –period, X 
– prices, Xi – past price i bars back): ER ൌ |X౟ିX౟ష౤|୬כ∑ |X౤ିX౤ష౟|౤౟సభ ; C ൌ ሺER כ ሺ0,6667 െ 0,0645ሻ ൅ 0,645ሻଶ; KAMAሺiሻ ൌ  KAMAሺi െ 1ሻ ൅ C כ ሺX୧ െ KAMAሺi െ 1ሻ 

KAMA adjust alpha using efficiency ratio of the market. It is ratio between direc-
tion and volatility. Constants 0,6667 and 0,0645 represent adaptivness range from 2 to 
30 bars of EMA alpha value. These constants are suggested by author, so we will 
keep them.  

Chande’s variable index dynamic average (VIDYA) follows same concept as 
KAMA. VIDYA, however, uses relative volatility to adjust smoothing constant [3 
p.736]. Formula (s – constant, representing 9 bar EMA smoothing constant, C – clos-
ing prices, i – current time, Cn – prices of recent n bars, Cm – prices of longer historic 
period m>n): ܸܣܻܦܫሺ݅ሻ ൌ ݇ כ ݏ כ ௜ܥ ൅ ሺ1 െ ݇ כ ሻݏ כ ሺ݅ܣܻܦܫܸ െ 1ሻ ݏ ൌ ଶଽାଵ ൌ 0.2   , ݇ ൌ ௦௧ௗ௘௩ሺ஼೙ሻ௦௧ௗ௘௩ሺ஼೘ሻ 

Other types of moving averages 
Median moving average(MeMA) isn’t weighted average, as by definition it is just 

median of a price range. So when calculating moving average, it just takes median 
element of a frame as average of frame. Formula is not included. 

Geometric moving average (GMA) represents a growth function in which a price 
change from 50 to 100 is as important as a change from 100 to 200 [3 p.20]. Formula 

(a1..an – prices, n -period): ܣܯܩ ൌ ሺܽଵ כ ܽଶ כ … כ ܽ௡ሻభ೙ 
Quadratic moving average (QMA) is made from well known error estimator [3 

p.21]. Formula(a – price, n - period ) ܳܣܯ௡ ൌ ටቀ∑ ௔మ  ௡ ቁ 

Harmonic moving average (HaMA) is time weighted mean, not biased towards 
higher or lower values as in the geometric mean [3 p.21]. Formula (n – period, ai - 
prices):ܣܯܽܪ ൌ ௡൬∑ ൬ భೌ೔൰೙೔సభ  ൰  
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4 Taxonomy of Methods 

Moving averages can be categorised into several groups depending on their beha-
viour. Most of the categorisation is based on properties of the weights. Some however 
are weightless (like Median MA) and cannot be assigned to any category. We charac-
terised MA by three properties: positive/negative weights, look-back period and  
adaptiveness. 

First categorisation is based on weights positivity. Weights can be positive only or 
positive and negative. If MA has negative weights it tries to reduce lag by correcting 
itself. This improvement also introduces overshooting on trend reversals. This can be 
seen from impulse response diagram. Each historical data point is weighted with posi-
tive weight and summed up afterwards. Other group of moving averages weights 
higher recent history and subtracts older history. This way it reduces lag but over-
shooting phenomenon appears on trend reversals.  

Data dependant adaptive moving averages changes their behaviour based on the 
data, thus their smoothness and lag varies. Impulse response diagram may not correct-
ly reflect their weighting scheme.   

Fixed length/infinite length – look-back period. Some moving averages use exactly 
the same number of historical data points to calculate smoothed value (Simple MA, 
weighted MA). The other group references all the values to the beginning (Exponen-
tial MA). Latter has a problem of MA calculated on different length of data may not 
be the same. 

5 Data Description 

In this study we used solely real-life data. No synthetically generated time series or 
processes [6] have been used. The aim of this paper is to empirically evaluate large 
number of MAs on large-scale real-life data. We used daily Stock data, ETF data, 
Futures data and foreign exchange (Forex) data. Initially we planned to use intraday 
data (1 min, 5 min, 60 min frequency) but we faced overnight and weekend non trad-
ing hours problem, then a big gap in the data can occur. MA in such cases may be-
have inadequately so we decided to restrict to daily data for the current research. We 
obtained time series data from Tradestation Securities. Summary of our data is pre-
sented in Table 1. For each time series we preformed experiments on all time series, 
where we selected best moving average for each of them.  

Table 1. Summary of the data used in the analysis process 

  Stocks ETF FOREX Futures Total 
Instruments 630 1092 34 94 1850 
Days 4524 5105 4379 5111 5117 
Start 2001-01-01 1999-05-19 2001-05-21 1999-05-20 1999-05-20 
End 2013-05-22 2013-05-10 2013-05-17 2013-05-17 2013-05-22 
Total days 1990795 1518000 82157 282580 3873532 
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Stock data is a series of prices stock was traded on the exchange. Historical stock 
prices are adjusted at the point they pay a dividend. Next day after dividend payment 
historical data is moved down by the amount of dividend stocks paid. Hence some 
stocks that paid unusually big dividend at some point in the history may have negative 
price. In our study we selected the most popular and liquid stocks. We filtered stocks 
with highest trading volume and with the recent price above 10 USD.  

Exchange Traded Funds (ETF) are instruments traded on the main stocks ex-
changes and representing some index or other investable assets. They cover most of 
the investment universe: Equity, Bond/Fixed Income, Commodity, Currency, Alterna-
tive, Inverse instruments, Leveraged instruments and Real Estate across the globe. 
The excellent source for more information on ETF is http://etfdb.com/.  

Foreign exchange market (Forex) is probably the most liquid market in the world. 
It trades trillions of dollars every day. It is decentralised market where every broker 
trades separately and synchronises prices between each other in real-time. We used all 
major currency pairs traded by typical currency broker. The data we used came from 
Tradestation Securities. 

Futures are vanilla derivative instruments traded in regulated futures exchanges 
such as CME, EUREX, ICE, etc. We included only US and European futures in this 
study. Future it is a contract to buy or sell specific underlying instrument at specific 
price at some point in the future. Futures usually have an expiration date on a monthly 
or quarterly basis. Hence long and continues data is composed of multiple contracts 
by sticking them together and adjust the difference at the sticking point - moving the 
history up or down depending on the price difference at the point of joining.  

6 Experiments 

In this paper we empirically compared various MA on real world datasets. To com-
pare two moving averages we used Simple MA as a benchmark. We selected 5, 10, 
21, and 63 periods as a benchmark periods for smoothness. These are most common 
periods representing a week, two weeks a month and a quarter.  ܵ௡ௌெ஺ ൌ   ௡ሻܣܯሺܵݏݏ݄݁݊ݐ݋݋݉ܵ
where n=(5,10,21,63). At mentioned periods, we measured smoothness of SMA and 
selected other MA with the same or better smoothness. For example for Exponential 
MA (EMA): 

௚ܵாெ஺ ൑ ܵ௡ௌெ஺   ݃ ൌ arg min୥ ௚ܵாெ஺ ൑ ܵ௡ௌெ஺ 

ௌܵெ஺ହாெ஺ ൑ ܵହௌெ஺, 

then we measured their lag  ܮௌெ஺ହாெ஺ ൌ ݈ܽ݃ሺܣܯܧ௚ሻ 
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In Table 2, we present a relationship between SMA periods and periods of other 
MA. It can be used as a reference to select desired smoothness. This is very useful 
reference as authors where not able to find any literature that contains such reference. 
Winner selection was performed using voting. For each stock, ETF, forex or future 
and for each smoothness level (SMA equivalent n=5,10,21,63) we selected the best 
(smallest lag) MA as a winner. Later we counted the wins and selected the most often 
winning MA as a final winter for the category. More information can be seen in the 
Table 2. So for example, we have 1000 stocks in our database, for each stock we have 
4 smoothens levels (SMA equivalent n=5,10,21,63) so in total we can have 4000 win-
ners. For each out of 19 MA we selected a winner in each smoothness level. 

Table 2. Corresponding periods of a MA that has similar smoothness and lag to that of SMA 

  By Smoothness   By Lag   
No. Title P5 P10 P21 P63   P5 P10 P21 P63 

1 Simple 5 10 21 63   5 10 21 63 
2 Butterworth 50 62 28 59   52 55 19 57 
3 Double exponentional 10 19 31 49   15 32 82 277 
4 Exponentional 5 10 16 24   8 17 40 151 
5 Hull 12 17 28 39   12 28 67 301 
6 Sine weighted 4 7 11 17   3 9 23 83 
7 Spencers 15 point 2 5 10 15   1 2 2 61 
8 T3 4 6 9 12   5 9 19 80 
9 Triangular 5 9 14 20   2 6 15 54 

10 Chande's variable index 5 10 17 30   8 17 41 180 
11 Weighted 6 10 16 26   8 18 40 134 
12 ZERO lag 5 12 25 70   8 25 244 162 
13 Geometric 5 10 22 94   5 9 23 60 
14 Exponential Hull 8 14 19 29   14 30 78 342 
15 Median 19 61 50 146   2 8 21 78 
16 Harmonic 5 11 22 89   5 11 23 60 
17 TRIX 2 3 4 5   3 5 10 39 
18 Ehlers`       13 30 66 303 
19 Savitzky-Golay 67 124 208 299   30 80 168 396 

7 Results 

We present results in the Table 3 below. Table is composed of 4 parts, each for differ-
ent type of time series. Rows represent different moving averages and columns 
represent 4 smoothness levels equivalent of SMA p=5,10,21,63. The number in the 
table indicates how many times that moving average had smallest lag in comparison 
to other ones (note that smoothness is the same). Last column “Tot.” Summarises win 
count. We sorted the list with highest win count at the top of the table.  

As can be seen winning algorithms are Exponential Hull and TRIX. TRIX is the 
leader between stocks and EHMA is everywhere else. For Futures, Forex and ETF 
TRIX is the second best algorithm.  
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Table 3. Results of winning moving averages 

Futures    Stocks   
Name P5 P10 P21 P63 Tot. Name P5 P10 P21 P63 Tot. 
Exp. Hull 13 37 39 42 131 TRIX 270 235 287 280 1073 
TRIX 31 30 16 20 97 Exp Hull 2 277 291 231 801 
Dbl. exp. 11 3 2 1 17 Butterworth 0 2 15 101 118 
Butterwo. 0 0 2 4 6 ZERO lag 22 0 1 0 23 
ZERO lag 2 1 0 1 4 Weighted 6 0 0 0 6 
Exp. 3 0 0 0 3 Double exp. 5 0 0 0 5 
T3 0 0 1 0 1 Hull 0 1 2 2 5 
Weighted 0 1 0 0 1 Exp 4 0 0 0 4 
     
Forex   ETF   
Name P5 P10 P21 P63 Tot. Name P5 P10 P21 P63 Tot. 
Exp. Hull 12 15 16 15 58 Exponential Hull 48 131 223 227 659 
TRIX 4 11 10 12 37 TRIX 52 85 81 113 331 
ZERO lag 7 1 2 1 11 Double exp. 68 24 22 22 136 
Exp. 6 0 1 1 8 ZERO lag 27 15 8 8 58 
Double exp. 0 3 2 2 7 Exp. 19 8 4 8 39 
Butterwo. 0 0 0 1 1 T3 1 3 2 0 6 
Chande v. i. 0 0 0 1 1 Butterworth 0 0 0 1 1 
T3 0 0 1 0 1   

8 Conclusions 

In this paper we compare 19 the most popular moving averages used in practical trad-
ing and determine the most suitable according the criteria “smoothens vs. lag ratio”. 
We performed large-scale study by testing all the MAs on 1850 real-world daily time 
series from following domains: Stock, ETF, Futures and Forex. We compared all MA 
at 4 different smoothness levels equivalent of a simple MA 5, 10, 21 and 63 days and 
selected the best one for each category and each time series. Finally we counted 
which one won most of the time. Two best moving averages identified: Exponential 
Hull Moving Average (EHMA), next followed by a Triple Exponential Moving Aver-
age (TRIX). EHMA uses a correction term to reduce lag and is different in that from 
TRIX. Correction term subtracts older history to reduce lag of the moving average but 
introduces “overshooting” behaviour in trend reversals. For stocks TRIX showed the 
best results as stocks tend to be more volatile and have frequent trend reversals where 
correctionless MA is more accurate. For all other time series EHMA was the winner. 
All other methods are far behind the two winners. 

We also created a reference table where we link different moving averages to the 
smoothness of Simple MA. The other table references lag to a SMA lag. This can be 
used by practitioners trying to replace one MA with other one with the same lag or the 
same smoothness. 

For the future work we already did preliminary research. Our aim is to create a tailor-
made moving averages for specific time-series that would have lowest lag for a given 
level of smoothness. We plan to create two versions, one with positive only weights and 
other with positive-negative weights (i.e. with correction term). We estimate that  
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tailor-made moving average will have better smoothness and lag characteristics than 
current winners EHMA and TRIX. Our inference supports conclusions in [17] where 
classification accuracy was used as a performance criterion. We also plan include other 
criteria in the analysis: forecasting accuracy, maximum profit (in case of trading sys-
tem), minimum risk or similar criteria.  
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