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11Simple Linear
Regression and
Correlation

CHAPTER OUTLINE

LEARNING OBJECTIVES

After careful study of this chapter, you should be able to do the following:
1. Use simple linear regression for building empirical models to engineering and scientific data
2. Understand how the method of least squares is used to estimate the parameters in a linear

regression model
3. Analyze residuals to determine if the regression model is an adequate fit to the data or to see if

any underlying assumptions are violated
4. Test statistical hypotheses and construct confidence intervals on regression model parameters
5. Use the regression model to make a prediction of a future observation and construct an

appropriate prediction interval on the future observation
6. Use simple transformations to achieve a linear regression model
7. Apply the correlation model
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11-1 EMPIRICAL MODELS 373

CD MATERIAL
8. Conduct a lack-of-fit test in a regression model where there are replicated observations.

Answers for many odd numbered  exercises are at the end of the book. Answers to exercises whose
numbers are surrounded by a box can be accessed in the e-Text by clicking on the box. Complete
worked solutions to certain exercises are also available in the e-Text. These are indicated in the
Answers to Selected Exercises section by a box around the exercise number. Exercises are also
available for some of the text sections that appear on CD only. These exercises may be found within
the e-Text immediately following the section they accompany.

11-1 EMPIRICAL MODELS

Many problems in engineering and science involve exploring the relationships between two
or more variables. Regression analysis is a statistical technique that is very useful for these
types of problems. For example, in a chemical process, suppose that the yield of the product
is related to the process-operating temperature. Regression analysis can be used to build a
model to predict yield at a given temperature level. This model can also be used for process
optimization, such as finding the level of temperature that maximizes yield, or for process
control purposes.

As an illustration, consider the data in Table 11-1. In this table y is the purity of oxygen
produced in a chemical distillation process, and x is the percentage of hydrocarbons that are
present in the main condenser of the distillation unit. Figure 11-1 presents a scatter diagram

Table 11-1 Oxygen and Hydrocarbon Levels

Observation Hydrocarbon Level Purity
Number x (%) y (%)

1 0.99 90.01
2 1.02 89.05
3 1.15 91.43
4 1.29 93.74
5 1.46 96.73
6 1.36 94.45
7 0.87 87.59
8 1.23 91.77
9 1.55 99.42

10 1.40 93.65
11 1.19 93.54
12 1.15 92.52
13 0.98 90.56
14 1.01 89.54
15 1.11 89.85
16 1.20 90.39
17 1.26 93.25
18 1.32 93.41
19 1.43 94.98
20 0.95 87.33 Figure 11-1 Scatter diagram of oxygen purity versus hydrocarbon

level from Table 11-1.
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374 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

of the data in Table 11-1. This is just a graph on which each (xi, yi) pair is represented as a point
plotted in a two-dimensional coordinate system. This scatter diagram was produced by
Minitab, and we selected an option that shows dot diagrams of the x and y variables along the
top and right margins of the graph, respectively, making it easy to see the distributions of the
individual variables (box plots or histograms could also be selected). Inspection of this scatter
diagram indicates that, although no simple curve will pass exactly through all the points, there
is a strong indication that the points lie scattered randomly around a straight line. Therefore, it
is probably reasonable to assume that the mean of the random variable Y is related to x by the
following straight-line relationship:

where the slope and intercept of the line are called regression coefficients. While the mean
of Y is a linear function of x, the actual observed value y does not fall exactly on a straight
line. The appropriate way to generalize this to a probabilistic linear model is to assume
that the expected value of Y is a linear function of x, but that for a fixed value of x the actual
value of Y is determined by the mean value function (the linear model) plus a random error
term, say,

(11-1)

where � is the random error term. We will call this model the simple linear regression model,
because it has only one independent variable or regressor. Sometimes a model like this will
arise from a theoretical relationship. At other times, we will have no theoretical knowledge of
the relationship between x and y, and the choice of the model is based on inspection of a scat-
ter diagram, such as we did with the oxygen purity data. We then think of the regression model
as an empirical model.

To gain more insight into this model, suppose that we can fix the value of x and observe
the value of the random variable Y. Now if x is fixed, the random component � on the right-
hand side of the model in Equation 11-1 determines the properties of Y. Suppose that the mean
and variance of � are 0 and �2, respectively. Then

Notice that this is the same relationship that we initially wrote down empirically from inspec-
tion of the scatter diagram in Fig. 11-1. The variance of Y given x is

Thus, the true regression model is a line of mean values; that is, the height
of the regression line at any value of x is just the expected value of Y for that x. The slope, 
can be interpreted as the change in the mean of Y for a unit change in x. Furthermore, the vari-
ability of Y at a particular value of x is determined by the error variance �2. This implies that
there is a distribution of Y-values at each x and that the variance of this distribution is the same
at each x.

For example, suppose that the true regression model relating oxygen purity to hydrocarbon
level is and suppose that the variance is �2 � 2. Figure 11-2 illustrates this 
situation. Notice that we have used a normal distribution to describe the random variation
in �. Since Y is the sum of a constant �0 � �1x (the mean) and a normally distributed ran-
dom variable, Y is a normally distributed random variable. The variance �2 determines the

�Y  0  x � 75 � 15x,

�1,
�Y  0  x � �0 � �1x

V 1Y 0  x2 � V 1�0 � �1x � �2 � V 1�0 � �1x2 � V 1�2 � 0 � �2 � �2

E1Y 0  x2 � E1�0 � �1x � �2 � �0 � �1x � E1�2 � �0 � �1x

Y � �0 � �1x � �

E1Y 0  x2 � �Y 
 0  x � �0 � �1x
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11-2 SIMPLE LINEAR REGRESSION 375

variability in the observations Y on oxygen purity. Thus, when �2 is small, the observed
values of Y will fall close to the line, and when �2 is large, the observed values of Y may de-
viate considerably from the line. Because �2 is constant, the variability in Y at any value of
x is the same.

The regression model describes the relationship between oxygen purity Y and hydrocar-
bon level x. Thus, for any value of hydrocarbon level, oxygen purity has a normal distribution
with mean 75 � 15x and variance 2. For example, if x � 1.25, Y has mean value �Y � x � 75 �
15(1.25) � 93.75 and variance 2.

In most real-world problems, the values of the intercept and slope (�0, �1) and the error
variance �2 will not be known, and they must be estimated from sample data. Then this fitted
regression equation or model is typically used in prediction of future observations of Y, or for
estimating the mean response at a particular level of x. To illustrate, a chemical engineer might
be interested in estimating the mean purity of oxygen produced when the hydrocarbon level is
x � 1.25%. This chapter discusses such procedures and applications for the simple linear re-
gression model. Chapter 12 will discuss multiple linear regression models that involve more
than one regressor.

11-2 SIMPLE LINEAR REGRESSION

The case of simple linear regression considers a single regressor or predictor x and a de-
pendent or response variable Y. Suppose that the true relationship between Y and x is a
straight line and that the observation Y at each level of x is a random variable. As noted previ-
ously, the expected value of Y for each value of x is

where the intercept �0 and the slope �1 are unknown regression coefficients. We assume that
each observation, Y, can be described by the model

(11-2)

where � is a random error with mean zero and (unknown) variance �2. The random errors
corresponding to different observations are also assumed to be uncorrelated random
variables.

Y � �0 � �1 x � �

E1Y 0  x2 � �0 � �1 x

 0 +   1 (1.25)

x = 1.25x = 100

ββ

  0 +   1 (1.00)ββ

 True regression line
   Yx =   0 +   1x
         = 75 + 15x

β βµ

          y
(Oxygen
  purity)

  x (Hydrocarbon level)

Figure 11-2 The distribution of Y for a given value of x for the
oxygen purity-hydrocarbon data.
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376 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

Suppose that we have n pairs of observations (x1, y1), (x2, y2), p (xn, yn). Figure 11-3
shows a typical scatter plot of observed data and a candidate for the estimated regression line.
The estimates of �0 and �1 should result in a line that is (in some sense) a “best fit” to the data.
The German scientist Karl Gauss (1777–1855) proposed estimating the parameters �0 and �1

in Equation 11-2 to minimize the sum of the squares of the vertical deviations in Fig. 11-3.
We call this criterion for estimating the regression coefficients the method of least

squares. Using Equation 11-2, we may express the n observations in the sample as

(11-3)

and the sum of the squares of the deviations of the observations from the true regression line
is

(11-4)

The least squares estimators of �0 and �1, say, and must satisfy

(11-5)

Simplifying these two equations yields

(11-6)

Equations 11-6 are called the least squares normal equations. The solution to the normal
equations results in the least squares estimators and �̂1.�̂0
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Figure 11-3 Deviations of the data from the
estimated regression model.
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The fitted or estimated regression line is therefore

(11-9)

Note that each pair of observations satisfies the relationship

where ei � yi 	 is called the residual. The residual describes the error in the fit of the
model to the ith observation yi. Later in this chapter we will use the residuals to provide in-
formation about the adequacy of the fitted model.

Notationally, it is occasionally convenient to give special symbols to the numerator and
denominator of Equation 11-8. Given data (x1, y1), (x2, y2), p , (xn, yn), let

(11-10)

and

(11-11)

EXAMPLE 11-1 We will fit a simple linear regression model to the oxygen purity data in Table 11-1. The
following quantities may be computed:

 a
20

i�1
 yi

2 � 170,044.5321 a
20

i�1
xi

2 � 29.2892 a
20

i�1
xi yi � 2,214.6566

 n � 20 a
20

i�1
xi � 23.92 a

20

i�1
 yi � 1,843.21 x � 1.1960 y � 92.1605

Sx y � a
n
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yi1xi 	 x22 � a

n
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xiyi 	
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i�1
xib
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 yib
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Sx x � a
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 1xi 	 x22 � a
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n

ŷi

yi � �̂0 � �̂1xi � ei,  i � 1, 2, p , n

ŷ � �̂0 � �̂1x

The least squares estimates of the intercept and slope in the simple linear regression
model are

(11-7)

(11-8)

where y � 11
n2 g n
i�1 yi and  x � 11
n2 g n

i�1 xi.

�̂1 �
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Definition
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378 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

and

Therefore, the least squares estimates of the slope and intercept are

and

The fitted simple linear regression model (with the coefficients reported to three decimal places) is

This model is plotted in Fig. 11-4, along with the sample data.
Computer software programs are widely used in regression modeling. These programs

typically carry more decimal places in the calculations. Table 11-2 shows a portion of the out-
put from Minitab for this problem. The estimates and are highlighted. In subsequent sec-
tions we will provide explanations for the information provided in this computer output.

Using the regression model of Example 11-1, we would predict oxygen purity of �
89.23% when the hydrocarbon level is x � 1.00%. The purity 89.23% may be interpreted as

ŷ

�̂1�̂0

ŷ � 74.283 � 14.947 x

�̂0 � y � �̂1x � 92.1605 � 114.9474821.196 � 74.28331

�̂1 �
Sx y

Sx x
�

10.17744
0.68088

� 14.94748

Sx y � a
20

i�1
xiyi �

aa
20

i�1
xib aa

20

i�1
 yib

20
� 2,214.6566 �

123.922 11,843.212
20
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20
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2 �
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20
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2

20
� 29.2892 �
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20
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Figure 11-4 Scatter
plot of oxygen 
purity y versus
hydrocarbon level x
and regression model
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an estimate of the true population mean purity when x � 1.00%, or as an estimate of a new
observation when x = 1.00%. These estimates are, of course, subject to error; that is, it is un-
likely that a future observation on purity would be exactly 89.23% when the hydrocarbon
level is 1.00%. In subsequent sections we will see how to use confidence intervals and pre-
diction intervals to describe the error in estimation from a regression model.

Estimating �2

There is actually another unknown parameter in our regression model, �2 (the variance of the
error term �). The residuals are used to obtain an estimate of �2. The sum of
squares of the residuals, often called the error sum of squares, is

(11-12)

We can show that the expected value of the error sum of squares is E(SSE) � (n � 2)�2.
Therefore an unbiased estimator of �2 is

SSE � a
n

i�1
 ei

2 � a
n

i�1
1 yi � ŷi22

ei � yi � ŷi

Computing SSE using Equation 11-12 would be fairly tedious. A more convenient computing
formula can be obtained by substituting into Equation 11-12 and simplifying.ŷi � �̂0 � �̂1xi

(11-13)�̂2 �
SSE

n � 2

11-2 SIMPLE LINEAR REGRESSION 379

Table 11-2 Minitab Output for the Oxygen Purity Data in Example 11-1

Regression Analysis

The regression equation is 

Purity � 74.3 � 14.9 HC Level

Predictor Coef SE Coef T P
Constant 74.283 1.593 46.62 0.000
HC Level 14.947 1.317 11.35 0.000

S � 1.087 R-Sq � 87.7% R-Sq (adj) � 87.1%

Analysis of Variance

Source DF SS MS F P
Regression 1 152.13 152.13 128.86 0.000
Residual Error 18 21.25 SSE 1.18
Total 19 173.38

Predicted Values for New Observations

New Obs Fit SE Fit 95.0% CI 95.0% PI
1 89.231 0.354 (88.486, 89.975) (86.830, 91.632)

Values of Predictors for New Observations

New Obs HC Level
1 1.00

�̂ 2

�̂1

�̂0
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380 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

11-1. An article in Concrete Research (“Near Surface
Characteristics of Concrete: Intrinsic Permeability,” Vol. 41,
1989), presented data on compressive strength x and intrinsic
permeability y of various concrete mixes and cures. Summary
quantities are n � 14, gyi � 572, g � 23,530, g xi � 43,

� 157.42, and g xiyi � 1697.80. Assume that the two vari-
ables are related according to the simple linear regression model.
(a) Calculate the least squares estimates of the slope and intercept.
(b) Use the equation of the fitted line to predict what perme-

ability would be observed when the compressive strength
is x � 4.3.

(c) Give a point estimate of the mean permeability when
compressive strength is x � 3.7.

(d) Suppose that the observed value of permeability at x � 3.7 is
y � 46.1. Calculate the value of the corresponding residual.

11-2. Regression methods were used to analyze the data
from a study investigating the relationship between roadway
surface temperature (x) and pavement deflection ( y). Summary
quantities were n � 20, g yi � 12.75, � 8.86, g xi �
1478, � 143,215.8, and g xiyi � 1083.67.gx2

i

g yi
2

g xi
2

y2
i

(a) Calculate the least squares estimates of the slope and in-
tercept. Graph the regression line.

(b) Use the equation of the fitted line to predict what pave-
ment deflection would be observed when the surface
temperature is 85�F.

(c) What is the mean pavement deflection when the surface
temperature is 90�F?

(d) What change in mean pavement deflection would be ex-
pected for a 1�F change in surface temperature?

11-3. Consider the regression model developed in Exercise
11-2.
(a) Suppose that temperature is measured in �C rather than �F.

Write the new regression model that results.
(b) What change in expected pavement deflection is associ-

ated with a 1�C change in surface temperature?
11-4. Montgomery, Peck, and Vining (2001) present data
concerning the performance of the 28 National Football
League teams in 1976. It is suspected that the number of games
won (y) is related to the number of yards gained rushing by an
opponent (x). The data are shown in the following table.

Yards
Games Rushing by

Teams Won (y) Opponent (x)

Washington 10 2205

Minnesota 11 2096

New England 11 1847

Oakland 13 1903

Pittsburgh 10 1457

Baltimore 11 1848

Los Angeles 10 1564

Dallas 11 1821

Atlanta 4 2577

Buffalo 2 2476

Chicago 7 1984

Cincinnati 10 1917

Cleveland 9 1761

Denver 9 1709

Yards
Games Rushing by

Teams Won (y) Opponent (x)

Detroit 6 1901

Green Bay 5 2288

Houston 5 2072

Kansas City 5 2861

Miami 6 2411

New Orleans 4 2289

New York Giants 3 2203

New York Jets 3 2592

Philadelphia 4 2053

St. Louis 10 1979

San Diego 6 2048

San Francisco 8 1786

Seattle 2 2876

Tampa Bay 0 2560

(11-14)SSE � SST 	 �̂1Sxy

where is the total sum of squares of the response 

variable y. The error sum of squares and the estimate of �2 for the oxygen purity data, 
are highlighted in the Minitab output in Table 11-2.

EXERCISES FOR SECTION 11-2

�̂2 � 1.18,

SST � g n
i�1 1 ŷi 	 y 22 � g n

i�1 yi
2 	 ny	2

The resulting computing formula is
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(a) Calculate the least squares estimates of the slope and inter-
cept. What is the estimate of �2? Graph the regression model.

(b) Find an estimate of the mean number of games won if the
opponents can be limited to 1800 yards rushing.

(c) What change in the expected number of games won is asso-
ciated with a decrease of 100 yards rushing by an opponent?

(d) To increase by 1 the mean number of games won, how much
decrease in rushing yards must be generated by the defense?

(e) Given that x � 1917 yards (Cincinnati), find the fitted
value of y and the corresponding residual.

11-5. An article in Technometrics by S. C. Narula and J. F.
Wellington (“Prediction, Linear Regression, and a Minimum
Sum of Relative Errors,” Vol. 19, 1977) presents data on the
selling price and annual taxes for 24 houses. The data are
shown in the following table.
(a) Assuming that a simple linear regression model is appro-

priate, obtain the least squares fit relating selling price to
taxes paid. What is the estimate of �2?

(b) Find the mean selling price given that the taxes paid are
x � 7.50.

(c) Calculate the fitted value of y corresponding to x �
5.8980. Find the corresponding residual.

(d) Calculate the fitted for each value of xi used to fit the
model. Then construct a graph of versus the correspon-
ding observed value yi and comment on what this plot
would look like if the relationship between y and x was a
deterministic (no random error) straight line. Does the
plot actually obtained indicate that taxes paid is an effec-
tive regressor variable in predicting selling price?

11-6. The number of pounds of steam used per month by a
chemical plant is thought to be related to the average ambient
temperature (in� F) for that month. The past year’s usage and
temperature are shown in the following table:

ŷi

ŷi

Taxes
Sale (Local, School),

Price/1000 County)/1000

25.9 4.9176

29.5 5.0208

27.9 4.5429

25.9 4.5573

29.9 5.0597

29.9 3.8910

30.9 5.8980

28.9 5.6039

35.9 5.8282

31.5 5.3003

31.0 6.2712

30.9 5.9592

Taxes
Sale (Local, School),

Price/1000 County)/1000

30.0 5.0500

36.9 8.2464

41.9 6.6969

40.5 7.7841

43.9 9.0384

37.5 5.9894

37.9 7.5422

44.5 8.7951

37.9 6.0831

38.9 8.3607

36.9 8.1400

45.8 9.1416

11-2 SIMPLE LINEAR REGRESSION 381

Month Temp. Usage/1000

Jan. 21 185.79

Feb. 24 214.47

Mar. 32 288.03

Apr. 47 424.84

May 50 454.58

June 59 539.03

Month Temp. Usage/1000

July 68 621.55

Aug. 74 675.06

Sept. 62 562.03

Oct. 50 452.93

Nov. 41 369.95

Dec. 30 273.98

(a) Assuming that a simple linear regression model is appro-
priate, fit the regression model relating steam usage (y) to
the average temperature (x). What is the estimate of �2?

(b) What is the estimate of expected steam usage when the
average temperature is 55�F?

(c) What change in mean steam usage is expected when the
monthly average temperature changes by 1�F?

(d) Suppose the monthly average temperature is 47�F. Calculate
the fitted value of y and the corresponding residual.

11-7. The data shown in the following table are highway
gasoline mileage performance and engine displacement for a
sample of 20 cars.

Engine
MPG Displacement

Make Model (highway) (in3)

Acura Legend 30 97

BMW 735i 19 209

Buick Regal 29 173

Chevrolet Cavalier 32 121

Chevrolet Celebrity 30 151

Chrysler Conquest 24 156

Dodge Aries 30 135

Dodge Dynasty 28 181

Ford Escort 31 114

Ford Mustang 25 302

Engine
MPG Displacement

Make Model (highway) (in3)

Ford Taurus 27 153

Ford Tempo 33 90

Honda Accord 30 119

Mazda RX-7 23 80

Mercedes 260E 24 159

Mercury Tracer 29 97

Nissan Maxima 26 181

Oldsmobile Cutlass 29 173

Plymouth Laser 37 122

Pontiac Grand Prix 29 173
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382 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

(a) Fit a simple linear model relating highway miles per gal-
lon ( y) to engine displacement (x) using least squares.

(b) Find an estimate of the mean highway gasoline mileage
performance for a car with 150 cubic inches engine dis-
placement.

(c) Obtain the fitted value of y and the corresponding residual
for a car, the Ford Escort, with engine displacement of 114
cubic inches.

11-8. An article in the Tappi Journal (March, 1986) pre-
sented data on green liquor Na2S concentration (in grams per
liter) and paper machine production (in tons per day). The data
(read from a graph) are shown as follows:

y 40 42 49 46 44 48

x 825 830 890 895 890 910

y 46 43 53 52 54 57 58

x 915 960 990 1010 1012 1030 1050

(a) Fit a simple linear regression model with y � green liquor
Na2S concentration and x � production. Find an estimate
of �2. Draw a scatter diagram of the data and the resulting
least squares fitted model.

(b) Find the fitted value of y corresponding to x � 910 and
the associated residual.

(c) Find the mean green liquor Na2S concentration when the
production rate is 950 tons per day.

11-9. An article in the Journal of Sound and Vibration
(Vol. 151, 1991, pp. 383–394) described a study investigating
the relationship between noise exposure and hypertension.
The following data are representative of those reported in the
article.

y 1 0 1 2 5 1 4 6 2 3

x 60 63 65 70 70 70 80 90 80 80

y 5 4 6 8 4 5 7 9 7 6

x 85 89 90 90 90 90 94 100 100 100

(a) Draw a scatter diagram of y (blood pressure rise in
millimeters of mercury) versus x (sound pressure level in
decibels). Does a simple linear regression model seem
reasonable in this situation?

(b) Fit the simple linear regression model using least squares.
Find an estimate of �2.

(c) Find the predicted mean rise in blood pressure level asso-
ciated with a sound pressure level of 85 decibals.

11-10. An article in Wear (Vol. 152, 1992, pp. 171–181)
presents data on the fretting wear of mild steel and oil viscos-
ity. Representative data follow, with x � oil viscosity and y �
wear volume ( cubic millimeters).10	4

(a) Construct a scatter plot of the data. Does a simple linear
regression model appear to be plausible?

(b) Fit the simple linear regression model using least squares.
Find an estimate of �2.

(c) Predict fretting wear when viscosity x � 30.
(d) Obtain the fitted value of y when x � 22.0 and calculate

the corresponding residual.

11-11. An article in the Journal of Environmental
Engineering (Vol. 115, No. 3, 1989, pp. 608–619) reported the
results of a study on the occurrence of sodium and chloride in
surface streams in central Rhode Island. The following data
are chloride concentration y (in milligrams per liter) and road-
way area in the watershed x (in percentage).

y 4.4 6.6 9.7 10.6 10.8 10.9

x 0.19 0.15 0.57 0.70 0.67 0.63

y 11.8 12.1 14.3 14.7 15.0 17.3

x 0.47 0.70 0.60 0.78 0.81 0.78

y 19.2 23.1 27.4 27.7 31.8 39.5

x 0.69 1.30 1.05 1.06 1.74 1.62

(a) Draw a scatter diagram of the data. Does a simple linear
regression model seem appropriate here?

(b) Fit the simple linear regression model using the method of
least squares. Find an estimate of �2.

(c) Estimate the mean chloride concentration for a watershed
that has 1% roadway area.

(d) Find the fitted value corresponding to x � 0.47 and the
associated residual.

11-12. A rocket motor is manufactured by bonding together
two types of propellants, an igniter and a sustainer. The shear
strength of the bond y is thought to be a linear function of the
age of the propellant x when the motor is cast. Twenty obser-
vations are shown in the table on the next page.
(a) Draw a scatter diagram of the data. Does the straight-line

regression model seem to be plausible?
(b) Find the least squares estimates of the slope and inter-

cept in the simple linear regression model. Find an
estimate of �2.

(c) Estimate the mean shear strength of a motor made from
propellant that is 20 weeks old.

(d) Obtain the fitted values that correspond to each ob-
served value yi. Plot versus yi, and comment on what
this plot would look like if the linear relationship between

ŷi

ŷi

y 110 113 75 94

x 35.5 43.0 40.5 33.0

y 240 181 193 155 172

x 1.6 9.4 15.5 20.0 22.0
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shear strength and age were perfectly deterministic (no er-
ror). Does this plot indicate that age is a reasonable choice
of regressor variable in this model?

11-13. Show that in a simple linear regression model
the point ( ) lies exactly on the least squares regression
line.

11-14. Consider the simple linear regression model Y � �0 �
�1x � �. Suppose that the analyst wants to use z � x 	 as the
regressor variable.
(a) Using the data in Exercise 11-12, construct one scatter

plot of the ( ) points and then another of the
( ) points. Use the two plots to intuitively
explain how the two models, Y � �0 � �1x � � and

, are related.

(b) Find the least squares estimates of and in the model

. How do they relate to the least

squares estimates and ?�̂1�̂0

Y � �*0 � �*1z � �

�*1�*0

Y � �*0 � �*1z � �

zi � xi 	 x, yi

xi, yi

x

x, y

11-15. Suppose we wish to fit the model �
, where (i � 1, 2, p , n). Find

the least squares estimates of and . How do they relate
to and ?
11-16. Suppose we wish to fit a regression model for which
the true regression line passes through the point (0, 0). The ap-
propriate model is Y � �x � �. Assume that we have n pairs
of data (x1, y1), (x2, y2), p , (xn, yn). Find the least squares esti-
mate of �.

11-17. Using the results of Exercise 11-16, fit the model
Y � �x � � to the chloride concentration-roadway area
data in Exercise 11-11. Plot the fitted model on a scatter
diagram of the data and comment on the appropriateness of
the model.

�̂1�̂0

�*1�*0

y*i � yi 	 y�*11xi 	 x 2 � �i

y*i � �*0
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Observation Strength y Age x
Number (psi) (weeks)

1 2158.70 15.50
2 1678.15 23.75
3 2316.00 8.00
4 2061.30 17.00
5 2207.50 5.00
6 1708.30 19.00
7 1784.70 24.00
8 2575.00 2.50
9 2357.90 7.50

10 2277.70 11.00

Observation Strength y Age x
Number (psi) (weeks)

11 2165.20 13.00
12 2399.55 3.75
13 1779.80 25.00
14 2336.75 9.75
15 1765.30 22.00
16 2053.50 18.00
17 2414.40 6.00
18 2200.50 12.50
19 2654.20 2.00
20 1753.70 21.50

11-3 PROPERTIES OF THE LEAST SQUARES ESTIMATORS

The statistical properties of the least squares estimators and may be easily described.
Recall that we have assumed that the error term � in the model Y � �0 � �1x � � is a random
variable with mean zero and variance �2. Since the values of x are fixed, Y is a random vari-
able with mean � �0 � �1x and variance �2. Therefore, the values of and depend
on the observed y’s; thus, the least squares estimators of the regression coefficients may be
viewed as random variables. We will investigate the bias and variance properties of the least
squares estimators and .

Consider first . Because is a linear combination of the observations Yi, we can use
properties of expectation to show that expected value of is

(11-15)

Thus, is an unbiased estimator of the true slope �1.�̂1

E1�̂12 � �1

�̂1

�̂1�̂1

�̂1�̂0

�̂1�̂0�Y 0 x

�̂1�̂0
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384 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

Now consider the variance of . Since we have assumed that V(�i) � �2, it follows that
V(Yi) � �2, and it can be shown that

(11-16)

For the intercept, we can show that

(11-17)

Thus, is an unbiased estimator of the intercept �0. The covariance of the random variables
and is not zero. It can be shown (see Exercise 11-69) that cov( ) � 	�2 .

The estimate of �2 could be used in Equations 11-16 and 11-17 to provide estimates of the
variance of the slope and the intercept. We call the square roots of the resulting variance esti-
mators the estimated standard errors of the slope and intercept, respectively.

x
Sxx�̂0, �̂1�̂1�̂0

�̂0

E1�̂02 � �0 and V1�̂02 � �2 c 1n �
x2

Sxx
d

V1�̂12 �
�2

Sxx

�̂1

In simple linear regression the estimated standard error of the slope and the 
estimated standard error of the intercept are 

respectively, where is computed from Equation 11-13.�̂2

se1�̂12 � B �̂2

Sxx
  and  se1�̂02 � B�̂2 c 1n �

x2

Sxx
d

Definition

The Minitab computer output in Table 11-2 reports the estimated standard errors of the slope
and intercept under the column heading “SE coeff.”

11-4 SOME COMMENTS ON USES OF REGRESSION (CD ONLY)

11-5 HYPOTHESIS TESTS IN SIMPLE LINEAR REGRESSION

An important part of assessing the adequacy of a linear regression model is testing statistical hy-
potheses about the model parameters and constructing certain confidence intervals. Hypothesis
testing in simple linear regression is discussed in this section, and Section 11-6 presents meth-
ods for constructing confidence intervals. To test hypotheses about the slope and intercept of the
regression model, we must make the additional assumption that the error component in the
model, �, is normally distributed. Thus, the complete assumptions are that the errors are nor-
mally and independently distributed with mean zero and variance �2, abbreviated NID(0, �2).

11-5.1 Use of t-Tests

Suppose we wish to test the hypothesis that the slope equals a constant, say, �1,0. The appro-
priate hypotheses are

(11-18)H1: �1 � �1,0

H0: �1 � �1,0
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11-5 HYPOTHESIS TESTS IN SIMPLE LINEAR REGRESSION 385

where we have assumed a two-sided alternative. Since the errors �i are NID(0, �2), it follows
directly that the observations Yi are NID(�0 � �1xi, �

2). Now is a linear combination of 
independent normal random variables, and consequently, is N(�1, �

2�Sxx), using the bias
and variance properties of the slope discussed in Section 11-3. In addition, has
a chi-square distribution with n 	 2 degrees of freedom, and is independent of . As a
result of those properties, the statistic

(11-19)

follows the t distribution with n 	 2 degrees of freedom under H0: �1 � �1,0. We would reject
H0: �1 � �1,0 if

(11-20)

where t0 is computed from Equation 11-19. The denominator of Equation 11-19 is the standard
error of the slope, so we could write the test statistic as

A similar procedure can be used to test hypotheses about the intercept. To test

(11-21)

we would use the statistic

(11-22)

and reject the null hypothesis if the computed value of this test statistic, t0, is such that
. Note that the denominator of the test statistic in Equation 11-22 is just the stan-

dard error of the intercept.
A very important special case of the hypotheses of Equation 11-18 is

(11-23)

These hypotheses relate to the significance of regression. Failure to reject H0: �1 � 0 is
equivalent to concluding that there is no linear relationship between x and Y. This situation is
illustrated in Fig. 11-5. Note that this may imply either that x is of little value in explaining the
variation in Y and that the best estimator of Y for any x is (Fig. 11-5a) or that the true
relationship between x and Y is not linear (Fig. 11-5b). Alternatively, if H0: �1 � 0 is rejected,
this implies that x is of value in explaining the variability in Y (see Fig. 11-6). Rejecting H0:
�1 � 0 could mean either that the straight-line model is adequate (Fig. 11-6a) or that,

ŷ � Y

H1: �1 � 0

H0: �1 � 0

0 t0 0 
 t�
2,n	2

T0 �
�̂0 	 �0,0B�̂2 c 1n �

x2

Sxx
d

�
�̂0 	 �0,0

se1�̂02

H1: �0 � �0,0

H0: �0 � �0,0

T0 �
�̂1 	 �1,0

se1�̂12

0 t0 0 
 t�
2,n	2

T0 �
�̂1 	 �1,02�̂2
Sxx

�̂2�̂1

1n 	 22�̂2
�2
�̂1

�̂1
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386 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

although there is a linear effect of x, better results could be obtained with the addition of
higher order polynomial terms in x (Fig. 11-6b).

EXAMPLE 11-2 We will test for significance of regression using the model for the oxygen purity data from
Example 11-1. The hypotheses are

and we will use � � 0.01. From Example 11-1 and Table 11-2 we have

so the t-statistic in Equation 10-20 becomes

Since the reference value of t is t0.005,18 � 2.88, the value of the test statistic is very far
into the critical region, implying that H0: �1 � 0 should be rejected. The P-value for this test
is . This was obtained manually with a calculator.

Table 11-2 presents the Minitab output for this problem. Notice that the t-statistic value
for the slope is computed as 11.35 and that the reported P-value is P � 0.000. Minitab also
reports the t-statistic for testing the hypothesis H0: �0 � 0. This statistic is computed from
Equation 11-22, with �0,0 � 0, as t0 � 46.62. Clearly, then, the hypothesis that the intercept is
zero is rejected.

P � 1.23 � 10	9

t0 �
�̂12�̂2
Sxx

�
�̂1

se1�̂12 �
14.94721.18
0.68088

� 11.35

�̂1 � 14.97 n � 20, Sxx � 0.68088, �̂2 � 1.18

H1: �1 � 0

H0: �1 � 0

x

y

(a)
x

y

(b)

Figure 11-5 The
hypothesis H0: �1 � 0
is not rejected.

Figure 11-6 The
hypothesis H0: �1 � 0
is rejected.

x

y

(a)
x

y

(b)
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11-5.2 Analysis of Variance Approach to Test Significance of Regression

A method called the analysis of variance can be used to test for significance of regression.
The procedure partitions the total variability in the response variable into meaningful compo-
nents as the basis for the test. The analysis of variance identity is as follows:

11-5 HYPOTHESIS TESTS IN SIMPLE LINEAR REGRESSION 387

The two components on the right-hand-side of Equation 11-24 measure, respectively, the
amount of variability in yi accounted for by the regression line and the residual variation left
unexplained by the regression line. We usually call the error sum of 
squares and the regression sum of squares. Symbolically, Equation
11-24 may be written as

SSR � g n
i�1 1 ŷi � y 22

SSE � g n
i�1 1yi � ŷ i22

where SST � gn
i�1 is the total corrected sum of squares of y. In Section 11-2 we

noted that SSE � SST � �1Sxy (see Equation 11-14), so since SST � �1Sxy � SSE, we note that the
regression sum of squares in Equation 10-26 is SSR � �1Sxy. The total sum of squares SST has 
n � 1 degrees of freedom, and SSR and SSE have 1 and n � 2 degrees of freedom, respectively.

We may show that and that and
are independent chi-square random variables with n � 2 and 1 degrees of freedom, re-

spectively. Thus, if the null hypothesis H0: �1 � 0 is true, the statistic
SSR��2

SSE��2E 3SSE� 1n � 22 4 � �2, E1SSR2 � �2 � �2
1Sx x

ˆ
ˆˆ

1 yi � y22

follows the F1,n�2 distribution, and we would reject H0 if f0 	 f
,1,n�2. The quantities MSR �
SSR�1 and MSE � SSE�(n � 2) are called mean squares. In general, a mean square is always
computed by dividing a sum of squares by its number of degrees of freedom. The test proce-
dure is usually arranged in an analysis of variance table, such as Table 11-3.

(11-24)a
n

i�1
1 yi � y 22 � a

n

i�1
1ŷi � y 22 � a

n

i�1
1yi � ŷi22

(11-25)SST � SSR � SSE

(11-26)F0 �
SSR�1

SSE� 1n � 22 �
MSR

MSE

Table 11-3 Analysis of Variance for Testing Significance of Regression

Source of Sum of Degrees of Mean
Variation Squares Freedom Square F0

Regression 1 MSR MSR�MSE

Error SSE � SST �  Sxy n � 2 MSE

Total SST n � 1

Note that MSE � .�̂2

�̂1

SSR � �̂1Sx y
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388 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

EXAMPLE 11-3 We will use the analysis of variance approach to test for significance of regression using the
oxygen purity data model from Example 11-1. Recall that SST � 173.38, 
Sxy � 10.17744, and n � 20. The regression sum of squares is

and the error sum of squares is

The analysis of variance for testing H0: �1 � 0 is summarized in the Minitab output in
Table 11-2. The test statistic is f0 � MSR�MSE � 152.13�1.18 � 128.86, for which we find
that the P-value is P � 1.23 � 10	9, so we conclude that �1 is not zero.

There are frequently minor differences in terminology among computer packages. For
example, sometimes the regression sum of squares is called the “model” sum of squares, and
the error sum of squares is called the “residual” sum of squares.

Note that the analysis of variance procedure for testing for significance of regression is
equivalent to the t-test in Section 11-5.1. That is, either procedure will lead to the same conclusions.
This is easy to demonstrate by starting with the t-test statistic in Equation 11-19 with �1,0 � 0, say

(11-27)

Squaring both sides of Equation 11-27 and using the fact that results in

(11-28)

Note that T 2
0 in Equation 11-28 is identical to F0 in Equation 11-26 It is true, in general, that

the square of a t random variable with v degrees of freedom is an F random variable, with one
and v degrees of freedom in the numerator and denominator, respectively. Thus, the test using
T0 is equivalent to the test based on F0. Note, however, that the t-test is somewhat more flexi-
ble in that it would allow testing against a one-sided alternative hypothesis, while the F-test is
restricted to a two-sided alternative.

T2
0 �

�̂2
1Sx x

MSE
�

�̂1SxY

MSE
�

MSR

MSE

�̂2 � MSE

T0 �
�̂12�̂2
Sx x

� 21.25� 173.38 	 152.13SSE � SST 	 SSR

SSR � �̂1Sx y � 114.947210.17744 � 152.13

�̂1 � 14.947,

11-18. Consider the data from Exercise 11-1 on x � com-
pressive strength and y � intrinsic permeability of concrete.
(a) Test for significance of regression using � � 0.05. Find

the P-value for this test. Can you conclude that the model
specifies a useful linear relationship between these two
variables?

(b) Estimate �2 and the standard deviation of 
(c) What is the standard error of the intercept in this model?

11-19. Consider the data from Exercise 11-2 on x � road-
way surface temperature and y � pavement deflection.

�̂1.

(a) Test for significance of regression using � � 0.05. Find
the P-value for this test. What conclusions can you draw?

(b) Estimate the standard errors of the slope and intercept.

11-20. Consider the National Football League data in
Exercise 11-4.
(a) Test for significance of regression using � � 0.01. Find

the P-value for this test. What conclusions can you draw?
(b) Estimate the standard errors of the slope and intercept.
(c) Test (using � � 0.01) H0: �1 � 	0.01 versus H1: �1 �

	0.01. Would you agree with the statement that this is a test

EXERCISES FOR SECTION 11-5
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11-6 CONFIDENCE INTERVALS 389

of the claim that if you can decrease the opponent’s rushing
yardage by 100 yards the team will win one more game?

11-21. Consider the data from Exercise 11-5 on y � sales
price and x � taxes paid.
(a) Test H0: �1 � 0 using the t-test; use � � 0.05.
(b) Test H0: �1 � 0 using the analysis of variance with � �

0.05. Discuss the relationship of this test to the test from
part (a).

(c) Estimate the standard errors of the slope and intercept.
(d) Test the hypothesis that �0 � 0.

11-22. Consider the data from Exercise 11-6 on y � steam
usage and x � average temperature.
(a) Test for significance of regression using � � 0.01. What

is the P-value for this test? State the conclusions that re-
sult from this test.

(b) Estimate the standard errors of the slope and intercept.
(c) Test the hypothesis H0: �1 � 10 versus H1: �1 � 10 using

� � 0.01. Find the P-value for this test.
(d) Test H0: �0 � 0 versus H1: �0 � 0 using � � 0.01. Find

the P-value for this test and draw conclusions.

11-23. Exercise 11-7 gave 20 observations on y � highway
gasoline mileage and x � engine displacement.
(a) Test for significance of regression using � � 0.01. Find

the P-value for this test. What conclusions can you reach?
(b) Estimate the standard errors of the slope and intercept.
(c) Test H0: �1 � 	0.05 versus H1: �1 � 	0.05 using � �

0.01 and draw conclusions. What is the P-value for this test?
(d) Test the hypothesis H0: �0 � 0 versus H1: �0 � 0 using 

� � 0.01. What is the P-value for this test?

11-24. Exercise 11-8 gave 13 observations on y � green
liquor Na2S concentration and x � production in a paper mill.
(a) Test for significance of regression using � � 0.05. Find

the P-value for this test.
(b) Estimate the standard errors of the slope and intercept.
(c) Test H0: �0 � 0 versus H1: �0 � 0 using � � 0.05. What

is the P-value for this test?

11-25. Exercise 11-9 presented data on y � blood pressure
rise and x � sound pressure level.
(a) Test for significance of regression using � � 0.05. What

is the P-value for this test?
(b) Estimate the standard errors of the slope and intercept.
(c) Test H0: �0 � 0 versus H1: �0 � 0 using � � 0.05. Find

the P-value for this test.

11-26. Exercise 11-11 presented data on y � chloride con-
centration in surface streams and x � roadway area.
(a) Test the hypothesis H0: �1 � 0 versus H1: �1 � 0 using

the analysis of variance procedure with � � 0.01.
(b) Find the P-value for the test in part (a).
(c) Estimate the standard errors of and 
(d) Test H0: �0 � 0 versus H1: �0 � 0 using � � 0.01. What

conclusions can you draw? Does it seem that the model
might be a better fit to the data if the intercept were re-
moved?

11-27. Refer to Exercise 11-12, which gives 20 observations
on y � shear strength of a propellant and x � propellant age.

(a) Test for significance of regression with � � 0.01. Find the
P-value for this test.

(b) Estimate the standard errors of and 
(c) Test H0: �1 � 	30 versus H1: �1 � 	30 using � � 0.01.

What is the P-value for this test?
(d) Test H0: �0 � 0 versus H1: �0 � 0 using � � 0.01. What

is the P-value for this test?
(e) Test H0: �0 � 2500 versus H1: �0 
 2500 using � �

0.01. What is the P-value for this test?

11-28. Suppose that each value of xi is multiplied by a pos-
itive constant a, and each value of yi is multiplied by another
positive constant b. Show that the t-statistic for testing H0: 
�1 � 0 versus H1: �1 � 0 is unchanged in value.

11-29. Consider the no-intercept model Y � �x � �

with the �’s NID(0, �2). The estimate of �2 is s2 �

gn
i�1 and V � �2�gn

i�1

(a) Devise a test statistic for H0: � � 0 versus H1: � � 0.
(b) Apply the test in (a) to the model from Exercise 11-17.

11-30. The type II error probability for the t-test for H0: 
�1 � �1,0 can be computed in a similar manner to the t-tests 
of Chapter 9. If the true value of �1 is �œ

1, the value
is calculated and used as

the horizontal scale factor on the operating characteristic
curves for the t-test, (Appendix Charts VIe through VIh) and
the type II error probability is read from the vertical scale us-
ing the curve for n 	 2 degrees of freedom. Apply this proce-
dure to the football data of Exercise 11-4, using � � 2.4 and
�œ

1 � 	0.005, where the hypotheses are H0: �1 � 	0.01 ver-
sus H1: �1 � 	0.01.

d � 0�1,0 	 �¿1 0 
 1�11n 	 12
Sxx

x 2
i .1�̂21 yi 	 �̂xi22
 1n 	 12

�̂1.�̂0

�̂0.�̂1

11-6 CONFIDENCE INTERVALS

11-6.1 Confidence Intervals on the Slope and Intercept

In addition to point estimates of the slope and intercept, it is possible to obtain confidence in-
terval estimates of these parameters. The width of these confidence intervals is a measure of
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390 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

EXAMPLE 11-4 We will find a 95% confidence interval on the slope of the regression line using the data in
Example 11-1. Recall that Sxx � 0.68088, and (see Table 11-2).
Then, from Equation 10-31 we find

or

This simplifies to

11-6.2 Confidence Interval on the Mean Response

A confidence interval may be constructed on the mean response at a specified value of x, say,
x0. This is a confidence interval about E(Y �x0) � �Y �x0

and is often called a confidence interval
about the regression line. Since E(Y �x0) � �Y �x0

� �0 � �1x0, we may obtain a point estimate
of the mean of Y at x � x0(�Y �x0

) from the fitted model as

�̂Y  0  x0
� �̂0 � �̂1x0

12.197 � �1 � 17.697

14.947 	 2.101 A 1.18
0.68088

� �1 � 14.947 � 2.101 A 1.18
0.68088

�̂1 	 t0.025,18  B �̂2

Sx x
� �1 � �̂1 � t0.025,18  B �̂2

Sx x

�̂2 � 1.18�̂1 � 14.947,

the overall quality of the regression line. If the error terms, �i, in the regression model are nor-
mally and independently distributed,

are both distributed as t random variables with n 	 2 degrees of freedom. This leads to the fol-
lowing definition of 100(1 	 �)% confidence intervals on the slope and intercept.

1�̂1 	 �12
2�̂2
Sx x and 1�̂0 	 �02
B�̂2 c 1n �
x2

Sx x
d

Under the assumption that the observations are normally and independently distributed,
a 100(1 	 �)% confidence interval on the slope �1 in simple linear regression is

(11-29)

Similarly, a 100(1 	 �)% confidence interval on the intercept �0 is

(11-30)� �0 � �̂0 �  t�
2, n	2 B�̂2 c 1n �
x 

2

Sx x
d

�̂0 	 t�
2, n	2  B�̂2 c 1n �
x2

Sx x
d

�̂1 	 t�
2, n	2  B �̂2

Sx x
� �1 � �̂1 � t�
2, n	2  B �̂2

Sx x

Definition
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11-6 CONFIDENCE INTERVALS 391

Now is an unbiased point estimator of �Y �x0
, since and are unbiased estimators of

�0 and �1. The variance of is

This last result follows from the fact that cov (Refer to Exercise 11-71). Also, 
is normally distributed, because 1 and 0 are normally distributed, and if we use as an
estimate of �2, it is easy to show that

has a t distribution with n 	 2 degrees of freedom. This leads to the following confidence in-
terval definition.

�̂Y 0  x0
	 �Y 0  x0B�̂2 c 1n �
1x0 	 x 22

Sx x
d

�̂2�̂�̂

�̂Y 0 x0
1Y, �̂12 � 0

V 1�̂Y 0  x0
2 � �2 c 1n �

1x0 	 x22
Sx x

d

�̂Y 0  x0

�̂1�̂0�̂Y 0  x0

A 100(1 	 �)% confidence interval about the mean response at the value of 
x � x0, say , is given by

(11-31)

where is computed from the fitted regression model.�̂Y  0  x0
� �̂0 � �̂1x0

� �Y 0  x0
� �̂Y  0  x0

� t�
2, n	2 B�̂2 c 1n �
1x0 	 x 22

Sx x
d

�̂Y  0x0
	 t�
2, n	2 B�̂2

 c 1n �
1x0 	 x 22

Sx x
d

�Y 0  x0

Definition

Note that the width of the confidence interval for is a function of the value specified for
x0. The interval width is a minimum for and widens as increases.

EXAMPLE 11-5 We will construct a 95% confidence interval about the mean response for the data in Example
11-1. The fitted model is and the 95% confidence interval on

is found from Equation 11-31 as

Suppose that we are interested in predicting mean oxygen purity when x0 � 1.00%. Then

and the 95% confidence interval is

e89.23 � 2.101 B1.18 c 1
20

�
11.00 	 1.196022

0.68088
d f

�̂Y  0  x1.00
� 74.283 � 14.94711.002 � 89.23

�̂Y 0  x0
� 2.101B1.18 c 1

20
�
1x0 	 1.196022

0.68088
d

�Y 0  x0

�̂Y 0  x0
� 74.283 � 14.947x0,

0 x0 	 x 0x0 � x
�Y 0  x0
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392 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

or

Therefore, the 95% confidence interval on is

Minitab will also perform these calculations. Refer to Table 11-2. The predicted value of y at
x � 1.00 is shown along with the 95% CI on the mean of y at this level of x.

By repeating these calculations for several different values for x0 we can obtain confi-
dence limits for each corresponding value of . Figure 11-7 displays the scatter diagram
with the fitted model and the corresponding 95% confidence limits plotted as the upper and
lower lines. The 95% confidence level applies only to the interval obtained at one value of x
and not to the entire set of x-levels. Notice that the width of the confidence interval on 
increases as increases.

11-7 PREDICTION OF NEW OBSERVATIONS

An important application of a regression model is predicting new or future observations Y
corresponding to a specified level of the regressor variable x. If x0 is the value of the regressor
variable of interest,

(11-32)

is the point estimator of the new or future value of the response Y0.
Now consider obtaining an interval estimate for this future observation Y0. This new

observation is independent of the observations used to develop the regression model.
Therefore, the confidence interval for in Equation 11-31 is inappropriate, since it is based
only on the data used to fit the regression model. The confidence interval about refers to 
the true mean response at x � x0 (that is, a population parameter), not to future observations.

�Y 0  x0

�Y 0  x0

Ŷ0 � �̂0 � �̂1x0

0 x0 	 x 0 �Y 0  x0

�Y 0  x0

88.48 � �Y 0  1.00 � 89.98

�Y  0  1.00

89.23 � 0.75

90

87

93

96

99

102

0.87 1.07 1.27 1.47 1.67

Hydrocarbon level (%)

O
xy

ge
n 

pu
ri

ty
 y

 (
%

)

x

Figure 11-7 Scatter
diagram of oxygen 
purity data from
Example 11-1 with 
fitted regression line
and 95 percent 
confidence limits on

.�Y 0  x0

c11.qxd  5/20/02  1:16 PM  Page 392 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



11-7 PREDICTION OF NEW OBSERVATIONS 393

Let Y0 be the future observation at x � x0, and let given by Equation 11-32 be the es-
timator of Y0. Note that the error in prediction

is a normally distributed random variable with mean zero and variance

because Y0 is independent of If we use to estimate �2, we can show that

has a t distribution with n 	 2 degrees of freedom. From this we can develop the following
prediction interval definition.

Y0 	 Ŷ0B�̂2 c1 �
1
n �

1x0 	 x 22
Sx x

d

�̂2Ŷ0.

V 1ep̂2 � V1Y0 	 Ŷ02 � �2 c1 �
1
n �

1x0 	 x 22
Sx x

d

ep̂ � Y0 	 Ŷ0

Ŷ0

A 100(1 	 �) % prediction interval on a future observation at the value x0 is
given by

(11-33)

The value is computed from the regression model ŷ0 � �̂0 � �̂1x0.ŷ0

� Y0 � ŷ0 � t�
 2, n	2 B�̂2 c1 �
1
n �

1x0 	 x 22
Sx x

d

ŷ0 	 t�
2, n	2 B�̂2 c1 �
1
n �

1x0 	 x 22
Sx x

d

Y0

Definition

Notice that the prediction interval is of minimum width at and widens as 
increases. By comparing Equation 11-33 with Equation 11-31, we observe that the prediction
interval at the point x0 is always wider than the confidence interval at x0. This results because
the prediction interval depends on both the error from the fitted model and the error associated
with future observations.

EXAMPLE 11-6 To illustrate the construction of a prediction interval, suppose we use the data in Example 11-1
and find a 95% prediction interval on the next observation of oxygen purity at x0 � 1.00%.
Using Equation 11-33 and recalling from Example 11-5 that , we find that the
prediction interval is

� Y0 � 89.23 � 2.101 B1.18 c1 �
1
20

�
11.00 	 1.196022

0.68088
d

89.23 	 2.101B1.18 c1 �
1
20

�
11.00 	 1.196022

0.68088
d

ŷ0 � 89.23

0  x0 	 x 0x0 � x
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394 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

which simplifies to 

Minitab will also calculate prediction intervals. Refer to the output in Table 11-2. The 95% PI
on the future observation at x0 � 1.00 is shown in the display.

By repeating the foregoing calculations at different levels of x0, we may obtain the 95%
prediction intervals shown graphically as the lower and upper lines about the fitted regression
model in Fig. 11-8. Notice that this graph also shows the 95% confidence limits on 
calculated in Example 11-5. It illustrates that the prediction limits are always wider than the
confidence limits.

�Y  0  x0

86.83 � y0 � 91.63

Figure 11-8 Scatter
diagram of oxygen
purity data from
Example 11-1 with
fitted regression line,
95% prediction limits
(outer lines) and 95%
confidence limits on

.�Y  0  x0
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EXERCISES FOR SECTIONS 11-6 AND 11-7

11-31. Refer to the data in Exercise 11-1 on y � intrinsic
permeability of concrete and x � compressive strength. Find
a 95% confidence interval on each of the following:
(a) Slope (b) Intercept
(c) Mean permeability when x � 2.5
(d) Find a 95% prediction interval on permeability when 

x � 2.5. Explain why this interval is wider than the
interval in part (c).

11-32. Exercise 11-2 presented data on roadway surface
temperature x and pavement deflection y. Find a 99% confi-
dence interval on each of the following:
(a) Slope (b) Intercept
(c) Mean deflection when temperature 
(d) Find a 99% prediction interval on pavement deflection

when the temperature is .

11-33. Exercise 11-4 presented data on the number of
games won by NFL teams in 1976. Find a 95% confidence in-
terval on each of the following:

90�F

x � 85�F

(a) Slope (b) Intercept
(c) Mean number of games won when opponents rushing

yardage is limited to x � 1800
(d) Find a 95% prediction interval on the number of games

won when opponents rushing yards is 1800.

11-34. Refer to the data on y � house selling price and 
x � taxes paid in Exercise 11-5. Find a 95% confidence inter-
val on each of the following:
(a) �1 (b) �0

(c) Mean selling price when the taxes paid are x � 7.50
(d) Compute the 95% prediction interval for selling price

when the taxes paid are x � 7.50.

11-35. Exercise 11-6 presented data on y � steam usage
and x � monthly average temperature.
(a) Find a 99% confidence interval for �1.
(b) Find a 99% confidence interval for �0.
(c) Find a 95% confidence interval on mean steam usage

when the average temperature is .55�F
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11-8 ADEQUACY OF THE REGRESSION MODEL 395

(d) Find a 95% prediction interval on steam usage when tem-
perature is . Explain why this interval is wider than
the interval in part (c).

11-36. Exercise 11-7 presented gasoline mileage perform-
ance for 20 cars, along with information about the engine
displacement. Find a 95% confidence interval on each of the
following:
(a) Slope (b) Intercept
(c) Mean highway gasoline mileage when the engine dis-

placement is x � 150 in3

(d) Construct a 95% prediction interval on highway gasoline
mileage when the engine displacement is x � 150 in3.

11-37. Consider the data in Exercise 11-8 on y � green
liquor Na2S concentration and x � production in a paper mill.
Find a 99% confidence interval on each of the following:
(a) �1 (b) �0

(c) Mean Na2S concentration when production x � 910 
tons �day

(d) Find a 99% prediction interval on Na2S concentration
when x � 910 tons�day.

11-38. Exercise 11-9 presented data on y � blood pressure
rise and x � sound pressure level. Find a 95% confidence
interval on each of the following:
(a) �1 (b) �0

55�F
(c) Mean blood pressure rise when the sound pressure level is

85 decibals
(d) Find a 95% prediction interval on blood pressure rise

when the sound pressure level is 85 decibals.

11-39. Refer to the data in Exercise 11-10 on y � wear
volume of mild steel and x � oil viscosity. Find a 95% confi-
dence interval on each of the following:
(a) Intercept (b) Slope
(c) Mean wear when oil viscosity x � 30

11-40. Exercise 11-11 presented data on chloride concentra-
tion y and roadway area x on watersheds in central Rhode Island.
Find a 99% confidence interval on each of the following:
(a) �1 (b) �0

(c) Mean chloride concentration when roadway area x � 1.0%
(d) Find a 99% prediction interval on chloride concentration

when roadway area x � 1.0%.

11-41. Refer to the data in Exercise 11-12 on rocket motor
shear strength y and propellant age x. Find a 95% confidence
interval on each of the following:
(a) Slope �1 (b) Intercept �0

(c) Mean shear strength when age x � 20 weeks
(d) Find a 95% prediction interval on shear strength when age

x � 20 weeks.

11-8 ADEQUACY OF THE REGRESSION MODEL

Fitting a regression model requires several assumptions. Estimation of the model parameters
requires the assumption that the errors are uncorrelated random variables with mean zero and
constant variance. Tests of hypotheses and interval estimation require that the errors be nor-
mally distributed. In addition, we assume that the order of the model is correct; that is, if we
fit a simple linear regression model, we are assuming that the phenomenon actually behaves in
a linear or first-order manner.

The analyst should always consider the validity of these assumptions to be doubtful and
conduct analyses to examine the adequacy of the model that has been tentatively entertained.
In this section we discuss methods useful in this respect.

11-8.1 Residual Analysis

The residuals from a regression model are , where yi is an actual
observation and is the corresponding fitted value from the regression model. Analysis of the
residuals is frequently helpful in checking the assumption that the errors are approximately
normally distributed with constant variance, and in determining whether additional terms in
the model would be useful.

As an approximate check of normality, the experimenter can construct a frequency his-
togram of the residuals or a normal probability plot of residuals. Many computer programs
will produce a normal probability plot of residuals, and since the sample sizes in regression
are often too small for a histogram to be meaningful, the normal probability plotting method

ŷi

ei � yi 	 ŷi, i � 1, 2, p , n
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396 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

is preferred. It requires judgment to assess the abnormality of such plots. (Refer to the discus-
sion of the “fat pencil” method in Section 6-7).

We may also standardize the residuals by computing , . If
the errors are normally distributed, approximately 95% of the standardized residuals should
fall in the interval (	2, �2). Residuals that are far outside this interval may indicate the
presence of an outlier, that is, an observation that is not typical of the rest of the data. Various
rules have been proposed for discarding outliers. However, outliers sometimes provide im-
portant information about unusual circumstances of interest to experimenters and should not
be automatically discarded. For further discussion of outliers, see Montgomery, Peck and
Vining (2001).

It is frequently helpful to plot the residuals (1) in time sequence (if known), (2), against the
, and (3) against the independent variable x. These graphs will usually look like one of the four

general patterns shown in Fig. 11-9. Pattern (a) in Fig. 11-9 represents the ideal situation, while
patterns (b), (c), and (d ) represent anomalies. If the residuals appear as in (b), the variance of the
observations may be increasing with time or with the magnitude of yi or xi. Data transformation
on the response y is often used to eliminate this problem. Widely used variance-stabilizing trans-
formations include the use of , ln y, or 1�y as the response. See Montgomery, Peck, and
Vining (2001) for more details regarding methods for selecting an appropriate transformation. If
a plot of the residuals against time has the appearance of (b), the variance of the observations is
increasing with time. Plots of residuals against and xi that look like (c) also indicate inequal-
ity of variance. Residual plots that look like (d) indicate model inadequacy; that is, higher order
terms should be added to the model, a transformation on the x-variable or the y-variable (or both)
should be considered, or other regressors should be considered.

EXAMPLE 11-7 The regression model for the oxygen purity data in Example 11-1 is � 74.283 � 14.947x.
Table 11-4 presents the observed and predicted values of y at each value of x from this data set,
along with the corresponding residual. These values were computed using Minitab and show

ŷ

ŷi

1y

ŷi

i � 1,  2 p , ndi � ei
2�̂2

Figure 11-9 Patterns
for residual plots. 
(a) satisfactory, 
(b) funnel, (c) double
bow, (d) nonlinear.
[Adapted from
Montgomery, Peck,
and Vining (2001).]
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11-8 ADEQUACY OF THE REGRESSION MODEL 397

the number of decimal places typical of computer output. A normal probability plot of the
residuals is shown in Fig. 11-10. Since the residuals fall approximately along a straight line in
the figure, we conclude that there is no severe departure from normality. The residuals are also
plotted against the predicted value in Fig. 11-11 and against the hydrocarbon levels xi in 
Fig. 11-12. These plots do not indicate any serious model inadequacies.

11-8.2 Coefficient of Determination(R2)

The quantity

(11-34)

is called the coefficient of determination and is often used to judge the adequacy of a
regression model. Subsequently, we will see that in the case where X and Y are jointly distrib-
uted random variables, R2 is the square of the correlation coefficient between X and Y. From

R2 �
SSR

SST
� 1 	

SSE

SST

ŷi

Figure 11-10 Normal probability plot of residuals,
Example 11-7.

Figure 11-11 Plot of residuals versus predicted oxygen
purity , Example 11-7.ŷ
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Table 11-4 Oxygen Purity Data from Example 11-1, Predicted Values, and Residuals

Hydrocarbon Oxygen Predicted Residual
Level, x Purity, y Value, e � y 	

1 0.99 90.01 89.069009 0.940991
2 1.02 89.05 89.518136 	0.468136
3 1.15 91.43 91.464353 	0.034353
4 1.29 93.74 93.560279 0.179721
5 1.46 96.73 96.105332 0.624668
6 1.36 94.45 94.608242 	0.158242
7 0.87 87.59 87.272501 0.317499
8 1.23 91.77 92.662025 	0.892025
9 1.55 99.42 97.452713 1.967287

10 1.40 93.65 95.207078 	1.557078

ŷŷ
Hydrocarbon Oxygen Predicted Residual

Level, x Purity, y Value, e � y 	

11 1.19 93.54 92.063189 1.476811
12 1.15 92.52 91.614062 0.905938
13 0.98 90.56 88.919300 1.640700
14 1.01 89.54 89.368427 0.171573
15 1.11 89.85 90.865517 	1.015517
16 1.20 90.39 92.212898 	1.822898
17 1.26 93.25 93.111152 0.138848
18 1.32 93.41 94.009406 	0.599406
19 1.43 94.98 95.656205 	0.676205
20 0.95 87.33 88.470173 	1.140173

ŷŷ
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398 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

the analysis of variance identity in Equations 11-24 and 11-25, 0 � R2 � 1. We often refer
loosely to R2 as the amount of variability in the data explained or accounted for by the regres-
sion model. For the oxygen purity regression model, we have R2 � SSR SST � 152.13
173.38 � 0.877; that is, the model accounts for 87.7% of the variability in the data.

The statistic R2 should be used with caution, because it is always possible to make R2

unity by simply adding enough terms to the model. For example, we can obtain a “perfect” fit
to n data points with a polynomial of degree n 	 1. In addition, R2 will always increase if we
add a variable to the model, but this does not necessarily imply that the new model is superior
to the old one. Unless the error sum of squares in the new model is reduced by an amount
equal to the original error mean square, the new model will have a larger error mean square
than the old one, because of the loss of one error degree of freedom. Thus, the new model will
actually be worse than the old one.

There are several misconceptions about R2. In general, R2 does not measure the magni-
tude of the slope of the regression line. A large value of R2 does not imply a steep slope.
Furthermore, R2 does not measure the appropriateness of the model, since it can be artificially
inflated by adding higher order polynomial terms in x to the model. Even if y and x are related
in a nonlinear fashion, R2 will often be large. For example, R2 for the regression equation in
Fig. 11-6(b) will be relatively large, even though the linear approximation is poor. Finally,
even though R2 is large, this does not necessarily imply that the regression model will provide
accurate predictions of future observations.

11-8.3 Lack-of-Fit Test (CD Only)

EXERCISES FOR SECTION 11-8





Figure 11-12 Plot of
residuals versus hydro-
carbon level x,
Example 11-8.
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11-42. Refer to the NFL team performance data in
Exercise 11-4.
(a) Calculate R2 for this model and provide a practical inter-

pretation of this quantity.
(b) Prepare a normal probability plot of the residuals from the

least squares model. Does the normality assumption seem
to be satisfied?

(c) Plot the residuals versus and against x. Interpret these
graphs.

11-43. Refer to the data in Exercise 11-5 on house selling
price y and taxes paid x.

ŷ

(a) Find the residuals for the least squares model.
(b) Prepare a normal probability plot of the residuals and in-

terpret this display.
(c) Plot the residuals versus and versus x. Does the assump-

tion of constant variance seem to be satisfied?
(d) What proportion of total variability is explained by the

regression model?

11-44. Exercise 11-6 presents data on y � steam usage and
x � average monthly temperature.
(a) What proportion of total variability is accounted for by the

simple linear regression model?

ŷ

c11.qxd  5/20/02  1:17 PM  Page 398 RK UL 6 RK UL 6:Desktop Folder:TEMP WORK:MONTGOMERY:REVISES UPLO D CH 1 14 FIN L:Quark Files:



11-8 ADEQUACY OF THE REGRESSION MODEL 399

(b) Prepare a normal probability plot of the residuals and
interpret this graph.

(c) Plot residuals versus and x. Do the regression assump-
tions appear to be satisfied?

11-45. Refer to the gasoline mileage data in Exercise 11-7.
(a) What proportion of total variability in highway gaso-

line mileage performance is accounted for by engine
displacement?

(b) Plot the residuals versus and x, and comment on the graphs.
(c) Prepare a normal probability plot of the residuals. Does

the normality assumption appear to be satisfied?

11-46. Consider the data in Exercise 11-8 on y � green
liquor Na2S concentration and x � paper machine production.
Suppose that a 14th sample point is added to the original data,
where y14 � 59 and x14 � 855.
(a) Prepare a scatter diagram of y versus x. Fit the simple lin-

ear regression model to all 14 observations.
(b) Test for significance of regression with � � 0.05.
(c) Estimate �2 for this model.
(d) Compare the estimate of �2 obtained in part (c) above with

the estimate of �2 obtained from the original 13 points.
Which estimate is larger and why?

(e) Compute the residuals for this model. Does the value of
e14 appear unusual?

(f ) Prepare and interpret a normal probability plot of the
residuals.

(g) Plot the residuals versus and versus x. Comment on
these graphs.

11-47. Refer to Exercise 11-9, which presented data on
blood pressure rise y and sound pressure level x.
(a) What proportion of total variability in blood pressure rise

is accounted for by sound pressure level?
(b) Prepare a normal probability plot of the residuals from

this least squares model. Interpret this plot.
(c) Plot residuals versus and versus x. Comment on these plots.

11-48. Exercise 11-10 presents data on wear volume y and
oil viscosity x.
(a) Calculate R2 for this model. Provide an interpretation of

this quantity.
(b) Plot the residuals from this model versus and versus x.

Interpret these plots.
(c) Prepare a normal probability plot of the residuals. Does

the normality assumption appear to be satisfied?

11-49. Refer to Exercise 11-11, which presented data on
chloride concentration y and roadway area x.
(a) What proportion of the total variability in chloride con-

centration is accounted for by the regression model?
(b) Plot the residuals versus and versus x. Interpret these plots.
(c) Prepare a normal probability plot of the residuals. Does

the normality assumption appear to be satisfied?

11-50. Consider the rocket propellant data in Exercise 11-12.
(a) Calculate R2 for this model. Provide an interpretation of

this quantity.

ŷ

ŷ

ŷ

ŷ

ŷ

ŷ

(b) Plot the residuals on a normal probability scale. Do any
points seem unusual on this plot?

(c) Delete the two points identified in part (b) from the
sample and fit the simple linear regression model to the
remaining 18 points. Calculate the value of R2 for the new
model. Is it larger or smaller than the value of R2 com-
puted in part (a)? Why?

(d) Did the value of change dramatically when the two
points identified above were deleted and the model fit to
the remaining points? Why?

11-51. Show that an equivalent way to define the test for
significance of regression in simple linear regression is to base
the test on R2 as follows: to test H0: �1 � 0 versus H1: �1 � 0,
calculate

and to reject H0: �1 � 0 if the computed value f0 
 f�,1,n	2.

11-52. Suppose that a simple linear regression model has
been fit to n � 25 observations and R2 � 0.90.
(a) Test for significance of regression at � � 0.05. Use the

results of Exercise 11-51.
(b) What is the smallest value of R2 that would lead to the

conclusion of a significant regression if � � 0.05?

11-53. Consider the rocket propellant data in Exercise 11-
12. Calculate the standardized residuals for these data. Does
this provide any helpful information about the magnitude of
the residuals?

11-54. Studentized Residuals. Show that the variance
of the ith residual is

Hint:

The ith studentized residual is defined as

(a) Explain why ri has unit standard deviation.
(b) Do the standardized residuals have unit standard deviation?
(c) Discuss the behavior of the studentized residual when the

sample value xi is very close to the middle of the range of x.
(d) Discuss the behavior of the studentized residual when the

sample value xi is very near one end of the range of x.

ri �
eiB�̂2 c1 	 a1

n �
1xi 	 x 22

Sxx
b d

cov1Yi, Ŷi2 � �2 c 1n �
1xi 	 x 22

Sxx
d .

V1ei2 � �2 c1 	 a1
n �

1xi 	 x22
Sxx

b d

F0 �
R21n 	 22

1 	 R2

�̂2
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400 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

11-9 TRANSFORMATIONS TO A STRAIGHT LINE

We occasionally find that the straight-line regression model Y � �0 � �1x � � is inappropri-
ate because the true regression function is nonlinear. Sometimes nonlinearity is visually de-
termined from the scatter diagram, and sometimes, because of prior experience or underlying
theory, we know in advance that the model is nonlinear. Occasionally, a scatter diagram will
exhibit an apparent nonlinear relationship between Y and x. In some of these situations, a non-
linear function can be expressed as a straight line by using a suitable transformation. Such
nonlinear models are called intrinsically linear.

As an example of a nonlinear model that is intrinsically linear, consider the exponential
function

This function is intrinsically linear, since it can be transformed to a straight line by a logarith-
mic transformation

This transformation requires that the transformed error terms ln � are normally and independ-
ently distributed with mean 0 and variance �2.

Another intrinsically linear function is

By using the reciprocal transformation z � 1�x, the model is linearized to

Sometimes several transformations can be employed jointly to linearize a function. For ex-
ample, consider the function

letting , we have the linearized form

For examples of fitting these models, refer to Montgomery, Peck, and Vining (2001) or
Myers (1990).

11-10 MORE ABOUT TRANSFORMATIONS (CD ONLY)

11-11 CORRELATION

Our development of regression analysis has assumed that x is a mathematical variable, meas-
ured with negligible error, and that Y is a random variable. Many applications of regression
analysis involve situations in which both X and Y are random variables. In these situations, it

ln Y* � �0 � �1x � �

Y* � 1
Y

Y �
1

exp 1�0 � �
1
x � �2

Y � �0 � �1z � �

Y � �0 � �1 
a1

xb � �

ln Y � ln �0 � �1 x � ln �

Y � �0e�1x�
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11-11 CORRELATION 401

is usually assumed that the observations (Xi, Yi), i � 1, 2, p , n are jointly distributed random
variables obtained from the distribution f (x, y).

For example, suppose we wish to develop a regression model relating the shear strength
of spot welds to the weld diameter. In this example, weld diameter cannot be controlled. We
would randomly select n spot welds and observe a diameter (Xi) and a shear strength (Yi) for
each. Therefore (Xi, Yi) are jointly distributed random variables.

We assume that the joint distribution of Xi and Yi is the bivariate normal distribution pre-
sented in Chapter 5, and �Y and �2

Y are the mean and variance of Y, �X and are the mean
and variance of X, and � is the correlation coefficient between Y and X. Recall that the corre-
lation coefficient is defined as

(11-35)

where �XY is the covariance between Y and X.
The conditional distribution of Y for a given value of X � x is

(11-36)

where

(11-37)

(11-38)

and the variance of the conditional distribution of Y given X � x is

(11-39)

That is, the conditional distribution of Y given X � x is normal with mean

(11-40)

and variance Thus, the mean of the conditional distribution of Y given X � x is a
simple linear regression model. Furthermore, there is a relationship between the correlation
coefficient � and the slope �1. From Equation 11-38 we see that if � � 0, then �1 � 0, which
implies that there is no regression of Y on X. That is, knowledge of X does not assist us in
predicting Y.

The method of maximum likelihood may be used to estimate the parameters �0 and �1. It
can be shown that the maximum likelihood estimators of those parameters are

(11-41)

and

(11-42)�̂1 �
a

n

i�1
Yi 1Xi 	 X 2

a
n

i�1
1Xi 	 X 22

�
SXY

SX X

�̂0 � Y 	 �̂1X 

�2
Y 0 x 

.

E1Y 0  x2 � �0 � �1x

�2
Y 0  x � �2

Y 11 	 �22

 �1 �
�Y

�X
 �

 �0 � �Y 	 �X�
�Y

�X

fY 0  x 1 y2 �
112��Y 0  x

  exp c	1
2

 ay 	 �0 	 �1x
�Y 0  x b2d

� �
�XY

�X �Y

�2
X
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402 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

We note that the estimators of the intercept and slope in Equations 11-41 and 11-42 are
identical to those given by the method of least squares in the case where X was assumed to be
a mathematical variable. That is, the regression model with Y and X jointly normally distrib-
uted is equivalent to the model with X considered as a mathematical variable. This follows
because the random variables Y given X � x are independently and normally distributed with
mean �0 � �1x and constant variance These results will also hold for any joint distribu-
tion of Y and X such that the conditional distribution of Y given X is normal.

It is possible to draw inferences about the correlation coefficient � in this model. The
estimator of � is the sample correlation coefficient

(11-43)

Note that

(11-44)

so the slope is just the sample correlation coefficient R multiplied by a scale factor that is
the square root of the “spread” of the Y values divided by the “spread” of the X values.Thus,

and R are closely related, although they provide somewhat different information. The
sample correlation coefficient R measures the linear association between Y and X, while 
measures the predicted change in the mean of Y for a unit change in X. In the case of a math-
ematical variable x, R has no meaning because the magnitude of R depends on the choice of
spacing of x. We may also write, from Equation 11-44,

which is just the coefficient of determination. That is, the coefficient of determination R2 is
just the square of the correlation coefficient between Y and X.

It is often useful to test the hypotheses

(11-45)

The appropriate test statistic for these hypotheses is

H1: � � 0

H0: � � 0

R2 � �̂2
1  

SX X

SY Y
�

�̂1SX Y

SST
�

SSR

SST

�̂1

�̂1

�̂1

�̂1 � aSST

SX X
b1� 2

 R

R �
a

n

i�1
Yi 1Xi � X 2

c a
n

i�1
1Xi � X 22 a

n

i�1
1Yi � Y 22 d 1�2 �

SX Y

1SX XSST21�2

�2
Y 0 x 

.

which has the t distribution with n � 2 degrees of freedom if H0: � � 0 is true. Therefore, we
would reject the null hypothesis if �t0� 	 t
�2,n�2. This test is equivalent to the test of the

(11-46)T0 �
R1n � 221 � R2
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11-11 CORRELATION 403

and reject H0: � � �0 if the value of the test statistic in Equation 11-49 is such that �z0� 
 z��2.
It is also possible to construct an approximate 100(1 	 �)% confidence interval for �, using

the transformation in Equation 10-55. The approximate 100(1 	 �)% confidence interval is

hypothesis H0: �1 � 0 given in Section 11-6.1. This equivalence follows directly from
Equation 10-51.

The test procedure for the hypothesis is

(11-47)

where �0 � 0 is somewhat more complicated. For moderately large samples (say, n � 25) the
statistic

(11-48)

is approximately normally distributed with mean and variance

respectively. Therefore, to test the hypothesis H0: � � �0, we may use the test statistic 

�Z � arctanh � �
1
2

 ln 
1 � �

1 	 �
  and  �2

Z �
1

n 	 3

Z � arctanh R �
1
2

  ln  
1 � R

1 	 R

H1: � � �0

H0: � � �0

(11-49)Z0 � 1arctanh R 	 arctanh �02 1n 	 321
2

(11-50)tanh aarctanh r 	
z�
21n 	 3

b � � � tanh aarctanh r �
z�
21n 	 3

b

EXAMPLE 11-8 In Chapter 1 (Section 1-3) an application of regression analysis is described in which an engineer
at a semiconductor assembly plant is investigating the relationship between pull strength of a wire
bond and two factors: wire length and die height. In this example, we will consider only one of
the factors, the wire length. A random sample of 25 units is selected and tested, and the wire bond
pull strength and wire length are observed for each unit. The data are shown in Table 1-2. We as-
sume that pull strength and wire length are jointly normally distributed.

Figure 11-13 shows a scatter diagram of wire bond strength versus wire length. We have
used the Minitab option of displaying box plots of each individual variable on the scatter
diagram. There is evidence of a linear relationship between the two variables.

The Minitab output for fitting a simple linear regression model to the data is shown on the
following page.

where tanh u � (eu 	 e	u )�(eu � e	u ).
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404 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

Now Sxx � 698.56 and Sxy � 2027.7132, and the sample correlation coefficient is

Note that r 2 � (0.9818)2 � 0.9640 (which is reported in the Minitab output), or that approx-
imately 96.40% of the variability in pull strength is explained by the linear relationship to wire
length.

Now suppose that we wish to test the hypothesis

H1: � � 0

H0: � � 0

r �
Sxy

3Sx xSST 41
2 �
2027.7132

3 1698.5602 16105.92 41
2 � 0.9818

Figure 11-13 Scatter plot of wire bond strength versus wire length,
Example 11-8.
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Regression Analysis: Strength versus Length

The regression equation is
Strength � 5.11 � 2.90 Length

Predictor Coef SE Coef T P
Constant 5.115 1.146 4.46 0.000
Length 2.9027 0.1170 24.80 0.000

S � 3.093 R-Sq � 96.4% R-Sq(adj) � 96.2%
PRESS � 272.144 R-Sq(pred) � 95.54%

Analysis of Variance

Source DF SS MS F P
Regression 1 5885.9 5885.9 615.08 0.000
Residual Error 23 220.1 9.6
Total 24 6105.9
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11-11 CORRELATION 405

with � � 0.05. We can compute the t-statistic of Equation 11-46 as

This statistic is also reported in the Minitab output as a test of H0: �1 � 0. Because t0.025,23 �
2.069, we reject H0 and conclude that the correlation coefficient � � 0.

Finally, we may construct an approximate 95% confidence interval on � from Equation
10-57. Since arctanh r � arctanh 0.9818 � 2.3452, Equation 11-50 becomes

which reduces to

EXERCISES FOR SECTION 11–10

0.9585 � � � 0.9921

tanh a2.3452 	
1.96122
b � � � tanh a2.3452 �

1.96122
b

t0 �
r1n 	 221 	 r2

�
0.981812311 	 0.9640

� 24.8

11-55. The final test and exam averages for 20 randomly
selected students taking a course in engineering statistics and a
course in operations research follow. Assume that the final av-
erages are jointly normally distributed.
(a) Find the regression line relating the statistics final average

to the OR final average.
(b) Test for significance of regression using � � 0.05.

Statistics 86 75 69 75 90

OR 80 81 75 81 92

Statistics 94 83 86 71 65

OR 95 80 81 76 72

Statistics 84 71 62 90 83

OR 85 72 65 93 81

Statistics 75 71 76 84 97

OR 70 73 72 80 98

(c) Estimate the correlation coefficient.
(d) Test the hypothesis that � � 0, using � � 0.05.
(e) Test the hypothesis that � � 0.5, using � � 0.05.
(f) Construct a 95% confidence interval for the correlation

coefficient.

11-56. The weight and systolic blood pressure of 26 ran-
domly selected males in the age group 25 to 30 are shown in
the following table. Assume that weight and blood pressure
are jointly normally distributed.
(a) Find a regression line relating systolic blood pressure to

weight.
(b) Test for significance of regression using � � 0.05.

(c) Estimate the correlation coefficient.
(d) Test the hypothesis that � � 0, using � � 0.05.
(e) Test the hypothesis that � � 0.6, using � � 0.05.
(f) Construct a 95% confidence interval for the correlation

coefficient.

11-57. Consider the NFL data introduced in Exercise 11-4.
(a) Estimate the correlation coefficient between the number of

games won and the yards rushing by the opponents.
(b) Test the hypothesis H0: � � 0 versus H1: � � 0 using 

� � 0.05. What is the P-value for this test?
(c) Construct a 95% confidence interval for �.
(d) Test the hypothesis H0: � � 	0.7 versus H1: � � 	0.7

using � � 0.05. Find the P-value for this test.

Systolic
Subject Weight BP

1 165 130

2 167 133

3 180 150

4 155 128

5 212 151

6 175 146

7 190 150

8 210 140

9 200 148

10 149 125

11 158 133

12 169 135

13 170 150

Systolic
Subject Weight BP

14 172 153

15 159 128

16 168 132

17 174 149

18 183 158

19 215 150

20 195 163

21 180 156

22 143 124

23 240 170

24 235 165

25 192 160

26 187 159
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406 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

11-58. Show that the t-statistic in Equation 11-46 for testing
H0: � � 0 is identical to the t-statistic for testing H0: �1 � 0.

11-59. A random sample of 50 observations was made on
the diameter of spot welds and the corresponding weld shear
strength.
(a) Given that r � 0.62, test the hypothesis that � � 0, using

� � 0.01. What is the P-value for this test?
(b) Find a 99% confidence interval for �.
(c) Based on the confidence interval in part (b), can you con-

clude that � � 0.5 at the 0.01 level of significance?

11-60. Suppose that a random sample of 10,000 (X, Y )
pairs yielded a sample correlation coefficient of r � 0.02.
(a) What is the conclusion that you would reach if you tested

H0: � � 0 using � � 0.05? What is the P-value for this test?
(b) Comment on the practical significance versus the statisti-

cal significance of your answer.

11-61. The following data gave X � the water content of
snow on April 1 and Y � the yield from April to July 
(in inches) on the Snake River watershed in Wyoming for
1919 to 1935. (The data were taken from an article in
Research Notes, Vol. 61, 1950, Pacific Northwest Forest
Range Experiment Station, Oregon)

(a) Draw a scatter diagram of these data. Does a straight-line
relationship seem plausible?

(b) Fit a simple linear regression model to these data.
(c) Test for significance of regression using � � 0.05. What

is the P-value for this test?
(d) Find a 95% confidence interval estimate on the slope.
(e) Test the hypothesis H0: �0 � 0 versus H1: �0 � 0 using 

� � 0.05. What conclusions can you draw?

11-65. The strength of paper used in the manufacture of
cardboard boxes ( y) is related to the percentage of hardwood
concentration in the original pulp (x). Under controlled condi-
tions, a pilot plant manufactures 16 samples, each from a dif-
ferent batch of pulp, and measures the tensile strength. The
data are shown in the table that follows:

(a) Fit a simple linear regression model to the data.
(b) Test for significance of regression using � � 0.05.
(c) Construct a 90% confidence interval on the slope �1.
(d) Construct a 90% confidence interval on the intercept �0.
(e) Construct a 95% confidence interval on the mean strength

at x � 2.5.
(f) Analyze the residuals and comment on model adequacy.

(c) Test the hypothesis H0: � � 0.8 versus H1: � � 0.8, using
� � 0.05. Find the P-value for this test.

Supplemental Exercises

11-63. Show that, for the simple linear regression model,
the following statements are true:

(a) (b)

(c)

11-64. An article in the IEEE Transactions on
Instrumentation and Measurement (“Direct, Fast, and
Accurate Measurement of VT and K of MOS Transistor Using
VT-Sift Circuit,” Vol. 40, 1991, pp. 951–955) described the
use of a simple linear regression model to express drain cur-
rent y (in milliamperes) as a function of ground-to-source
voltage x (in volts). The data are as follows:

1
n  a

n

i�1
 ŷi � y

a
n

i�1
1 yi 	 ŷi2 xi � 0a

n

i�1
1 yi 	 ŷi2 � 0

y x y x

0.734 1.1 1.50 1.6

0.886 1.2 1.66 1.7

1.04 1.3 1.81 1.8

1.19 1.4 1.97 1.9

1.35 1.5 2.12 2.0

(a) Estimate the correlation between Y and X.
(b) Test the hypothesis that � � 0, using � � 0.05.
(c) Fit a simple linear regression model and test for signifi-

cance of regression using � � 0.05. What conclusions
can you draw? How is the test for significance of regres-
sion related to the test on � in part (b)?

(d) Test the hypothesis H0: �0 � 0 versus H1: �0 � 0 and
draw conclusions. Use � � 0.05.

(e) Analyze the residuals and comment on model adequacy.

11-62. A random sample of n � 25 observations was made
on the time to failure of an electronic component and the tem-
perature in the application environment in which the compo-
nent was used.
(a) Given that r � 0.83, test the hypothesis that � � 0, using

� � 0.05. What is the P-value for this test?
(b) Find a 95% confidence interval on �.

x y x y

23.1 10.5 37.9 22.8

32.8 16.7 30.5 14.1

31.8 18.2 25.1 12.9

32.0 17.0 12.4 8.8

30.4 16.3 35.1 17.4

24.0 10.5 31.5 14.9

39.5 23.1 21.1 10.5

24.2 12.4 27.6 16.1

52.5 24.9
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11-11 CORRELATION 407

11-66. The vapor pressure of water at various temperatures
follows:

11-68. Consider the following data. Suppose that the rela-
tionship between Y and x is hypothesized to be Y � (�0 �
�1x � �)	1. Fit an appropriate model to the data. Does the as-
sumed model form seem reasonable?

Observation Vapor pressure
Number, i Temperature (K) (mm Hg)

1 273 4.6
2 283 9.2
3 293 17.5
4 303 31.8
5 313 55.3
6 323 92.5
7 333 149.4
8 343 233.7
9 353 355.1

10 363 525.8
11 373 760.0

(a) Draw a scatter diagram of these data. What type of rela-
tionship seems appropriate in relating y to x?

(b) Fit a simple linear regression model to these data.
(c) Test for significance of regression using � � 0.05. What

conclusions can you draw?
(d) Plot the residuals from the simple linear regression model

versus . What do you conclude about model adequacy?

(e) The Clausis-Clapeyron equation states that ln
where is the vapor pressure of water. Repeat parts 
(a)–(d ). using an appropriate transformation.

11-67. An electric utility is interested in developing a model
relating peak hour demand ( y in kilowatts) to total monthly en-
ergy usage during the month (x, in kilowatt hours). Data for 50
residential customers are shown in the following table.
(a) Draw a scatter diagram of y versus x.
(b) Fit the simple linear regression model.
(c) Test for significance of regression using � � 0.05.
(d) Plot the residuals versus and comment on the underly-

ing regression assumptions. Specifically, does it seem that
the equality of variance assumption is satisfied?

(e) Find a simple linear regression model using as the
response. Does this transformation on y stabilize the in-
equality of variance problem noted in part (d) above?

1y

ŷi

Pv

1Pv2�	   
1
T ,

ŷi

Customer x y Customer x y

1 679 0.79 26 1434 0.31
2 292 0.44 27 837 4.20
3 1012 0.56 28 1748 4.88
4 493 0.79 29 1381 3.48
5 582 2.70 30 1428 7.58
6 1156 3.64 31 1255 2.63
7 997 4.73 32 1777 4.99
8 2189 9.50 33 370 0.59
9 1097 5.34 34 2316 8.19

10 2078 6.85 35 1130 4.79
11 1818 5.84 36 463 0.51
12 1700 5.21 37 770 1.74
13 747 3.25 38 724 4.10
14 2030 4.43 39 808 3.94
15 1643 3.16 40 790 0.96
16 414 0.50 41 783 3.29
17 354 0.17 42 406 0.44
18 1276 1.88 43 1242 3.24
19 745 0.77 44 658 2.14
20 795 3.70 45 1746 5.71
21 540 0.56 46 895 4.12
22 874 1.56 47 1114 1.90
23 1543 5.28 48 413 0.51
24 1029 0.64 49 1787 8.33
25 710 4.00 50 3560 14.94

x 10 15 18 12

y 0.1 0.13 0.09 0.15

x 9 8 11 6

y 0.20 0.21 0.18 0.24

11-69. Consider the weight and blood pressure data in
Exercise 11-56. Fit a no-intercept model to the data, and com-
pare it to the model obtained in Exercise 11-56. Which model
is superior?

11-70. The following data, adapted from Montgomery,
Peck, and Vining (2001), present the number of certified men-
tal defectives per 10,000 of estimated population in the United
Kingdom ( y) and the number of radio receiver licenses issued
(x) by the BBC (in millions) for the years 1924 through 1937.
Fit a regression model relating y and x. Comment on the
model. Specifically, does the existence of a strong correlation
imply a cause-and-effect relationship?

y 101.4 117.4 117.1 106.2

x 1.0 1.5 1.5 1.5

y 131.9 146.9 146.8 133.9

x 2.0 2.0 2.2 2.4

y 111.0 123.0 125.1 145.2

x 2.5 2.5 2.8 2.8

y 134.3 144.5 143.7 146.9

x 3.0 3.0 3.2 3.3
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408 CHAPTER 11 SIMPLE LINEAR REGRESSION AND CORRELATION

(a) Construct a scatter diagram of the data.
(b) Fit a simple linear regression model to the data. Test for

significance of regression.
(c) Find a 95% CI on the slope 
(d) Analyze the residuals and comment on model adequacy.

11-72. An article in the Journal of Applied Polymer Science
(Vol. 56, pp. 471–476, 1995) studied the effect of the mole
ratio of sebacic acid on the intrinsic viscosity of copolyesters.
The data follow:

�1.

11-73. Suppose that we have n pairs of observations (xi, yi)
such that the sample correlation coefficient r is unity (approx-
imately). Now let zi � y2

i and consider the sample correlation
coefficient for the n-pairs of data (xi, zi). Will this sample cor-
relation coefficient be approximately unity? Explain why or
why not.

11-74. The grams of solids removed from a material ( y) is
thought to be related to the drying time. Ten observations
obtained from an experimental study follow:

(a) Construct a scatter diagram for these data.
(b) Fit a simple linear regression model.
(c) Test for significance of regression.
(d) Based on these data, what is your estimate of the mean

grams of solids removed at 4.25 hours? Find a 95% confi-
dence interval on the mean.

(e) Analyze the residuals and comment on model adequacy.

11-75. Two different methods can be used for measuring
the temperature of the solution in a Hall cell used in aluminum
smelting, a thermocouples implanted in the cell and an indi-
rect measurement produced from an IR device. The indirect
method is preferable became the thermocouples are eventually
destroyed by the solution. Consider the following 10 measure-
ments:

Year Days Index Year Days Index

1976 91 16.7 1984 81 18.0

1977 105 17.1 1985 65 17.2

1978 106 18.2 1986 61 16.9

1979 108 18.1 1987 48 17.1

1980 88 17.2 1988 61 18.2

1981 91 18.2 1989 43 17.3

1982 58 16.0 1990 33 17.5

1983 82 17.2 1991 36 16.6

Year y x Year y x

1924 8 1.350 1931 16 4.620

1925 8 1.960 1932 18 5.497

1926 9 2.270 1933 19 6.260

1927 10 2.483 1934 20 7.012

1928 11 2.730 1935 21 7.618

1929 11 3.091 1936 22 8.131

1930 12 3.674 1937 23 8.593

11-71. An article in Air and Waste (“Update on Ozone
Trends in California’s South Coast Air Basin,” Vol. 43, 1993)
studied the ozone levels on the South Coast air basin of
California for the years 1976–1991. The author believes that the
number of days that the ozone level exceeds 0.20 parts per mil-
lion depends on the seasonal meteorological index (the seasonal
average 850 millibar temperature). The data follow:

Mole ratio
x 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3

Viscosity
y 0.45 0.20 0.34 0.58 0.70 0.57 0.55 0.44

(a) Construct a scatter diagram of the data.
(b) Fit a simple linear repression module.
(c) Test for significance of regression. Calculate R2 for the

model.
(d) Analyze the residuals and comment on model adequacy.

y 4.3 1.5 1.8 4.9 4.2 4.8 5.8 6.2 7.0 7.9

x 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

Thermocouple 921 935 916 920 940

IR 918 934 924 921 945

Thermocouple 936 925 940 933 927

IR 930 919 943 932 935

(a) Construct a scatter diagram for these data, letting x �
thermocouple measurement and y � IR measurement.

(b) Fit a simple linear regression model.
(c) Test for significance a regression and calculate R2. What

conclusions can you draw?
(d) Is there evidence to support a claim that both

devices produce equivalent temperature measurements?
Formulate and test an appropriate hypothesis to support
this claim.

(e) Analyze the residuals and comment on model adequacy.
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11-11 CORRELATION 409

IMPORTANT TERMS AND CONCEPTS

In the E-book, click on any
term or concept below to
go to that subject.

Analysis of variance
test in regression

Confidence interval on
mean response

Correlation coefficient
Empirical models

Confidence intervals on
model parameters

Least squares estimation
of regression model 
parameters

Model adequacy 
checking

Prediction interval on a
future observation

Residual plots
Residuals
Scatter diagram
Significance of 

regression
Statistical tests on

model parameters
Transformations

CD MATERIAL
Lack of fit test
Logistic regression

MIND-EXPANDING EXERCISES

11-76. Consider the simple linear regression model 
Y � �0 � �1x � �, with E(�) � 0, V(�) � �2, and the
errors � uncorrelated.
(a) Show that cov
(b) Show that cov .

11-77. Consider the simple linear regression model 
Y � �0 � �1x � �, with E(�) � 0, V(�) � �2, and the
errors � uncorrelated.
(a) Show that E( ) � E(MSE) � �2.
(b) Show that E(MSR) � �2 � �1

2Sx x.

11-78. Suppose that we have assumed the straight-line
regression model

but the response is affected by a second variable x2 such
that the true regression function is

Is the estimator of the slope in the simple linear regres-
sion model unbiased?

11-79. Suppose that we are fitting a line and we wish
to make the variance of the regression coefficient as
small as possible. Where should the observations xi, 
i � 1, 2, p , n, be taken so as to minimize V( )? Discuss
the practical implications of this allocation of the xi.

11-80. Weighted Least Squares. Suppose that we
are fitting the line Y � �0 � �1x � �, but the variance
of Y depends on the level of x; that is,

where the wi are constants, often called weights. Show
that for an objective function in whole each squared
residual is multiplied by the reciprocal of the variance of
the corresponding observation, the resulting weighted
least squares normal equations are

Find the solution to these normal equations. The solutions
are weighted least squares estimators of �0 and �1.

11-81. Consider a situation where both Y and X are
random variables. Let sx and sy be the sample standard
deviations of the observed x’s and y’s, respectively.
Show that an alternative expression for the fitted simple
linear regression model is

11-82. Suppose that we are interested in fitting a
simple linear regression model Y � �0 � �1x � �,
where the intercept, �0, is known.

(a) Find the least squares estimator of �1.
(b) What is the variance of the estimator of the slope in

part (a)?
(c) Find an expression for a 100(1 	 �)% confidence

interval for the slope �1. Is this interval longer than
the corresponding interval for the case where both
the intercept and slope are unknown? Justify your
answer.

ŷ � y � r 
sy

sx
 1x 	 x 2

ŷ � �̂0 � �̂1x

�̂0a
n

i�1
wixi � �̂1a

n

i�1
wixi

2 � a
n

i�1
wixi 

yi

 �̂0a
n

i�1
wi � �̂1a

n

i�1
wixi � a

n

i�1
wi 

yi

V1Yi 0  xi2 � �2
i �

�2

wi
  i � 1, 2, p , n

�̂1

�̂1

E1Y 2 � �0 � �1x1 � �2x2

Y � �0 � �1x1 � �

�̂2

1Y, �̂12 � 0
1�̂0, �̂12 � 	x�2
Sx x.
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11-4 SOME COMMENTS ON USES OF REGRESSION (CD ONLY)

Historical Note
Sir Francis Galton first used the term regression analysis in a study of the heights of fathers (x)
and sons ( y). Galton fit a least squares line and used it to predict the son’s height from the
fathers height. He found that if a father’s height was above average, the son’s height would also
be above average, but not by as much as the father’s height was. A similar effect was observed
for short heights. That is, the son’s height “regressed” toward the average. Consequently,
Galton referred to the least squares line as a regression line.

Abuses of Regression.
Regression is widely used and frequently misused; several common abuses of regression are
briefly mentioned here. Care should be taken in selecting variables with which to construct re-
gression equations and in determining the form of the model. It is possible to develop statisti-
cally significant relationships among variables that are completely unrelated in a causal sense.
For example, we might attempt to relate the shear strength of spot welds with the number of
empty parking spaces in the visitor parking lot. A straight line may even appear to provide a
good fit to the data, but the relationship is an unreasonable one on which to rely. You can’t
increase the weld strength by blocking off parking spaces. A strong observed association be-
tween variables does not necessarily imply that a causal relationship exists between those
variables. This type of effect is encountered fairly often in retrospective data analysis, and
even in observational studies. Designed experiments are the only way to determine cause-
and-effect relationships.

Regression relationships are valid only for values of the regressor variable within the
range of the original data. The linear relationship that we have tentatively assumed may be
valid over the original range of x, but it may be unlikely to remain so as we extrapolate—that
is, if we use values of x beyond that range. In other words, as we move beyond the range of
values of x for which data were collected, we become less certain about the validity of the
assumed model. Regression models are not necessarily valid for extrapolation purposes.

Now this does not mean don’t ever extrapolate. There are many problem situations in
science and engineering where extrapolation of a regression model is the only way to even
approach the problem. However, there is a strong warning to be careful. A modest extrapola-
tion may be perfectly all right in many cases, but a large extrapolation will almost never
produce acceptable results.

11-8.3 Lack-of-Fit Test (CD Only)

Regression models are often fit to data to provide an empirical model when the true relation-
ship between the variables Y and x is unknown. Naturally, we would like to know whether the
order of the model tentatively assumed is correct. This section describes a test for the validity
of this assumption.

The danger of using a regression model that is a poor approximation of the true functional
relationship is illustrated in Fig. S11-1. Obviously, a polynomial of degree two or greater in x
should have been used in this situation.

We present a test for the “goodness of fit” of the regression model. Specifically, the hy-
potheses we wish to test are

H0: The simple linear regression model is correct.

H1: The simple linear regression model is not correct.

11-1
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The test involves partitioning the error or residual sum of squares into the following
components:

(S11-1)

where SSPE is the sum of squares attributable to pure error, and SSLOF is the sum of squares at-
tributable to the lack of fit of the model. To compute SSPE, we must have repeated observations
on the response Y for at least one level of x. Suppose we have n total observations such that

Note that there are m distinct levels of x. The contribution to the pure-error sum of squares at
x1 (say) would be

(S11-2)

where represents the average of all n1 repeat observations on the response y at x1. The total sum
of squares for pure error would be obtained by summing Equation S11-2 over all levels of x as

(S11-3)

There are degrees of freedom associated with the pure-error
sum of squares. The sum of squares for lack of fit is simply

(S11-4)

with n � 2 � npe � m � 2 degrees of freedom. The test statistic for lack of fit would then be

(S11-5)

and we would reject the hypothesis that the model adequately fits the data if f0 � f�,m�2,n�m.

F0 �
SSLOF� 1m � 22
SSPE� 1n � m2 �

MSLOF

MSPE

SSLOF � SSE � SSPE

npe � gm
i�1 1ni � 12 � n � m

SSPE � a
m

i�1
a
ni

u�1
1 yiu � yi22

y1

a
n1

u�1
 1 y1u � y122

y11, y12, p , y1n1
repeated observations at x1

y21, y22, p , y2n2
repeated observations at x2

#
#
#

ym1, ym2, p , ymnm
repeated observations at xm

SSE � SSPE � SSLOF

11-2

Figure S11-1 A 
regression model 
displaying lack of fit. x

y

y =   0 +   1x^^ ��̂
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This test procedure may be easily introduced into the analysis of variance conducted for
the significance of regression. If the null hypothesis of model adequacy is rejected, the model
must be abandoned and attempts must be made to find a more appropriate model. If H0 is not
rejected, there is no apparent reason to doubt the adequacy of the model, and MSPE and MSLOF

are often combined to estimate �2.

EXAMPLE S11-1 Consider the data on two variables y and x shown below. Fit a simple linear regression model
and test for lack of fit, using � � 0.05.

x y x y

1.0 2.3, 1.8 5.6 3.5, 2.8, 2.1
2.0 2.8 6.0 3.4, 3.2
3.3 1.8, 3.7 6.5 3.4
4.0 2.6, 2.6, 2.2 6.9 5.0
5.0 2.0

The regression model is � 1.697 � 0.259x, and the regression sum of squares is SSR � 3.4930.
The pure-error sum of squares is computed as follows:

ŷ

11-3

Level of x Degrees of Freedom

1.0 0.1250 1
3.3 1.8050 1
4.0 0.0166 2
5.6 0.9800 2
6.0 0.0200 1

Total 3.0366 7

a
ni

u�1
1 yiu � yi22

The analysis of variance is summarized in Table S11-1. Since the lack-of-fit F-statistic is
f0 � 1.42, which has a P-value of P � 0.3276, we cannot reject the hypothesis that the tentative
model adequately describes the data. We will pool lack-of-fit and pure-error mean squares to form
the residual mean square that is the denominator mean square in the test for significance of
regression. In addition, since the P-value for the statistic f0 � 6.66 with 1 and 14 degrees of free-
dom associated with significance of regression is P � 0.0216, we conclude that 	1 
 0.

In fitting a regression model to experimental data, a good practice is to use the lowest
degree model that adequately describes the data. The lack-of-fit test may be useful in this

Table S11-1 Analysis of Variance for Example S11-1

Source of Sum of Degrees of Mean
Variation Squares Freedom Square f0 P-value

Regression 3.4930 1 3.4930 6.66 0.0218
Residual 7.3372 14 0.5241

(Lack of fit) 4.3005 7 0.6144 1.42 0.3276
(Pure error) 3.0366 7 0.4338

Total 10.8300 15
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respect. However, it is always possible to fit a polynomial of degree n � 1 to n data points,
and the experimenter should not consider using a model that is “saturated”—that is, that has
very nearly as many independent variables as observations on y.

11-10 MORE ABOUT TRANSFORMATIONS (CD ONLY)

An Example
As noted earlier in Section 11-9, transformations can be very useful in many situations where
the true relationship between the response Y and the regressor x is not well approximated by a
straight line. The utility of a transformation is illustrated in the following example.

EXAMPLE S11-2 A research engineer is investigating the use of a windmill to generate electricity and has col-
lected data on the DC output from this windmill and the corresponding wind velocity. The
data are plotted in Figure S11-2 and listed in Table S11-2.

Inspection of the scatter diagram indicates that the relationship between DC output Y and
wind velocity (x) may be nonlinear. However, we initially fit a straight-line model to the data.
The regression model is

ŷ � 0.1309 � 0.2411 x

11-4
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Figure S11-2 Plot of
DC output y versus
wind velocity x for the
windmill data.
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Figure S11-3 Plot of
residuals ei versus fit-
ted values for the
windmill data.
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11-5

Table S11-2 Observed Values yi and Regressor Variable xi for
Example S11-2

Observation Wind Velocity DC Output,
Number, i (mph), xi yi

1 5.00 1.582
2 6.00 1.822
3 3.40 1.057
4 2.70 0.500
5 10.00 2.236
6 9.70 2.386
7 9.55 2.294
8 3.05 0.558
9 8.15 2.166

10 6.20 1.866
11 2.90 0.653
12 6.35 1.930
13 4.60 1.562
14 5.80 1.737
15 7.40 2.088
16 3.60 1.137
17 7.85 2.179
18 8.80 2.112
19 7.00 1.800
20 5.45 1.501
21 9.10 2.303
22 10.20 2.310
23 4.10 1.194
24 3.95 1.144
25 2.45 0.123

The summary statistics for this model are R2 � 0.8745, and F0 �
160.26 (the P value is �0.0001).

A plot of the residuals versus is shown in Figure S11-3. This residual plot indicates
model inadequacy and implies that the linear relationship has not captured all of the infor-
mation in the wind speed variable. Note that the curvature that was apparent in the scatter
diagram of Figure S11-2 is greatly amplified in the residual plots. Clearly some other model
form must be considered.

We might initially consider using a quadratic model such as

to account for the apparent curvature. However, the scatter diagram Figure S11-2 suggests that
as wind speed increases, DC output approaches an upper limit of approximately 2.5. This is
also consistent with the theory of windmill operation. Since the quadratic model will eventu-
ally bend downward as wind speed increases, it would not be appropriate for these data. A more
reasonable model for the windmill data that incorporates an upper asymptote would be

y � 	0 � 	1 
 
a1

xb � �

y � 	0 � 	1 x � 	2 
 
x2 � �

ŷi

MSE � �̂2 � 0.0557
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Figure S11-4 is a scatter diagram with the transformed variable . This plot appears lin-
ear, indicating that the reciprocal transformation is appropriate. The fitted regression model is

The summary statistics for this model are R2 � 0.9800, , and F0 � 1128.43
(the P value is �0.0001).

A plot of the residuals from the transformed model versus is shown in Figure S11-5.
This plot does not reveal any serious problem with inequality of variance. The normal proba-
bility plot, shown in Figure S11-6, gives a mild indication that the errors come from a distri-
bution with heavier tails than the normal (notice the slight upward and downward curve at the
extremes). This normal probability plot has the z-score value plotted on the horizontal axis.
Since there is no strong signal of model inadequacy, we conclude that the transformed model
is satisfactory.

Logistic Regression
Linear regression often works very well when the response variable is quantitative. We now
consider the situation where the response variable takes on only two possible values, 0 and 1.
These could be arbitrary assignments resulting from observing a qualitative response. For

ŷ

MSE � �̂2 � 0.0089

ŷ � 2.9789 � 6.9345 x¿

x¿ � 1�x

11-6
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example, the response could be the outcome of a functional electrical test on a semiconductor
device for which the results are either a “success,” which means the device works properly, or
a “failure,” which could be due to a short, an open, or some other functional problem.

Suppose that the model has the form

(S11-6)

and the response variable Yi takes on the values either 0 or 1. We will assume that the response
variable Yi is a Bernoulli random variable with probability distribution as follows:

Yi � 	0 � 	1xi � �i

Now since the expected value of the response variable is

This implies that

This means that the expected response given by the response function E(Yi) � 	0 � 	1xi is
just the probability that the response variable takes on the value 1.

There are some substantive problems with the regression model in Equation S11-6. First,
note that if the response is binary, the error terms �i can only take on two values, namely,

Consequently, the errors in this model cannot possibly be normal. Second, the error variance
is not constant, since

Notice that this last expression is just

since . This indicates that the variance of the observations (which is
the same as the variance of the errors because � Yi � 
i, and 
i is a constant) is a function
of the mean. Finally, there is a constraint on the response function, because

0 � E 1Yi2 � 
i � 1

�i

E1Yi2 � 	0 � 	1xi � 
i

�2
yi

� E1Yi2 31 � E1Yi2 4

 � 
i11 � 
i2
 � 11 � 
i22
i � 10 � 
i2211 � 
i2

 �2
yi

� E5Yi � E1Yi2 62

 �i � �1	0 � 	1 xi2    when Yi � 0

 �i � 1 � 1	0 � 	1 xi2   when Yi � 1

E 1Yi2 � 	0 � 	1xi � 
i

 � 
i

E 1Yi2 � 1 1
i2 � 0 11 � 
i2
E 1�i2 � 0,

11-7

Yi Probability

1
0 P1 yi � 02 � 1 � 
i

P1 yi � 12 � 
i
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This restriction can cause serious problems with the choice of a linear response function, as
we have initially assumed in Equation S11-6. It would be possible to fit a model to the data for
which the predicted values of the response lie outside the 0, 1 interval.

Generally, when the response variable is binary, there is considerable empirical evidence
indicating that the shape of the response function should be nonlinear. A monotonically
increasing (or decreasing) S-shaped (or reverse S-shaped) function, such as shown in
Figure S11-7, is usually employed. This function is called the logit response function, and has
the form

(S11-7)

or equivalently,

(S11-8)

In logistic regression we assume that E(Y) is related to x by the logit function. It is easy to
show that

(S11-9)

The quantity exp( ) on the right-hand side of Equation S11-9 is called the odds ra-
tio. It has a straightforward interpretation: If the odds ratio is 2 for a particular value of x, it
means that a success is twice as likely as a failure at that value of the regressor x. Notice that
the natural logarithm of the odds ratio is a linear function of the regressor variable. Therefore
the slope is the change in the log odds that results from a one-unit increase in x. This means
that the odds ratio changes by when x increases by one unit.

The parameters in this logistic regression model are usually estimated by the method of
maximum likelihood. For details of the procedure, see Montgomery, Peck, and Vining
(2001). Minitab will fit logistic regression models and provide useful information on the
quality of the fit.

e�1

�1

 �0 � �1x

E1Y 2
1 � E1Y 2 � exp�0��1x

E1Y 2 �
1

1 � exp 3�1�0 � �1x2 4

E1Y 2 �
exp 1�0 � �1x2

1 � exp 1�0 � �1x2
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Figure S11-7 Examples of the logistic response function. (a) (b) ,E1Y 2 � 1� 11 � e�6.0�1.0x2E1Y 2 � 1� 11 � e�6.0�1.0x2,
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O-Ring O-Ring O-Ring 
Temperature Failure Temperature Failure Temperature Failure

53 1 68 0 75 0
56 1 69 0 75 1
57 1 70 0 76 0
63 0 70 1 76 0
66 0 70 1 78 0
67 0 70 1 79 0
67 0 72 0 80 0
67 0 73 0 81 0

Binary Logistic Regression: O-Ring Failure versus Temperature

Link Function: Logit
Response Information

Variable Value Count
O-Ring F 1 7 (Event)

0 17
Total 24

Logistic Regression Table

Odds 95% CI
Predictor Coef SE Coef Z P Ratio Lower Upper
Constant 10.875 5.703 1.91 0.057
Temperat �0.17132 0.08344 �2.05 0.040 0.84 0.72 0.99

Log-Likelihood � �11.515
Test that all slopes are zero: G � 5.944, DF � 1, P-Value � 0.015

We will illustrate logistic regression using the data on launch temperature and O-ring fail-
ure for the 24 space shuttle launches prior to the Challenger disaster of January 1986. There
are six O-rings used on the rocket motor assembly to seal field joints. The table below presents
the launch temperatures. A 1 in the “O-Ring Failure” column indicates that at least one O-ring
failure had occurred on that launch.

The fitted logistic regression model is

The standard error of the slope 	̂1 is se(	̂1) � 0.08344. For large samples, 	̂1 has an  approximate
normal distribution, and so 	̂1�se(	̂1) can be compared to the standard normal distribution to 

ŷ �
1

1 � exp 3�110.875 � 0.17132x2 4

Figure S11-8 is a scatter plot of the data. Note that failures tend to occur at lower temperatures.
The logistic regression model fit to this data from Minitab is shown in the following boxed
display.
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test H0: 	1 � 0. Minitab performs this test. The P-value is 0.04, indicating that temperature
has a significant effect on the probability of O-ring failure. The odds ratio is 0.84, so every one
degree increase in temperature reduces the odds of failure by 0.84. Figure S11-9 shows the
fitted logistic regression model. The sharp increase in the probability of O-ring failure is very
evident in this graph. The actual temperature at the Challenger launch was . This is well
outside the range of other launch temperatures, so our logistic regression model is not likely
to provide highly accurate predictions at that temperature, but it is clear that a launch at 
is almost certainly going to result in O-ring failure.

It is interesting to note that all of these data were available prior to launch. However, en-
gineers were unable to effectively analyze the data and use them to provide a convincing ar-
gument against launching Challenger to NASA managers. Yet a simple regression analysis of
the data would have provided a strong quantitative basis for this argument. This is one of the
more dramatic instances that points out why engineers and scientists need a strong back-
ground in basic statistical techniques.
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Figure S11-8 Scatter plot of O-ring failures 
versus launch temperature for 24 space shuttle
flights.

Figure S11-9 Probability of O-ring failure
versus launch temperature (based on a 
logistic regression model).
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