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INTRODUCTION

Chapter 2 defined the linear regression model as a set of characteristics of the population
that underlies an observed sample of data. There are a number of different approaches
to estimation of the parameters of the model. For a variety of practical and theoretical
reasons that we will explore as we progress through the next several chapters, the
method of least squares has long been the most popular. Moreover, in most cases in
which some other estimation method is found to be preferable, least squares remains
the benchmark approach, and often, the preferred method ultimately amounts to a
modification of least squares. In this chapter, we begin the analysis of this 1mportant set
of results by presenting a useful set of algebraic tools.

3.2 LEAST SQUARES REGRESSION

The unknown parameters of the stochastic relation y; =x]B + ¢; are the objects of
estimation. Itis necessary to distinguish between population quantities, such as g and &;,
and sample estimates of them, denoted b and e;. The population regressionis E[y; | x;] =
x; B, whereas our estimate of E[y; | x;] is denoted

Ji = xb.
The disturbance associated with the ith data point is
=i —x;B. |
For any value of b, we shall estimate ¢; with the residual
e, =y —xb.
From the deﬁnitioné,
yi=xB+e=xb+te.

These equations are summarized for the two variable regression in Figure 3.1.

The population quantity 8 is a vector of unknown parameters of the probability
distribution of y; whose values we hope to estimate with our sample data, (y;,x;),i =
1,...,n. This is a problem of statistical inference. It is instructive, however, to begin by
considering the purely algebraic problem of choosing a vector b so that the fitted line
x;b is close to the data points. The measure of closeness constitutes a fitting criterion.
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a+ Bx

Although numerous candidates have been suggested, the one used most frequently is

least squares.! : :

3.2.1 THE LEAST SQUARES COEFFICIENT VECTOR

The least squares coefficient vector minimizes the sum of squared residuals:

n n
Zefo = Z (i — xjby)?, 3-1)
i=1 i=1

where by denotes the choice for the coefficient vector. In matrix terms, minimizing the

sum of squares in (3-1) requires us to choose by to

Minimizey, S(bo) = ejer = (y — Xby)'(y — Xby). : (3-2)
Expanding this gives
ejeo =Yy — bpX'y — y'Xbg + byX'Xbg 3-3)
or ”
S(by) =¥y — 2y’ Xbg + boX'Xby.
The necessary condition for a minimum is

35(bo)
abg

= —2X"y + 2X'Xby = 0. : (3-9)

'We shall have to establish that the practical approach of fitting the line as closely as possible to the data by
least squares leads to estimates with good statistical properties. This makes intuitive sense and is, indeed, the
case. We shall return to the statistical issues in Chapters 4 and 5. :
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Let b be the solution. Then b satisfies the least squares normal equations,
X'Xb = X'y. (3-5)

If the inverse of X'X exists, which follows from the full rank assumption (Assumption
A2 in Section 2.3}, then the solution is

b= (X'X)'Xy. (3-6)
For this solution to minimize the sum of squares,

32S(b)

ab ob’
must be a positive definite matrix. Let ¢ = ¢/X’Xc for some arbitrary nonzero vector c.
Then

=2X'X

n
g=vv= Z viz, where v = Xec.

i=1

Unless every element of v is zero, g is positive. But if v could be zero, then v would be a
linear combination of the columns of X that equals 0, which contradicts the assumption
that X has full rank. Since ¢ is arbitrary, g is positive for every nonzero ¢, which estab-
lishes that 2X’X is positive definite. Therefore, if X has full rank, then the least squares
solution b is unique and minimizes the sum of squared residuals.

3.2.2 APPLICATION: AN INVESTMENT EQUATION

To illustrate the computations in a multiple regression. we consider an example based
on the macroeconomic data in Data Table F3.1. To estimate an investment equation,
we first convert the investment and GNP series in Table F3.1 to real terms by dividing
them by the CPI, and then scale the two series so that they are measured in trillions of
dollars. The other variables in the regression are a time trend (1, 2, .. .), an interest rate,
and the rate of inflation computed as the percentage change in the CPI. These produce
the data matrices listed in Table 3.1. Consider first a regression of real investment on a
constant, the time trend, and real GNP, which correspond to x1, x,, and x3. (For reasons
to be discussed in Chapter 20, this is probably not a well specified equation for these
macroeconomic variables. Tt will suffice for a simple numerical example, however.)
Inserting the specific variables of the example, we have

bn  + LT +b3G =LY,
hET + TP + b5 TG =% TY,
biZiGi + b TG + LG =%,GY.

A solution can be obtained by first dividing the first equation by n and rearranging it to
obtain

by =Y-bT-bG
=0.20333 — b, x 8 — b3 x 1.2873. 3-7)
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Real Real Interest Inflation

Investment Constant Trend GNP Rate Rate
x) @) (1) G) R) P)
0.161 1 1 1.058 5.16 4.40
0.172 1 2 1.088 5.87 5.15
0.158 1 3 1.086 5.95 5.37
0.173 1 4 1.122 4.88 4.99
0.195 1 5 1.186 4.50 416
0.217 1 6 1.254 6.44 5.75
0.199 1 7 1.246 7.83 8.82
y =0.163 X=1 8 1.232 6.25 931
0.195 1 9 1.298 5.50 5.21
0.231 1 10 1.370 5.46 5.83
0.257 1 11 1.439 7.46 7.40
0.259 1 12 1.479 10.28 8.64
0.225 1 13 1.474 11.77 9.31
0.241 1 14 1.503 13.42 9.44
0.204 1 15 1.475 11.02 5.99

Note: Subsequent results are based on these values. Slightly different results are obtained if the raw data in
Table F3.1 are input to the computer program and transformed internally.

Insert this solution in the second and third equations, and rearrange terms again to yield
a set of two equations:
bySi(T - T) - + byZ(T - T)G — G) = Tu(T - T)(Y; - 1),

3-8
T (T, — TYGi — G) + b3Zi(G; — G)? =TG- G)Y, - Y). 9

This result shows the nature of the solution for the slopes, which can be computed
from the sums of squares and cross products of the deviations of the variables. Letting
lowercase letters indicate variables measured as deviations from the sample means, we
find that the least squares solutions for b, and b; are

E,»tiyiEigiz — X8 YyiXitigi _ 1.6040(0.359609) — 0.066196(9.82) _

= = = —0.0171984,
. b2 Z,tlelglz — (Zigiti)z 280(0.359609) — (982)2
i g ,'Eit-z — ZiLyiXitig 0.066196(280) — 1.6040(9.82
by = BN T MNSAB (250) 082 _ o6s3723.
Eit,' Eigi - (El‘git,‘)z 280(0.359609) — (982)2

With these solutions in hand, the intercept can now be computed using (3-7); by =
— 0.500639.

Suppose that we just regressed investment on the constant and GNP, omitting the
time trend. At least some of the correlation we observe in the data will be explainable
because both investment and real GNP have an obvious time trend. Consider how this
shows up in the regression computation. Denoting by “b,” the slope in the simple,
bivariate regression of variable y on a constant and the variable x, we find that the slope
in this reduced regression would be

by = 280 _ 0184078, (39)
2igf ,
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Now divide both the numerator and denominator in the expression for b; by ;2% g2.
By manipulating it a bit and using the definition of the sample correlation between G
and T,r2 = (X;g:1:)%/(Z; g, ¥;1%), and defining b, and b,, likewise, we obtain

b g[
b = byg bylbfg
Y8t — 2 2
1—rg 11— Ter

=0.653723. (3-10)

(The notation “b,¢,” used on the left-hand side is interpreted to mean the slope in
the regression of y on g “in the presence of ¢.”) The slope in the multiple regression
differs from that in the simple regression by including a correction that accounts for the
influence of the additional variable ¢ on both Y and G. For a striking example of this
effect, in the simple regression of real investment on a time trend, by, = 1.604/280 =
0.0057286, a positive number that reflects the upward trend apparent in the data. But, in
the multiple regression, after we account for the influence of GNP on real investment,
the slope on the time trend is —0.0171984, indicating instead a downward trend. The
general result for a three-variable regression in which xp is a constant term is

by2 — by3bs;

3-11
1-r% G-1D)

bys =
Itis clear from this expression that the magnitudes of by,.3 and b, can be quite different.
They need not even have the same sign.

As afinal observation, note what becomes of by, in (3-10) if rgzt equals zero. The first
term becomes by,, whereas the second becomes zero. (If G and T are not correlated,
then the slope in the regression of G on 7T, by, is zero.) Therefore, we conclude the
following. $

THEOREM 3.1 Orthogonal Regression
If the variables in a multiple regression are not correlated (i.e., are orthogonal),

then the multiple regression slopes are the same as the slopes in the individual
simple regressions.

In practice, you will never actually compute a multiple regression by hand or with a
calculator. For a regression with more than three variables, the tools of matrix algebra
are indispensable (as is a computer). Consider, for example, an enlarged model of
investment that includes—in addition to the constant, time trend, and GNP—an interest
rate and the rate of inflation. Least squares requires the simultaneous solution of five
normal equations. Letting X and y denote the full data matrices shown previously, the
normal equations in (3-5) are

15.000 120.00 19310 11179 99.770| |b; 3.0500
120.000 1240.0 16430 10359 875.60 by 26.004
19310 16430 25218 148.98 131.22 bz =] 3.9926

111.79 10359 148.98 953.86 799.02 by 23.521
99.770  875.60 131.22 799.02 716.67 bs 20.732
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The solution is

b = (X'X) X'y = (—0.50907, —0.01658, 0.67038, —0.002326, —0.00009401)".

3.2.3 ALGEBRAIC ASPECTS OF THE LEAST SQUARES SOLUTION
The normal equations are
X'Xb - X'y=-X'(y—Xb)=-X'e=0. (3-12)

Hence, for every column x; of X, xje = 0. If the first column of X is a column of 1s,
then there are three implications.

1. The least squares residuals sum to zero. This implication follows from xje =i'e =
Eiei =0.

2. The regression hyperplane passes through the point of means of the data. The first
normal equation implies that y = x’b.

3. The mean of the fitted values from the regression equals the mean of the actual
values. This implication follows from point 1 because the fitted values are just
¥ =Xb.

It is important to note that none of these results need hold if the regression does not
contain a constant term.

3.2.4 PROJECTION

The vector of least squares residuals is
<

: e=y— Xb. (3-13)
Inserting the result in (3-6) for b gives
e=y— XXX) 'Xy=(I-XXX)"'X")y =My. (3-14)

The n x n matrix M defined in (3-14) is fundamental in regression analysis. You can
easily show that M is both symmetric (M = M’) and idempotent (M = M?). In view of
(3-13), we can interpret M as a matrix that produces the vector of least squares residuals
in the regression of y on X when it premultiplies any vector y. (It will be convenient
later on to refer to this matrix as a “residual maker.”) It follows that

MX = 0. (3-15)

One way to interpret this result is that if X is regressed on X, a perfect fit will result and
the residuals will be zero.

Finally, (3-13) implies that y = Xb + e, which is the sample analog to {2-3). (See
Figure 3.1 as well.) The least squares results partition y into two parts, the fitted values
¥ = Xb and the residuals e. [See Section A.3.7, especially (A-54).] Since MX = 0, these
two parts are orthogonal. Now, given (3-13),

y=y—e=(I-My=XXX)'Xy=Py. (3-16)

The matrix P, which is also symmetric and idempotent, is a projection matrix. It is the
matrix formed from X such that when a vector y is premultiplied by P, the result is
the fitted values in the least squares regression of y on X. This is also the projection of
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the vector y into the column space of X. (See Sections A3.5 and A3.7.) By multiplying
it out, you will find that, like M, P is symmetric and idempotent. Given the earlier results,
it also follows that M and P are orthogonal;

PM=MP =0.
Finally, as might be expected from (3-15)
PX=X.

As a consequence of (3-15) and (3-16), we can see that least squares partitions the
vector y into two orthogonal parts,

y = Py + My = projection + residual.

The result is illustrated in Figure 3.2 for the two variable case. The gray shaded plane is
the column space of X. The projection and residual are the orthogonal dotted rays. We
can also see the Pythagorean theorem at work in the sums of squares,

Yy =yPPy+yMMy
={y+ee

In manipulating equations involving least squares results, the following equivalent
expressions for the sum of squared residuals are often useful:

ee =yMMy =yMy =ye=¢Yy,
e€e=yy-bXXb=yy-bXy=yy-yXb.
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3.3 PARTITIONED REGRESSION AND PARTIAL
REGRESSION

It is common to specify a multiple regression model when, in fact, interest centers on
only one or a subset of the full set of variables. Consider the earnings equation discussed
in Example 2.2. Although we are primarily interested in the association of earnings and
education, age is, of necessity, included in the model. The question we consider here is
what computations are involved in obtaining, in isolation, the coefficients of a subset of
the variables in a multiple regression (for example, the coefficient of education in the
aforementioned regression).
Suppose that the regression involves two sets of variables X; and X;. Thus,

y=Xp+e=Xif + X8, +¢.
What is the algebraic solution for b,? The normal equations are

O XX XX [b]  [Xy
7 ’ - 1 . 3-17
) {szl X5X | by | = | X0y (3-17)

A solution can be obtained by using the partitioned inverse matrix of (A-74). Alterna-
tively, (1) and (2) in (3-17) can be manipulated directly to solve for b,. We first solve
(1) for by:

b = X/ X)) Xy — X|X) X[ Xob, = (X X)X (y ~ Xoby).  (3-18)

This solution states that by is the set of coefficients in the regression of y on X, minus
a correction vector. We digress briefly to examine an important result embedded in
(3-18). Suppose that X| X, = 0. Then, by = (X} X;) !Xy, which is simply the coefficient
vector in the regression of y on X;. The general result, which we have just proved is the
following theorem.

e

THEOREM 3.2 Orthogonal Partitioned Regression

In the multiple linear least squares regression of y on two sets of variables X and
Xy, if the two sets of variables are orthogonal, then the separate coefficient vectors
can be obtained by separate regressions of y on X, alone and y on X; alone.

|

SEoBLEE

Note that Theorem 3.2 encompasses Theorem 3.1.
Now, inserting (3-18) in equation (2) of (3-17) produces

X5 X (X X)) 7' Xy — X5X (X[ X)X, Xob, + X5Xob, = Xy,
After collecting terms, the solution is
by = [X5(0— Xy (X)X0) ™ X))Xo] ™ (X5 (L — Xy (X[ X)) ' X))y]
= MIX) T H(XEMLY). (3-19)

The matrix appearing in the parentheses inside each set of square brackets is the “resid-
ual maker” defined in (3-14), in this case defined for a regression on the columns of X;.
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Thus, M, X, is a matrix of residuals; each column of M; X, is a vector of residuals in the
regression of the corresponding column of X; on the variables in X;. By exploiting the
fact that My, like M, is idempotent, we can rewrite (3-19) as

b, = (X;'X5)"'X5'y", | (3-20)
where
X; = M1X2 and y* = Mly

This result is fundamental in regression analysis.

THEOREM 3.3 Frisch-Waugh Theorem
In the linear least squares regression of vector y on two sets of variables, Xy and

X, the subvector b is the set of coefficients obtained when the residuals from a
regression of y on X, alone are regressed on the set of residuals obtained when
each column of X; is regressed on X;.

This process is commonly called partialing out or netting out the effect of Xj.
For this reason, the coefficients in a multiple regression are often called the partial
regression coefficients. The application of this theorem to the computation of a single
coefficient as suggested at the beginning of this section is detailed in the following:
Consider the regression of y on a set of variables X and an additional variable z. Denote
the coefficients b and c.

Zl el

COROLLARY 3.3.1 Individual Regression Coefficients

The coefficient on z in a multiple regression of y on W = [X, z] is computed as
c=(ZMz) ' (zZMy) = (z*’z*)‘lz*'y* where 2" and y* are the residual vectors from
least squares regressions of z and y on X;z* = Mz and y* = My where M is
defined in (3-14).

Interms of Example 2.2, we could obtain the coefficient on education in the multiple
regression by first regressing earnings and education on age (or age and age squared)
and then using the residuals from these regressions in a simple regression. In a classic
application of this latter observation, Frisch and Waugh (1933) (who are credited with
the result) noted that in a time-series setting, the same results were obtained whether
aregression was fitted with a time-trend variable or the data were first “detrended” by
netting out the effect of time, as noted earlier, and using just the detrended data in a

simple regression.’

ZRecall our earlier investment example.
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As an application of these results, consider the case in which X is i, a column of
1s in the first column of X. The solution for b, in this case will then be the slopes in a
regression with a constant term. The coefficient in a regression of any variable z on i is
[('i]~'i'z = Z, the fitted values are iz, and the residuals are z; — Z. When we apply this to
our previous results, we find the following.

i

COROILLARY 3.3.2 Regression with a Constant Term

The slopes in a multiple regression that contains a constant term are obtained
by transforming the data to deviations from their means and then regressing the
variable y in deviation form on the explanatory variables, also in deviation form.

R

L

i

[We used this result in (3-8).] Having obtained the coefficients on X,, how can we
recover the coefficients on X, (the constant term)? One way is to repeat the exercise
while reversing the roles of X; and X,. But there is an easier way. We have already
solved for b,. Therefore, we can use (3-18) in a solution for by. If X] is just a column of
1s, then the first of these produces the familiar result

bh=y—-Xby—---—xgbk (3-21)

[which is used in (3-7).]

3.4 PARTIAL REGRESSION AND PARTIAL

CORRELATION COEFFICIENTS

The use of multiple regression involves a conceptual experiment that we might not be
able to carry out in practice, the ceteris paribus analysis familiar in economics. To pursue
Example 2.2, a regression equation relating earnings to age and education enables
us to do the conceptual experiment of comparing the earnings of two individuals of
the same age with different education levels, even if the sample contains no such pair
of individuals. 1t is this characteristic of the regression that is implied by the term
partial regression coefficients. The way we obtain this result, as we have seen, is first
to regress income and education on age and then to compute the residuals from this
regression. By construction, age will not have any power in explaining variation in these
residuals. Therefore, any correlation between income and education after this “purging”
is independent of (or after removing the effect of) age.

The same principle can be applied to the correlation between two variables. To
continue our example, to what extent can we assert that this correlation reflects a direct
relationship rather than that both income and education tend, on average, to rise as
individuals become older? To find out, we would use a partial correlation coefficient,
which is computed along the same lines as the partial regression coefficient. In the con-
text of our example, the partial correlation coefficient between income and education,
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controlling for the effect of age, is obtained as follows:

1. y, = the residuals in a regression of income on a constant and age.
2. z, =the residuals in a regression of education on a constant and age.
3. The partial correlation r}, is the simple correlation between y, and z..

This calculation might seem to require a formidable amount of computation. There
is, however, a convenient shortcut. Once the multiple regression is computed, the ¢ ratio
in (4-13) and (4-14) for testing the hypothesis that the coefficient equals zero (e.g., the
last column of Table 4.2) can be used to compute

2

*2 z

= = . 3-22
Tz t2 + degrees of freedom 3-22)

The proof of this less than perfectly intuitive result will be useful to illustrate some
results on partitioned regression and to put into context two very useful results from
least squares algebra. As in Corollary 3.3.1, let W denote the n x (K + 1) regressor
matrix [X, z] and let M = I — X(X’X)~!X". We assume that there is a constant term in
X, so that the vectors of residuals y, = My and z, = Mz will have zero sample means.
The squared partial correlation is

*2 — (z;y*)Z

Y (Zz)(YLYe)
Let ¢ and u denote the coefficient on z and the vector of residuals in the multiple
regression of y on W. The squared ¢ ratio in (3-22) is

C2

v'u o1
T (K1) WW)i i k4

where (W’W)}EHYKJrl isthe (K + 1) (last) diagonal element of (W’W)~!, The partitioned
inverse formula in (A-74) can be applied to the matrix [X, z|'[X, z]. This matrix appears
in (3-17), with X; = X and X, = z. The result is the inverse matrix that appears in (3-19)
and (3-20), which implies the first important result.

2 _
=

3

S

THEOREM 3.4 Diagonal Elements of the Inverse

of a Moment Matrix
IfW = [X, z], then the last diagonal element of (W'W)~lis (zMz)™! = (z_z,) 7!,
wherez, = Mzand M =1 - X(X'X)"'X'.

o

R

(Note that this result generalizes the development in Section A.2.8 where X is only
the constant term.) If we now use Corollary 3.3.1 and Theorem 3.4 for ¢, after some
manipulation, we obtain

2 2 %2
t; (Z; \D)) Fyz

Zrn—-K+D] @y +WwEZz) r+ww/yy.’
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where
u=y—Xd-zc

is the vector of residuals when y is regressed on X and z. Note that unless X'z = 0,
d will not equal b = (X’X)"'X’y. (See Section 8.2.1.) Moreover, unless ¢ = 0, u will not
equal e = y — Xb. Now we have shown in Corollary 3.3.1 that ¢ = (zz.)"'(z,y.). We
also have, from (3-18), that the coefficients on X in the regression of y on W = [X, z]
are :

d=XX)"'X'(y—2zc) =b — (X'X)"'X'zc.
So, inserting this expression for d in that for u gives
u=y-Xb+XXX)"'Xz—zc=e—-Mzc =e—zc.
Now
vu=e'e+c(z.z,) —2e.

But e = My =y, and z_e = z,y, = ¢(Zz,). Inserting this in w'u gives our second useful
result.

THEOREM 3.5 Change in the Sum of Squares When a Variable Is
Added to a Regression

If €'e is the sum of squared residuals when y is regressed on X and w'u is the sum

of squared residuals when 'y is regressed on X and z, then

wu=ee—ci(zz,) < e, (3-23)

where ¢ is the coefficient on 1z in the long regression and z,=
[I — X(X'X)"1X"]z is the vector of residuals when z is regressed on X.

Returning to our derivation, we note that e’e = y'y, and ¢?(z.z,) = (Z.y+)?/ (Z.z.).
Therefore, (W'n)/(y,y.) =1 — r;f and we have our result.
Example 3.1 Partial Correlations
For the data the application in Section 3.2.2, the simple correlations between investment and
the regressors r, and the partial correlations r;, between investment and the four regressors
(given the other variables) are listed in Table 3.2. As is clear from the table, there is no
necessary relation between the simple and partial correlation coefficients. One thing worth

Simple Partial

Correlation Correlation
Time 0.7496 —0.9360
GNP 0.8632 0.9680
Interest 0.5871 —0.5167

Inflation 0.4777 —0.0221
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noting is the signs of the coefficients. The signs of the partial correlation coefficients are the
same as the signs of the respective regression coefficients, three of which are negative. All
the simple correlation coefficients are positive because of the latent “effect” of time.

3.5 GOODNESS OF FIT AND THE ANALYSIS
OF VARIANCE

The original fitting criterion, the sum of squared residuals, suggests a measure of the
fit of the regression line to the data. However, as can easily be verified, the sum of
squared residuals can be scaled arbitrarily just by multiplying all the values of y by the
desired scale factor. Since the fitted values of the regression are based on the values
of x, we might ask instead whether variation in x is a good predictor of variation in y.
Figure 3.3 shows three possible cases for a simple linear regression model. The measure
of fit described here embodies both the fitting criterion and the covariation of y and x.

Variation of the dependent variable is defined in terms of deviations from its mean,
(i — ¥). The total variation in y is the sum of squared deviations:

—_
wh
=)
T T T T T

i
=}
=
w

T
=

=150 o e Ly b D b e ey

8 10 12 14 16 18 20 22
No Fit
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In terms of the regression equation, we may write the full set of observations as
y=Xb+e=§+e. (3-24)
For an individual observation, we have
yi=9; +e =xb+e.

If the regression contains a constant term, then the residuals will sum to zero and the
mean of the predicted values of y; will equal the mean of the actual values. Subtracting
y from both sides and using this result and result 2 in Section 3.2.3 gives

Vi—y=9—7+e=(x—xX'b+e.
Figure 3.4 illustrates the computation for the two-variable regression. Intuitively, the
regression would appear to fit well if the deviations of y from its mean are more largely
accounted for by deviations of x from its mean than by the residuals. Since both terms in

this decomposition sum to zero, to quantify this fit, we use the sums of squares instead.
For the full set of observations, we have

M’y = M"Xb + MPe,

where M is the n x n idempotent matrix that transforms observations into deviations
from sample means. (See Section A.2.8.) The column of M"X corresponding to the
constant term is zero, and, since the residuals already have mean zero, M’e = e. Then,
since M°X = €'X = 0, the total sum of squares is

yM'y = bX'M’Xb + ¢e.

Write this as total sum of squares = regression sum of squares + error sum of squares,
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or
SST =SSR + SSE. (3-25)

(Note that this is precisely the partitioning that appears at the end of Section 3.2.4.)

We can now obtain a measure of how well the regression line fits the data by
using the

. . .. SSR bX'M°Xb e'e
coefficient of determination: SST = yMiy 1 Y My’ (3-20)

The coefficient of determination is denoted R%. As we have shown, it must be between
0 and 1, and it measures the proportion of the total variation in y that is accounted for
by variation in the regressors. It equals zero if the regression is a horizontal line, that
is, if all the elements of b except the constant term are zero. In this case, the predicted
values of y are always j, so deviations of x from its mean do not translate into different
predictions for y. As such, x has no explanatory power. The other extreme, R®=1,
occurs if the values of x and y all liec in the same hyperplane (on a straight line for a
two variable regression) so that the residuals are all zero. If all the values of y; lie on a
vertical line, then R? has no meaning and cannot be computed.

Regression analysis is often used for forecasting. In this case, we are interested in
how well the regression model predicts movements in the dependent variable. With this
in mind, an equivalent way to compute R’ is also useful. First

; b’X'M’Xb = M3,
but § = Xb,y = § +e,M’e = e, and X'e = 0, so ¥M’§ = §y'M’y. Multiply R* =
¥M'y/yM'y = yM'y/yM% by 1 = ¢¥M'y/§’ MOy to obtain
_ B0 -»@ - PP
[ZiCyi = PPI[Z (9 = 71
which is the squared correlation between the observed values of y and the predictions
produced by the estimated regression equation.

3-27)

Example 3.2 Fit of a Consumption Function

The data plotted in Figure 2.1 are listed in Appendix Table F2.1. For these data, where y is
C and x is X, we have y = 273.2727, X = 323.2727, S,, = 12,618.182, 5, = 12,300.182,
S,y = 8,423.182, so SST = 12,618.182,b = 8,423.182/12,300.182 = 0.6848014, SSR =
b2 S« = 5,768.2068, and SSE = SST—SSR = 6,849.975. Then R? = %S, /SST = 0.457135.
As can be seen in Figure 2.1, this is a moderate fit, although it is not particularly good
for aggregate time-series data. On the other hand, it is clear that not accounting for the
anomalous wartime data has degraded the fit of the model. This value is the R? for the model
indicated by the dotted line in the figure. By simply omitting the years 1942-1945 from the
sample and doing these computations with the remaining seven observations —the heavy
solid line—we obtain an R? of 0.93697. Alternatively, by creating a variable WAR which equals
1 inthe years 1942-1945 and zero otherwise and including this in the model, which produces
the model shown by the two solid lines, the R? rises to 0.94639.

We can summarize the calculation of R? in an analysis of variance table, which
might appear as shown in Table 3.3.

Example 3.3 Analysis of Variance for an Investment Equation
The analysis of variance table for the investment equation of Sectlon 3.2.2 is given in
Table 3.4. :
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Source Degrees of Freedom Mean Square
Regression b’X'y — ny? K — 1 (assuming a constant term)
Residual ee n—K s?
Total yy — ny* n—1 Sy/n—1)=s;
Coefficient of k R =1—¢e/Yy—niy)

determination

r the Inyestment Equation

Source Degrees of Freedom Mean Square
Regression 0.0159025 4 0.003976
Residual 0.0004508 10 0.00004508
Total 0.016353 14 0.0011681

R? =0.0159025/0.016353 = 0.97245.

3.5.1 THE ADJUSTED R-SQUARED AND A MEASURE OF FIT

There are some problems with the use of R’ in analyzing goodness of fit. The first
concerns the number of degrees of freedom used up in estimating the parameters.
R? will never decrease when another variable is added to a regression equation. Equa-
tion (3-23) provides a convenient means for us to establish this result. Once again, we
are comparing a regression of y on X with sum of squared residuals €’e to a regression of
y on X and an additional variable z, which produces sum of squared residuals w'u. Recall
the vectors of residuals z, = Mz and y, = My = e, which implies that e’e = (y.y.). Let
¢ be the coefficient on z in the longer regression. Then ¢ = (z,z,) ™! (zy,), and inserting
this in (3-23) produces

’ 2
vu=c¢e— ((Zz*;% =ee(l— r;‘g) : (3-28)
where r;‘z is the partial correlation between y and z, controlling for X. Now divide
through both sides of the equality by yMCy. From (3-26), w'u/y'MCy is (1 — Rg,) for the
regression on X and z and e’e/y'M'y is (1 — R). Rearranging the result produces the

following:

THEOREM 3.6 Change in R> When a Variable Is Added

to a Regression
Let R,zgZ be the coefficient of determination in the regression of y on X and an
additional variable z, let Ry be the same for the regression of y on X alone, and
let 1}, be the partial correlation between 'y and z, controlling for X. Then

Ry,=Rx+(1—-Ry)r;2. (3-29)

SRR
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Thus, the R? in the longer regression cannot be smaller. It is tempting to exploit
this result by just adding variables to the model; R* will continue to rise to its limit
of 1.3 The adjusted R? (for degrees of freedom), which incorporates a penalty for these
results is computed as follows:

Rl ee/(n—K) ,
yMoy/(n — 1)

For computational purposes, the connection between R? and R? is

(3-30)

n-1
n— K

R=1-

(1 - R?.

The adjusted R? may decline when a variable is added to the set of independent variables.
Indeed, R? may even be negative. To consider an admittedly extreme case, suppose that
x and y have a sample correlation of zero. Then the adjusted R? will equal —1/(n — 2).
(Thus, the name “adjusted R-squared” is a bit misleading—as can be seen in (3-30),
R? is not actually computed as the square of any quantity.) Whether R rises or falls
depends on whether the contribution of the new variable to the fit of the regression
more than offsets the correction for the loss of an additional degree of freedom. The
general result (the proof of which is left as an exercise) is as follows.

THEOREM 3.7 Change in R> When a Variable Is Added

to a Regression
In a multiple regression, R* will fall (rise) when the variable x is deleted from the
regression if the t ratio associated with this variable is greater (less) than 1.

e

TR,

We have shown that R? will never fall when a variable is added to the regression.
We now consider this result more generally. The change in the residual sum of squares
when a set of variables X; is added to the regression is

’ ’ R
e112e1,2 = €€ — b2X2M1X2b2,

where we use subscript 1 to indicate the regression based on X alone and 1,2 to indicate
the use of both X; and X,. The coefficient vector b, is the coefficients on X, in the
multiple regression of y on X; and X;. [See (3-19) and (3-20) for definitions of b, and
M; ] Therefore,

eiel - b’QX'zM1X2b2 _ R2 4 béXéM]Xzbz
yM’y S yMy

Rlz’z = 1 -

3This result comes at a cost, however. The parameter estimates become progressively less precise as we do
so. We will pursue this result in Chapter 4.

4This measure is sometimes advocated on the basis of the unbiasedness of the two quantities in the fraction.
Since the ratio is not an unbiased estimator of any population quantity, it is difficult to justify the adjustment
on this basis. :
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which is greater than R? unless b, equals zero. (M;X; could not be zero unless X, was a
linear function of X, in which case the regression on X; and X; could not be computed.)
This equation can be manipulated a bit further to obtain

y’Mly béX'zM1X2b2

yMy  yMy

R, =R+

But yM,y = e/ e, so the first term in the product is 1 — R?. The second is the multiple
correlation in the regression of Mjy on M, Xy, or the partial correlation (after the effect
of Xy is removed) in the regression of y on X,. Collecting terms, we have

R, =R+ (1- Rf)rﬁz.l-

[This is the multivariate counterpart to (3-29).]

Therefore, it is possible to push R? as high as desired just by adding regressors.
This possibility motivates the use of the adjusted R-squared in (3-30), instead of R?
as a method of choosing among alternative models. Since R* incorporates a penalty
for reducing the degrees of freedom while still revealing an improvement in fit, one
possibility is to choose the specification that maximizes R”. It has been suggested that the
adjusted R-squared does not penalize the loss of degrees of freedom heavily enough.’
Some alternatives that have been proposed for comparing models (which we index
by j) are

- n+ K;
Ri:l— K](l_R?)’

n—=R;

which minimizes Amemiya’s (1985) prediction criterion,

e.e; K: K
PCi=— 1+~ ) =5} {1+
n—K; n n

and the Akaike and Bayesian information criteria which are given in (8-18) and (8-19).

3.5.2 R-SQUARED AND THE CONSTANT TERM IN THE MODEL

A second difficulty with R? concerns the constant term in the model. The proof that
0< R <1 requires X to contain a column of 1s. If not, then (1) M’ #e and
(2) eMX = 0, and the term 2¢'M°Xb in yM"y = (M’Xb + M'e)’(M"Xb + M'e)
in the preceding expansion will not drop out. Consequently, when we compute
R=1 e'e
S yMy’
the result is unpredictable. It will never be higher and can be far lower than the same

figure computed for the regression with a constant term included. It can even be negative.
Computer packages differ in their computation of R*. An alternative computation,

_ bXYy

—yMy’
is equally problematic. Again, this calculation will differ from the one obtained with the
constant term included; this time, R> may be larger than 1. Some computer packages

5See, for example, Amemiya (1985, pp. 50-51).
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bypass these difficulties by reporting a third “R?,” the squared sample correlation be-
tween the actual values of y and the fitted values from the regression. This approach
could be deceptive. If the regression contains a constant term, then, as we have seen,
all three computations give the same answer. Even if not, this last one will still produce
a value between zero and one. But, it is not a proportion of variation explained. On
the other hand, for the purpose of comparing models, this squared correlation might
well be a useful descriptive device. It is important for users of computer packages to be
aware of how the reported R’ is computed. Indeed, some packages will give a warning
in the results when a regression is fit without a constant or by some technique other
than linear least squares.

3.56.3 COMPARING MODELS

The value of R? we obtained for the consumption function in Example 3.2 seems high
in an absolute sense. Is it? Unfortunately, there is no absolute basis for comparison.
In fact, in using aggregate time-series data, coefficients of determination this high are
routine. In terms of the values one normally encounters in cross sections, an R> of 0.5
is relatively high. Coefficients of determination in cross sections of individual data as
high as 0.2 are sometimes noteworthy. The point of this discussion is that whether a
regression line provides a good fit to a body of data depends on the setting.

Little can be said about the relative quality of fits of regression lines in different
contexts or in different data sets even if supposedly generated by the same data gener-
ating mechanism. One must be careful, however, even in a single context, to be sure to
use the same basis for comparison for competing models. Usually, this concern is about
how the dependent variable is computed. For example, a perennial question concerns
whether a linear or loglinear model fits the data better. Unfortunately, the question
cannot be answered with a direct comparison. An R’ for the linear regression model is
different from an R? for the loglinear model. Variation in y is different from variation
in In y. The latter R* will typically be larger, but this does not imply that the loglinear
model is a better fit in some absolute sense.

It is worth emphasizing that R’ is a measure of linear association between x and y.
For example, the third panel of Figure 3.3 shows data that might arise from the model

yi=a+px—y)P+e.

(The constant y allows x to be distributed about some value other than zero.) The
relationship between y and x in this model is nonlinear, and a linear regression would
find no fit.

A final word of caution is in order. The interpretation of R* as a proportion of
variation explained is dependent on the use of least squares to compute the fitted
values. It is always correct to write

Yi—y=@i—-P+e
regardless of how j; is computed. Thus, one might use §; = exp(ﬁq}i) from a loglinear
model in computing the sum of squares on the two sides, however, the cross-product
term vanishes only if least squares is used to compute the fitted values and if the model

contains a constant term. Thus, the cross-product term has been ignored in computing
R’ for the loglinear model. Only in the case of least squares applied to a linear equation
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with a constant term can R? be interpreted as the proportion of variation in y explained
by variation in x. An analogous computation can be done without computing deviations
from means if the regression does not contain a constant term. Other purely algebraic
artifacts will crop up in regressions without a constant, however. For example, the value
of R? will change when the same constant is added to each observation on y, but it
is obvious that nothing fundamental has changed in the regression relationship. One
should be wary (even skeptical) in the calculation and interpretation of fit measures for
regressions without constant terms.

3.6 SUMMARY AND CONCLUSIONS

This chapter has described the purely algebraic exercise of fitting a line (hyperplane) to
a set of points using the method of least squares. We considered the primary problem
first, using a data set of n observations on K variables. We then examined several aspects
of the solution, including the nature of the projection and residual maker matrices and
several useful algebraic results relating to the computation of the residuals and their
sum of squares. We also examined the difference between gross or simple regression
and correlation and multiple regression by defining “partial regression coefficients” and
“partial correlation coefficients.” The Frisch-Waugh Theorem (3.3) is a fundamentally
useful tool in regression analysis which enables us to obtain in closed form the expression
for a subvector of a vector of regression coefficients. We examined several aspects of
the partitioned regression, including how the fit of the regression model changes when
variables are added to it or removed from it. Finally, we took a closer look at the
conventional measure of how well the fitted regression line predicts or “fits” the data.

Key Terms and Concepts

¢ Adjusted R-squared ¢ Moment matrix e Prediction criterion
¢ Analysis of variance ¢ Multiple correlation ¢ Population quantity
¢ Bivariate regression ¢ Multiple regression ¢ Population regression
o Coefficient of determination e Netting out ¢ Projection
¢ Disturbance * Normal equations ¢ Projection matrix
» Fitting criterion » Orthogonal regression ¢ Residual
o Frisch-Waugh theorem e Partial correlation ¢ Residual maker
¢ Goodness of fit coefficient ¢ Total variation
¢ Least squares e Partial regression coefficient
¢ Least squares normal e Partialing out
equations e Partitioned regression
Exercises

1. The Two Variable Regression. For the regression model y = « + 8x + ¢,
a. Show that the least squares normal equations imply Z;e; = 0 and X;x;¢; = 0.
b. Show that the solution for the constant term is @ = y — bX.
c. Show that the solution for bis b = [ (o — ©) (% — PI/[Prey (i — )]





