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This chapter summarises the existing traveling wave model of the cochlea, 

looks at some shortcomings, and suggests that many of the documented anomalies 

can be explained by assuming that outer hair cells are responsive to the fast pressure 

wave. It does not try to present an historical account of the development of the theory 

nor offer a comprehensive account of every conceivable refinement that has been 

attempted – a vast task1. Rather, it looks at the basic core of the theory and one 

modern account that is generally accepted as the standard picture. The modern 

version, due to Shera and Zweig (§I 3.1/d), adds two key elements – active properties 

and a reverse traveling wave – necessary to account for otoacoustic emissions. 

However, although generally successful, the modern version is still unable to account 

for the full range of cochlear phenomena, as we will see. Perhaps refinements can be 

made to overcome the shortcomings, but I want to suggest that the fault may lie in 

the basic reliance on differential pressure and that otoacoustic emissions could reflect 

a situation in which, at low sound pressure levels, the cochlea operates along pure 

local resonance principles and is responding to the fast pressure wave.  

In some places the arguments I put forward rely on just sketching the outline 

of an alternative picture, as evidence is lacking to support what I admit is a non-

conventional approach. Nevertheless, I have tried to make the alternative model as 

clear as I can, and I hope that others with more mathematical facility can place the 

model on a firmer footing if they see virtue in it. The intention is that by questioning 

the fundamentals of cochlear mechanics, progress in understanding may be made. I 

hope this sceptical approach will open up new avenues and therefore be more fruitful 

than simply accepting the textbook account on face value. 

 

3.1  Formulation of the traveling wave equations  
 

As described in §I 1.7, two different, but related, signals arise in the cochlea 

in response to sound stimulation. The first, p+, is the common-mode pressure and the 

second, p–, the differential pressure.  

 

 
1 For two accounts, see Zwislocki, J. J. (2002). Auditory Sound Transmission: An Autobiographical 
Perspective. (Erlbaum: Mahwah, NJ). // de Boer, E. (1996). Mechanics of the cochlea: modeling 
efforts. In: The Cochlea, edited by P. Dallos et al. (Springer: New York), 258-317. 
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To recapitulate, p+ is the acoustic pressure wave that is created by the stapes 

vibrating backwards and forwards in the oval window. It spreads throughout the 

cochlear fluids at the speed of sound in water (1500 m/s), creating, nearly 

instantaneously, a quasi-static hydraulic pressure field that is an exact analog of 

stapes motion (and ear-canal pressure). This pressure wave depends on the mass and 

compliance of the cochlear fluids; after the wave has traversed the cochlea a number 

of times, the magnitude of the residual common-mode pressure depends crucially on 

the compliance of the round window. 

The second signal, p–, is the difference in pressure between the upper and 

lower galleries caused by the presence of the partition. Depending on its acoustic 

impedance, a pressure difference will occur across the basilar membrane, leading to a 

pressure pv in the upper gallery (scala vestibuli) and a pressure pt in the lower (scala 

tympani).  

Thus, the common mode pressure p+ is given by p+ = (pv + pt) /2, whereas the 

differential pressure p– = (pv – pt) /2. 

The standard view is that differential pressure is the sole stimulus in the 

system, and so a traveling wave mechanism excites the hair cells and thence auditory 

nerve fibres. As foreshadowed in Chapter I1, I find this conclusion not fully 

justifiable, and here I want to put forward some reasons. I do not deny that a 

traveling wave mechanism may exist; but I think that the effects attributed to it have 

been exaggerated, and, at least at low sound pressure levels, are smaller than those 

due to excitation of the partition by outer hair cells in response to the fast pressure 

wave.  

 

3.1/a  The first transmission line model  

 

Békésy provided no mathematical underpinning for his theory, leaving that to 

others. The first step towards a mathematical model was made by Wegel and Lane in 

1924, who proposed that the cochlea operated like a tapered transmission line2. Their 

electrical network model looked like Fig. 3.1, and this representation is the essence 

 

 
2 Here I follow Allen, J. B. (2001). Nonlinear cochlear signal processing. In: Physiology of the Ear 
(2nd ed.), edited by A. F. Jahn and J. Santos-Sacchi (Singular Thomson Learning: San Diego, CA), 
393-442. Allen also points out (§1.1) that Fletcher deserves some credit too. 
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of the traveling wave formalism. Nearly the same arrangement is used today, albeit 

with additional serial and parallel elements; nowadays the mass (inductance) is 

usually taken to be more or less constant from base to apex3. 

 
Fig. 3.1.  An electrical network analog of the cochlea, the basis of all traveling wave models. 
 

 

A modern-day treatment4 of passive cochlear mechanics can be found in 

Fletcher (1992). A convenient analogue treatment giving a simple one-dimensional 

model is to take voltage to represent pressure and current to represent acoustic 

volume flow. Simplifying as much as possible, inductances represent the mechanical 

inertance, due to mass, of the fluid in the upper and lower galleries, which the stapes 

pressure encounters when the oval window pushes in and out; the capacitances 

represent the compliance of the basilar membrane, which tends to deflect in reaction 

to the pressure in the fluid moving along the galleries5. It is assumed that there is no 

mechanical coupling along the membrane itself, so that all coupling is due to the 

surrounding fluid. Dividing the cochlea into equal-length sections, the inductance, 

Ln, representing the mechanical impedance of each section is given approximately by 

 

 
3 Geisler, C. D. (1976). Mathematical models of the mechanics of the inner ear. In: Handbook of 
Sensory Physiology, edited by W. D. Keidel and W. D. Neff (Springer: Berlin), vol. 5.3, 391-415. 
4 Fletcher, N. H. (1992). Acoustic Systems in Biology. (Oxford University Press: New York). See 
Ch. 8 and Ch. 12.4. 
5 The total volume of incompressible fluid displaced by the stapes has to move the round window, and 
in so doing it either moves along the upper gallery to the lower through the helicotrema or takes a 
short cut by deflecting the basilar membrane. By 'basilar membrane' is meant the whole partition – 

E 

½ L n 

C n 

the organ of Corti and all its supporting structures. 

The capacitances represent the compliances of the basilar membane (the partition taken as a
whole). The inductances represent masses of fluid in the upper and lower galleries. 
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½ Ln ≈ 
channel of areasection-cross1/2
lengthsectionfluidofdensity ×       (3.1) 

and the capacitance, Cn, is given by 

b.m.ofstiffness
length segment     b.m.  vibratingofwidth ×

≈nC .     (3.2) 

 As Fig. 3.1 illustrates schematically, both Ln and Cn increase as distance, x, 

from the base increases, in the first case because the cross-section of the channel 

decreases a little and in the second because the stiffness of the partition (essentially 

taken to be the basilar membrane) decreases and its width increases. The helicotrema 

(Fig. 3.7) is usually treated as a short circuit, although in practice there will be a 

small mechanical impedance associated with it. 

The result is that the mechanical impedance, Z(x,ω), can be represented by an 

equation of the form 

Z = iω m + K/(iω) + r
 

      

 (3.3) 

where6 m is the mass per unit length associated with each section (50 mg/cm2 is 

typical), K is the stiffness (such that it decreases exponentially with distance like K = 

107 e–1.5 x), and r is a damping term (in the manner of r = 3000 e–1.5 x). 

At some angular frequency, ω, within the auditory range, the inertia and 

compliance of one section, taken to be the nth, will be in resonance so that ω = 

1/(LnCn)1/2 and the section will have almost no impedance and look like a short 

circuit (a hole). The result is that all the flow passes through this section, causing 

large displacement of the partition, limited only by damping. On the apical side of 

this point, both L and C are large (large cross-section and low stiffness) and lie far 

from resonance so that the signal will, given the stiffness map, be attenuated about 

exponentially; very little will pass through the helicotrema. On the basal side, the two 

factors work together to produce a traveling wave which progresses along the 

partition, increasing gradually in amplitude to reach a broad peak, and dissipating 

 

 
6 Typical values as used in Lesser and Berkley (1972). 
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before7  it reaches the resonant point. Each frequency will come to a peak at a 

particular point along the cochlea – its characteristic frequency: the lower the 

frequency, the further along the partition it will reach. At very low (subsonic) 

frequencies, ω Ln is very small and 1/ω Cn very large, so fluid must then flow 

through the helicotrema. 

Of course, this treatment is a simplification, and ignores active properties, but 

it gives a useful one-dimensional picture – the acoustic pressure is assumed to be a 

function of only the distance from the stapes – and provides an explanation of how 

tonotopic tuning can arise in the cochlea. It is the picture that naturally explains 

Békésy’s stroboscopic observations on human cadavers at extreme sound levels and 

it remains the centre-piece of modern cochlear models. 

More detailed treatments can be found in expositions by Lighthill 8 , 

Zwislocki9 and de Boer10–13, and the accepted modern-day active model, due to Shera 

and Zweig, is outlined in §3.1/d below. Overall, none of these models deviate from 

the fundamental property that the stimulus travels through the network elements in 

series – a stimulus cannot reach its characteristic place on the partition without going 

through a cascade of circuit elements; thus for all audible sounds, there will be a 

significant time delay before a stimulus can reach a hair cell. The propagation speed 

of a traveling wave starts out at more than 100 m/s at the base and slows down to as 

low as 1 m/s at the apex. The time delay to the peak is typically 1 or 2 cycles, so that 

for a 1 kHz signal, the group delay will be 1 or 2 ms. A distinguishing feature of 

traveling waves is accumulating phase delay with frequency, until at the 

characteristic frequency many cycles of delay are apparent – the pivotal reason that 

resonance models, limited to π /2 delay, have been discarded14. 

 

 
7 For discussion of this point, see Zwislocki (2002), Lighthill (1981, 1991), p. 9; Patuzzi (1996), 
p. 214; Withnell (2002), Fig. 3. 
8 Lighthill, J. (1981). Energy flow in the cochlea. J. Fluid Mech. 106: 149-213. 
9 Zwislocki, J. J. (1965). Analysis of some auditory characteristics. In: Handbook of Mathematical 
Psychology, edited by R. D. Luce et al. (Wiley: New York), 3, 1–97. 
10 de Boer, E. (1980). Auditory physics. Physical principles in hearing theory. I. Physics Reports 62: 
87-174. 
11 de Boer, E. (1984). Auditory physics. Physical principles in hearing theory. II. Physics Reports 105: 
141-226. 
12 de Boer, E. (1991). Auditory physics. Physical principles in hearing theory. III. Physics Reports 
203: 125-231. 
13 de Boer (1995). 
14 Patuzzi (1996), p. 199. 
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Some physically important insights into traveling wave behaviour are given 

by Lighthill (1981). First, he points out (his Fig. 1) that the system differs from a 

standard electrical waveguide in that the cut-off is a high-frequency one (not low-

frequency); hence a propagating wave will not be reflected as it will in the standard 

electrical analogue. Thus, he prefers to make the analogy (his section 4) with an 

atmospheric wave phenomenon called critical-layer resonance. Secondly, he 

highlights (p. 193) that traveling wave mechanics entails that stapes pressure cannot 

remain perfectly in phase with volume flow – the wave is somewhat decoupled from 

its driving force – and so this reduces the ability of the stapes to efficiently drive the 

basilar membrane. This means that a purely resonant interaction between the two is 

not possible, particularly at low frequencies, where the phase relationship approaches 

90°. Finally, he underlines the importance of the fast wave, which carries off half of 

the stapes energy according to his reckoning (pp. 150, 176), and which is necessary 

to explain why high-frequency limits in the cochlea often plateau at phases with 

integer multiples of π, behaviour which is “inconceivable” in a traveling wave 

system (pp.153, 180). 

 

3.1/b  Differential pressure and common-mode pressure 

 

In order to see how well the above description relates to the actual physics of 

the cochlea, we need to be sure that the equations we choose are comprehensive – as 

simple as possible, but no simpler, as Einstein expressed it. Fletcher (1992) provides 

a basic schema, but ignores common-mode pressure. In this thesis it is considered 

vital to set out a formalism that includes both differential and common-mode 

pressures. The first such approach was that due to Peterson and Bogert15 (1950), who 

in fact introduced the notation p+ and p– for what they called ‘longitudinal’ and 

‘transverse’ modes of pressure (and similarly u+ and u– for the associated particle 

velocities). They give an equivalent circuit (Fig. 3.2 below) that generates both 

common-mode pressure (pv + pt) and a differential pressure (pv – pt). Given certain 

boundary conditions, a set of equations were developed that mirror this circuit. 

 
 

 
15 Peterson, L. C. and B. P. Bogert (1950). A dynamical theory of the cochlea. J. Acoust. Soc. Am. 22: 
369-381. 
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Fig. 3.2.  The first equivalent circuit of the cochlea to include both common-mode and 
differential pressure. The three-terminal transmission line is from Fig. 22 of Peterson and 
Bogert (1950), and used with permission of the Acoustical Society of America. 
 
 
The equations involving p+, the instantaneous pressure, were 

 

p+ = P+ eiω t        (3.4) 

 

(where P+ is the pressure amplitude at the stapes and ω its frequency) 
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where S(x) is the cross-sectional area of each gallery at distance x from the base, and 

c is the velocity of sound in a free fluid. Given some simplifications, these equations, 

can be solved numerically. To do so, three boundary conditions are imposed: a fixed 

pressure of 2 dyne/cm2 at the oval window; no pressure (but continuity of flow) 

across the helicotrema; and zero pressure at the round window. They therefore 

managed to derive a complex expression for P+(x,ω) [their equation on bottom of p. 

373)] which was independent of p– and had a closed form solution involving Bessel 

functions. Another set of equations, independent of the first set, described the 

differential pressure, and these naturally lead to the standard traveling wave. 

The numerical solutions provided a graph (their Fig. 4) of p+ along the length 

of the cochlea. At low frequencies (some kilohertz), the average pressure is virtually 

constant along the partition at about 1 dyne/cm2, but at higher frequencies a standing 
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wave begins to form16 and so at 10 kHz the average pressure ranges from 1 dyne/cm2 

at the stapes to nearly 4 dyne/cm2 at the apex. Similarly, they calculate the 

differential pressure, which, for all frequencies, ranges from 1 dyne/cm2 at the base 

to zero (as specified) at the apex. For progressively higher frequencies, zero 

differential pressure occurs closer to the base, so that at 10 kHz (shown in Fig. 3.3 

below), all differential pressure vanishes 10 mm beyond the stapes. Calculations of 

transit times of impulses through the system (their Table 1) appear to broadly match 

those seen by Békésy.  

 

 
Fig. 3.3.  Common-mode pressure p+ and differential pressure p– as calculated by Peterson 
and Bogert (1950) for a frequency of 10 kHz. Note that, given their boundary conditions, the 
magnitude of the former exceeds the latter.  (Reproduced from their Fig. 9, and used with 
permission of the Acoustical Society of America) 
 
 
Undoubtedly, the Peterson and Bogert paper is a major advance in 

understanding wave propagation in the cochlea. Given their consideration of 

common pressure, however, a peculiarity is that, in setting boundary conditions, they 

discard the round window membrane. “Since the round window membrane separates 

the fluid in the scala tympani from the air in the middle ear it is reasonable to assume 

that the acoustic impedance terminating the scala tympani is zero” they say (p. 373). 

But it is because of the round window’s stiffness that common-mode pressure arises 

in the first place. It almost produces a physical contradiction, for unless the cochlear 

channels are especially long and narrow, and the partition unusually stiff, there is no 
 

 
16 Peterson and Bogert calculate (p. 373) that a quarter-wave resonance would appear at 12 kHz. 



I 3 [10] 

way that the pressure at the round window can remain zero when the stapes moves. 

Another consequence, of course, is that their formulation exaggerates the differential 

pressure, placing the full pressure generated at the stapes across the partition; it also 

has the effect of exaggerating the common mode pressure.  

More than 20 years elapsed until Geisler and Hubbard (1972) appreciated the 

limitations of the Peterson and Bogert work and refined the analysis17 to specifically 

include round window stiffness. They called p+ the ‘fast’ wave and p– the ‘slow’ 

wave. They pointed out that the round window has a compliance of between 10–9 and 

10–10 cm5/dyne (measured by Békésy [p. 435] and equivalent to 10–14 m3/Pa). It has 

an area of about 2 mm2, so that it has an acoustic stiffness of 2 × 107 dyne/cm3 or 

(2 × 10–2 N/m3). Geisler and Hubbard used the same equation (3.5) as their starting 

point, but effected a considerable simplification by replacing S(x) with a constant S. 

In justification, they remark that the cross-sectional area of the human cochlea is 

almost constant along its length (and as a side-effect making Ln about constant in Eq. 

3.1); it also means that S in the numerator and denominator of Eq. 3.5 cancel, and we 

are left with a standard wave equation and its solution is 

 

p+(x) = cos[ω (l – x)c]eiω t /cos(ω l/c)     (3.6) 

 

which does not differ appreciably from the more complex Peterson and Bogert result. 

Introducing the round window stiffness, but eliminating the variation in S, gives the 

solution  

 

p+(x) = A exp[iω (t – x/c)] + B exp[iω (t + x/c)],   (3.7) 

 

which is a familiar standing wave (two waves propagating in the +x and –x 

directions, with A and B complex constants). An interpretation is that the fast wave 

reflects multiple times in the cochlea and, since the cochlea is small and of irregular 

shape, forms a complex longitudinal pressure field.  

Geisler and Hubbard show how the unknown constants can be found by 

applying boundary conditions. This results in a somewhat more complex expression 

for the fast wave, although still of the standing wave form: 
 

 
17 Geisler, C. D. and A. E. Hubbard (1972). New boundary conditions and results for the Peterson–
Bogert model of the cochlea. J. Acoust. Soc. Am. 52: 1629-1634. 
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where P0 is the sinusoidal pressure applied to the stapes, K is the acoustic stiffness of 

the round window membrane, l is the length of the cochlea, P′– (x) is the spatial 

derivative of P–(x) at x = 0, and the other symbols have their normal meaning.  

For completeness, the corresponding slow (traveling) wave equation can be 

solved numerically18 , but for the boundary conditions specified, the differential 

pressure at the stapes can be explicitly stated as 
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At any point x0 in the cochlea, the pressure in the upper gallery will therefore 

be p+(x) + p–(x), while the pressure in the lower will be p+(x) – p–(x). In this case, the 

fast wave is no longer independent of the slow one, and the two waves are coupled. 

Notice that if p–(x) is small, the dominant signal in the cochlea will be p+(x), and vice 

versa. At the low frequency limit, p–(x) will be at its lowest and the pressure will be 

about constant throughout the whole cochlea. Thus, if we are looking for common-

mode effects, they are more likely to be apparent at low frequencies. Geisler and 

Hubbard describe this situation as the cochlear fluids acting essentially as a tube of 

incompressible fluid, with the round window moving out when the stapes moves in, 

and vice versa. 

Geisler and Hubbard conclude that at mid-frequencies the initial stapes 

stimulus is shared about equally between the two modes (not unlike Fig. 3.3), and 

just above 10 kHz a resonance occurs because at this frequency the length of the 

human cochlea is a quarter-wavelength of the pressure wave. The windows will 

usually act piston-like and 180° out of phase, but when the high frequency resonance 

is approached the relative phases of the windows will rapidly switch as the driving 

frequency passes through the resonance. 

Geisler and Hubbard increased the stiffness by a factor of 5, and, apart from 

some frequency shifts, saw little change in the behaviour of their model. The input 
 

 
18 Geisler (1972), p. 1630; for a broader perspective see also Geisler (1976). 
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impedance of their model cochlea was comparable at low frequencies to that 

measured by Békésy (EiH, p. 436) in a cadaver with the partition removed (leaving 

only the fluid and round window membrane). They also point out the similarity of 

their model to the results19 of Wever and Lawrence (1950) who measured the phase 

responses of the two windows in a cat and found resonance-like behaviour near 

9 kHz. This important work will be discussed in more detail later (§D 8.1/b), since 

the observed antiphase motion of the windows, and the finding of a minimum in 

cochlear microphonic response when the windows are stimulated in phase20, appears, 

prima facie, to contradict the idea that outer hair cells respond to common mode 

pressure. 

In summary, the Geisler and Hubbard model gives a physically accurate 

insight into the mechanics of the actual cochlea. It describes both a fast wave and a 

slow wave, the first of which is associated with common mode pressure, and the 

second with differential pressure. A traveling wave emerges from the action of the 

differential pressure, and that slow wave has remained the focus of cochlear 

mechanics, generating more and more detailed models. The surprise is the readiness 

with which the fast wave has been deemed irrelevant. 

 

3.1/c  Discarding common mode pressure 

 

Since consideration of common mode pressure is a major point of departure 

in this thesis, the literature’s short treatment of the fast wave is worth documenting.  

1. The first hint that the standard model may be inadequate came from 

reading the exposition21 of cochlear mechanics by Zwislocki (1980). He speaks of 

the Peterson and Bogert paper and claims (p. 173) that the pressure difference across 

the basilar membrane must be very small and that the pressure amplitude of the 

compressional waves must be small (because of the low impedance of the round 

window). Having both of these quantities small seems an ineffectual and unlikely 

outcome, so perhaps his other conclusion is open to question too: “Because hair cells 
 

 
19 Wever, E. G. and M. Lawrence (1950). The acoustic pathways to the cochlea. J. Acoust. Soc. Am. 
22: 460-467. 
20 In particular, Wever and Lawrence (1950) and subsequent work which is discussed in §D 8.1/b. 
21 Zwislocki, J. J. (1980). Theory of cochlear mechanics. Hear. Res. 2: 171-182. 
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are excited as a result of deflection of their stereocilia rather than by pressure, 

compressional waves cannot be expected to play any direct role in the hearing 

process.” Note that direct pressure measurements may not answer the question 

satisfactorily because drilling a hole in the cochlea will disturb the pressure field. 

2. Lighthill (1991) refers to the fast wave22 and says (p. 4) it is “uninteresting 

in another way as producing no motion of the cochlear partition. Accordingly, the 

fast wave becomes quite unimportant and I shall omit any further mention of it”. 

3. Shera and Zweig23 simply say (p. 1363) that “the inner ear responds only to 

the pressure difference Pow – Prw between the oval and round windows and not the 

absolute pressure at either window.” 

4.  de Boer (1984) makes a one-sentence statement 24 : “The mechanical 

impedance of the round window is assumed to be zero”. In his 1996 exposition, he 

devotes a paragraph to the “compressional wave”25, but notes that the instantaneous 

pressure associated with it will be the same everywhere; thus, this component is 

considered “totally uninteresting” and not considered further. 

5.  Lindgren and Li (2003) began work with a double-sided transmission line 

model of the cochlea26 that followed Peterson and Bogert’s original Fig. 22 and so 

specifically included the compliance of the round window (see Fig. 3.4a). However, 

they are soon led to say that the stiffness of the round window is small compared to 

other stiffnesses and so they considered the pressure at the round window to be zero 

(p. 6). Thus, the round window disappears (see Fig. 3.4b).  

 

 

 
22 Lighthill, J. (1991). Biomechanics of hearing sensitivity. Journal of Vibration and Acoustics 113: 1-
13. 
23 Shera, C. A. and G. Zweig (1992). Middle-ear phenomenology: the view from the three windows. J. 
Acoust. Soc. Am. 92: 1356-1370. 
24 de Boer (1984), p. 162. 
25 de Boer (1996), p. 263. 
26 Lindgren, A. G. and W. Li (2003). Analysis and simulation of a classic model of cochlea mechanics 
via a state-space realization. unpublished manuscript: http://www.ele.uri.edu/SASGroup/cochlea.html. 
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Fig. 3.4. A reasonably accurate model of the cochlea, the two-sided transmission line (top). 
Note the presence of a compliance (highlighted) representing the round window membrane 
which appears in series with the cochlear input. (Subscript V refers to scala vestibuli, T to 
scala tympani; the line is terminated by helicotrema mass mH and damping dH.) The authors 
also present an “equivalent” one-sided model (b) which, in omitting the round window, 
differs physically from (a). The diagrams are from Lindgren and Li  (2003), and used with 
permission. 
 

6.  Baker (2000) sets out (his §3.3) to present27 a mathematical development 

of the compressive wave. His aim is to develop piezoelectric amplification models of 

the cochlea. He notes that the compressive pressure field is symmetric about the 

partition, whereas the traveling wave of basilar membrane displacement is 

antisymmetric – thus “if one is interested in modelling basilar membrane motion, 

then one need not consider the compressive pressure wave. However, if one is 

interested in modelling fluid pressure measurement with the cochlear duct, then one 

must consider the compressive wave’s contributions as well” (p. 63). He proceeds to 

 

 
27 Baker, G. J. (2000). Pressure-feedforward and piezoelectric amplification models for the cochlea. 
PhD thesis, Department of Mechanical Engineering, Stanford University. 
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develop governing equations but sets a boundary condition that “At the round 

window, the total pressure should be zero or very nearly zero” (p. 65). Evidence for 

this is that “the round window membrane is relatively large and compliant, and that 

the cochlear fluids do not flow out when the round window membrane is carefully 

removed”. The first reason provides a useful simplifying assumption, but it tends to 

militate against the setting up of pressure fields. The round window’s stiffness is 

important in allowing common mode pressure to exist at all (and in some creatures 

the round window is remarkably small28 or stiff29). On the other hand, the mass of the 

cochlear fluids (and their small compliance) allows for pressure fields to establish at 

all frequencies above zero. The second reason has the limitation of applying only to 

static pressures and ignores surface tension effects. Overall, once it is acknowledged 

that outer hair cells may contribute significant amount of compressibility to the 

system, there are many possibilities for setting up a complex pressure field within the 

cochlea. 

 

3.1/d  The modern standard model  

 

As said earlier, there is no intention of giving here a complete historical 

development of traveling wave theories. Allen (2001) provides a good perspective on 

the evolution of the field, and he discusses the way in which two- and three-

dimensional models can improve the match between theory and experiment. 

However, to ward off complacency, he underlines (his §2.1) that “even a 3D model, 

no matter how much more frequency selective it was compared to the 1D model, 

would not be adequate to describe either the newly measured selectivity, or the 

neural tuning.” 

de Boer also gives a wide-ranging summary30 of cochlear modelling, prefaced 

with the warning “How can we be sure that we are extracting the “true” information 

or drawing the “right” conclusions? [p. 259, emphasis in original]. He discusses the 

 

 
28 Gulick, W. L., et al. (1989). Hearing: Physiological Acoustics, Neural Coding, and Psychophysics. 
(Oxford University Press: Oxford). [p. 115] 
29 In whales and bats it is funnel-shaped, like a loudspeaker cone [Reysenbach de Haan (1956), pp. 83, 
89-90] 
30 de Boer (1996). 
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intricacies of long- and short-wave models of the cochlea31, as well as two- and 

three-dimensional models, second filters, active contributions from outer hair cells, 

and nonlinearity. Even so, longitudinal coupling, a real complication, needed to be 

ignored, and the chapter ends with a list of unsolved problems. The question posed 

again is (p. 307), “Haven’t we left out something essential?” The following section 

of this thesis (§I 3.2) takes this question seriously. 

Nevertheless, despite acknowledged limitations, traveling wave models have 

captured major features of cochlear behaviour. If there is one accepted standard 

modern model it is probably the ‘coherent reflectance filtering’ (CRF) model due to 

Shera and Zweig32–35. This model incorporates active elements and reverse traveling 

waves, for without both these features otoacoustic emissions could not arise within a 

traveling wave picture. The CRF model assumes that activity on the partition – 

mediated by outer hair cells – can cause a traveling wave to propagate in reverse 

towards the windows, where it is reflected at the stapes, and returns, via a traveling 

wave, to where it came. By multiple internal reflection, energy can in this way 

recirculate inside a longitudinally resonant cochlear cavity – and the end result is 

otoacoustic emissions.  

Because of the appreciable length of the cochlear channels – some tens of 

millimeters – the theory establishes itself as a ‘global oscillator’ model, in contrast to 

the ‘local oscillator’ models of Gold and the like (included in which would be this 

thesis) where an oscillation emerging from the cochlea is traced back to a small 

group of outer hair cells on the partition. Because the traveling wave is broad, the 

CRF model cannot identify any single reflection point. It assumes that there is some 

‘spatial corrugation’ or ‘distributed roughness’ inside the cochlea, so that scattering 

of a traveling wave occurs with a certain spatial regularity. The scattered wavefronts 

end up adding coherently in the opposite direction, and the result of this coherent 

reflection is acoustic emissions. The frequencies are not harmonically related, but 

there are an integer number of wavelengths in the round trip. 
 

 
31 The former still stands on a pedestal (p. 270). 
32 Shera, C. A. (2003). Mammalian spontaneous otoacoustic emissions are amplitude-stabilized 
cochlear standing waves. J. Acoust. Soc. Am. 114: 244-262. 
33 Zweig, G. and C. A. Shera (1995). The origin of periodicity in the spectrum of evoked otoacoustic 
emissions. J. Acoust. Soc. Am. 98: 2018-2047. 
34 Shera, C. A. and J. J. Guinan (2003). Stimulus-frequency-emission group delay: a test of coherent 
reflection filtering and a window on cochlear tuning. J. Acoust. Soc. Am. 113: 2762-2772. 
35 Shera, C. A. and J. J. Guinan (1999). Evoked otoacoustic emissions arise by two fundamentally 
different mechanisms: a taxonomy for mammalian OAEs. J. Acoust. Soc. Am. 105: 782-798. 
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The theory therefore places great emphasis on the relative phase of cochlear 

activity. A microphone in the ear canal measures regular peaks and valleys in 

pressure as frequency is swept, and CRF views these as an interference pattern 

produced by interaction of the forward and backward waves. Reflectance of waves at 

the stapes, R, will therefore have the form (Shera and Guinan, 1999, p. 795) 

 

R ≈ R0 e–2π i f τ        (3.10) 

 

where f is frequency and τ is a time constant. Experimentally, from investigation of 

stimulus frequency otoacoustic emissions (SFOAEs), τ appears to be about 10 ms at 

1500 Hz. Since it has the form of a delay, “it is natural to associate that delay with 

wave travel to and from the site of generation of the re-emitted wave” (ibid., p. 785). 

The phase of the reflectance therefore rotates rapidly, going through one full period 

over the frequency interval 1/τ, which corresponds to the spacing between 

neighbouring otoacoustic emissions. That is, near 1500 Hz, the interval will be about 

100 Hz, so that neighbouring emissions will occur in the frequency ratio 1600/1500 

≈ 1.07.  

Another way of expressing τ is in terms of the number of periods of the 

traveling wave in the recirculating loop, so that τ (f) = N/f, and experiment shows 

(Fig. 3 of Shera and Guinan, 2003) that in humans N ranges from about 5 (at 500 Hz) 

to near 30 (at 10 kHz). That is, the cochlea stores between 5 and 30 cycles of 

acoustic signal. The phase can also be expressed in the following way (Shera and 

Guinan, p. 785) 

 

∠ R = ∆θforward-travel + ∆θre-emission + ∆θreverse-travel   (3.11) 

 

in which ∠ R, the phase unwrapped from 3.10, is taken to be the sum of three phase 

delays, the forward travel time of the traveling wave, a phase lag due to the signal 

passing through the cochlear filter, and a phase delay for the reverse traveling wave. 

Zweig and Shera (1995) have emphasised that the cochlea possesses scaling 

symmetry, so that the number of waves in any traveling wave is about constant: a 

low frequency wave will travel further along the cochlea than a high frequency one 

and will require a longer time to reach its peak, but in terms of total phase shift it is 
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about the same in the two cases. That means that the first and last terms on the right-

hand side of 3.11 are about constant, and means that nearly all of the observed phase 

variation seen from the ear canal must derive from the second term. It is my 

contention that in fact the first and third terms are practically zero and that nearly all 

of the observed phase derives from the high Q of the cochlear resonators.  

The same point can be approached from a different direction. Konrad-Martin 

and Keefe (2005) consider the Q of the cochlear filters36 in terms of the ‘round-trip 

latency’37 of Shera et al. (2002). Applied to SFOAEs, the latency amounts to Tf 

cycles of signal, where T is the measured latency and f is the frequency, and 

according to the Shera model, half of that latency (Tf /2) derives from the forward 

trip, and the other half (also Tf /2) from the reverse trip. Now the Q of the cochlear 

filters can be expressed as 

 

Q = kTf/2        (3.12) 

 

where k is a dimensionless measure of the filter shape. Experimentally, k is found to 

be about 2 when the basilar membrane delay is assumed to be half the SFOAE delay, 

making Q ≈ Tf, which is just what we expect from a simple resonating filter, since 

the Q is equivalent to the number of cycles of build up and decay38. But the same 

result applies if we were to take k as 1 and the basilar membrane delay as simply 

identical to the filter delay. That is, the same results obtain whether k is set to be 1 

(local oscillator model) or 2 (forward and reverse wave model).  

Irrespective of what model one uses to interpret the results, the paper by 

Shera et al. (2002) is of interest in demonstrating that basilar membrane tuning in 

humans is appreciably sharper than previously thought. They used psychophysical 

studies conducted near threshold to show that the Q of the human cochlea is in the 

region of 15–20, values that are not as large as those calculated by Gold and 

Pumphrey, but indicative of high tuning nonetheless. 

A large part of the argument for assuming that the traveling wave delay is not 

zero rests on showing that  
 

 
36 Konrad-Martin, D. and D. H. Keefe (2005). Transient-evoked stimulus-frequency and distortion-
product otoacoustic emissions in normal and impaired ears. J. Acoust. Soc. Am. 117: 3799-3815. 
37 Shera, C. A., et al. (2002). Revised estimates of human cochlear tuning from otoacoustic and 
behavioural measurements. Proc. Nat. Acad. Sci. 99: 3318-3323. 
38 Fletcher, Acoustic Systems in Biology, p. 26. 
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τ (f) = 2 × τ BM(f)       (3.13) 

 

where τ BM(f) is the group delay of the basilar membrane. The factor of 2 is what one 

expects if the traveling wave carries the signal around the loop. The theory is open to 

the criticism that, experimentally, the appropriate factor is somewhat less than 2, 

with the weight of evidence pointing to an actual factor of 1.7±0.2 (in the cat39), 

1.6±0.3 (guinea pig40), and 1.86±0.22 (chinchilla and guinea pig41). However, a 

recent paper42 claims that the discrepancy can be accounted for by use of a more 

realistic two-dimensional model. 

Finally, the CRF theory introduces one distinctive mechanical feature of the 

cochlea which is worthy of note. Phase measurements reveal that while SFOAEs 

show the expected rapid rotation with frequency, the behaviour of distortion product 

otoacoustic emissions (DPOAEs) is radically different43. DPOAEs appear to be due 

to the interaction of the rapid rotation (slow time constant) with a very slow one (fast 

time constant). On this basis, Shera and Guinan identify two fundamentally different 

mechanisms: OAEs that arise by linear reflection and those that derive from 

nonlinear distortion. They set out a ‘taxonomy’ for acoustic emissions as set out in 

the table below. 

 

 
39 Shera and Guinan (2003), p. 2765. 
40 Shera and Guinan (2003). 
41 Cooper, N. P. and C. A. Shera (2004). Backward-traveling waves in the cochlea? Association for 
Research in Otolaryngology, Midwinter Meeting, Abstract 342. This reference concludes that its 
results rule out the pressure wave hypothesis, but in this it only treats the hypothesis in its one-way 
guise: the DPOAEs travel from basilar membrane to ear canal via a pressure wave, but the traveling 
wave is still considered to take the signal back the other way. This is the original picture of Wilson 
(1980), but the model I want to promote is that the pressure wave acts in both directions, and that the 
“basilar membrane delay” is in fact all filter delay (see §I 3.2/k). 
42 Shera, C. A., et al. (2005). Coherent reflection in a two-dimensional cochlea: short-wave versus 
long-wave scattering in the generation of reflection-source otoacoustic emissions. J. Acoust. Soc. Am. 
118: 287-313. See also §D 10.1/b. 
43 Shera and Guinan (2003), p. 2764. 



I 3 [20] 

 

A taxonomy for mammalian acoustic emissions  (Shera and Guinan, 1999) 

Reflection source Distortion source 

Linear Nonlinear 

Rapid phase rotation Slow wave rotation 

SFOAEs, SOAEs, and TEOAEs  DPOAEs 

Same frequency as stimulus 
(derive from near CF) 

Frequency not in stimulus  
(require overlap of different TW peaks) 

“place fixed” “wave fixed” 

High amplitude in humans, low in rodents Maximum amplitude when f1/f2 ≈ 1.2 

 

Physically, the interpretation of the reflection source emissions (left column) 

is the one given above, in which there is one reverberating loop. By way of contrast, 

distortion sources (right column) arise, in the CRF view, from overlapping of the f1 

traveling wave peak and the f2 peak, generating components at 2f1 – f2 which travel to 

their own traveling wave maximum. The interactions become complicated, but the 

end result is a “wave fixed” emission that doesn’t depend on a single place on the 

partition in the way that “place fixed” emissions do. Importantly, the DPOAE 

emissions can be separated into a quickly rotating component (slow wave) and a 

slowly rotating one (fast wave).  

The rapidity of the fast wave is highlighted in §I 3.2/k, and a ‘local’ model 

for generation of DPOAEs is put forward in Chapter R7. It seems much more 

straightforward to see practically all the phase delay as deriving from the filter delay 

of a local resonator. 

At this point we bring discussion of traveling wave theories to an end. We 

have enough detail to convey a picture of the traveling wave running forth (and back) 

along the basilar membrane, generating responses in hair cells above. This 

background has been preparation for listing situations where traveling wave theories 

cannot give a comprehensive account of cochlear mechanics. 
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3.2  Anomalies in traveling wave theory 
 

The traveling wave model has been the mainstay in interpreting the results of 

cochlear experiments. The model seems to fit, in the main, and there have been some 

notable achievements in matching theory and experiment. And yet, there are 

recurring disparities that suggest that our understanding is not quite right. By 

outlining these major points of departure, the hope is that the underlying root of the 

problem may come to the fore. As someone once remarked, “paradox is truth 

standing on its head in order to draw attention to itself.”44 With that in mind, let us 

delve into the literature. 

 

3.2/a  The peak is so sharp 

 

For a long time, the broad peak of the traveling wave was considered a virtue, 

for its associated low Q meant that hearing of transient sounds could begin and end 

quickly, without lag or overhang. But as improved experimental techniques showed 

increasingly sharp tuning of the basilar membrane45, the problem became one of 

explaining how the traveling wave can give such a narrowly defined peak.  

Some modern defining results include the following. 

• Ren (2002) observed a traveling wave in a gerbil cochlea in response 

to 16 kHz tones and reported46 that it occurred over a very restricted 

range (0.4–0.5 mm), even when the intensity varied from 10–90 dB 

SPL. Following death of the animal, response of the membrane was 

nearly undetectable and its tuning was lost. 

• Nilsen and Russell (2000) saw sharp peaks in the tuning of a guinea 

pig basilar membrane47 and evidence of radial phase differences. 

 

 
44 This saying is due, I believe, to Alan Watts (1916–1973). 
45 For quite some time mechanical tuning has been seen to be as sharp as neural tuning. Khanna, S. M. 
and D. G. B. Leonard (1982). Basilar membrane tuning in the cat cochlea. Science 215: 305-306. 
46 Ren, T. (2002). Longitudinal pattern of basilar membrane vibration in the sensitive cochlea. Proc. 
Nat. Acad. Sci. 99: 17101-17106. 
47 Nilsen, K. E. and I. J. Russell (2000). The spatial and temporal representation of a tone on the 
guinea pig basilar membrane. Proc. Nat. Acad. Sci. 97: 11751-11758. 
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When the animal died, responses dropped by up to 65 dB and phase 

gradients disappeared. 

• Russell and Nilsen (1997) observed48 in a similar investigation that 

the response to 15 kHz tones narrowed as intensity was reduced so 

that at 15 dB SPL, the peak was only 0.15 mm wide (the width of 14 

inner hair cells). At 60 dB, the peak was more than a millimetre wide. 

• Lonsbury-Martin et al. (1987) found histologically (Fig. 3.5) that the 

damage to a monkey’s organ of Corti after exposure to loud pure 

tones was restricted to localised regions only 60–70 µm wide49.  

 

 
Fig. 3.5.  Loss of inner and outer hair cells in the right ear of a monkey exposed long 
term to a wide range of pure tones at 100 dB SPL. Note the three sharp regions of 
high loss. The unexposed left ear showed no such peaks. [From Lonsbury-Martin et 
al. (1987) and used with the permission of the Acoustical Society of America] 

 
 
• Lindgren and Li (2003) noted the discrepancy in the extent of 

excitation between their traveling wave model and the results of Ren 

(2002), but left it as inexplicable.  

• Cody (1992) was puzzled50 that neurally sharp tuning could remain in 

close proximity to regions damaged by overly loud sound. In one 

guinea pig, normal tuning and sensitivity were found within 0.5 mm 

of where 97% of outer hair cells were either missing or showed severe 

stereociliar damage.  
 

 
48 Russell, I. J. and K. E. Nilsen (1997). The location of the cochlear amplifier: spatial representation 
of single tone on the guinea pig basilar membrane. Proc. Nat. Acad. Sci. 94: 2660-2664. 
49 Lonsbury-Martin, B. L. and G. K. Martin (1987). Repeated TTS exposures in monkeys: alterations 
in hearing, cochlear structure, and single-unit thresholds. J. Acoust. Soc. Am. 81: 1507-1518. 
50 Cody, A. R. (1992). Acoustic lesions in the mammalian cochlea: implications for the spatial 
distribution of the 'active process'. Hear. Res. 62: 166-172. 
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In the opinion of Allen (2001), “The discrepancy in frequency selectivity 

between basilar membrane and neural responses has always been, and still is, the 

most serious problem for the cochlear modeling community. In my view, this 

discrepancy is one of the most basic unsolved problems of cochlear modeling.”51 

While 2-D and 3-D models have improved matters, they have not narrowed tuning 

down to neural bandwidths. Active cochlear properties have opened the door to a 

gamut of signal processing strategies, but in Allen’s view, a theory and 

computational model are still desperately needed to tie it all together. He lists a 

number of anomalies between basilar membrane and neural responses (his §2.2.6) 

which we do not have the space to consider in detail. However, to mention an issue 

that relates to the resonance mechanism examined in this thesis, he calculates that, 

despite the best 3-D models, the deficiency in “excess gain” – the additional basilar 

membrane gain at the characteristic frequency (compared to its surrounding 

frequencies) – is out by a factor of between 10 and 100 (20 to 40 dB) when compared 

to nerve fibre data52. 

de Boer (1996) also noted the poor match between models and experiment, 

even with short-wave 2-D and 3-D models. In no case does the response peak rise 

more than 10–15 dB above its surroundings. We might manipulate the parameters of 

the model, he observes (p. 281), but the dilemma is that either the amplitude of the 

peak remains too low or the phase variations in the peak region become too fast. He 

blames fluid damping, and makes a passing reference to the poor sound of an 

underwater piano (or carillon). 

It is not often appreciated (or made clear by modelers) that there is flexibility 

in adjusting parameters to fit experimental data. Lesser and Berkley (1972) clearly 

spelt out that the process of matching experimental data to models is tricky53. They 

pointed out (p. 509) that the resistance term in Eq. 3.3 is not readily amenable to 

independent measurement and so, following Zwislocki’s initial work, it is adjusted so 

as to yield agreement with the data. The mass term usually ends up larger than is 

physically plausible 54 , even though some fluid will move with the partition. 

 

 
51 §2.1, italics in original. 
52 Last sentence of §2.2.6. 
53 Lesser, M. B. and D. A. Berkley (1972). Fluid mechanics of the cochlea. Part 1. Journal of Fluid 
Mechanics 51: 497-512. 
54 de Boer (1980), p. 166. 
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Similarly, Allen and Sondhi (1979) adjusted the damping term55 until the best fit near 

CF was attained. Zwislocki (2002) adjusted parameters in an attempt to match his 

model to Békésy’s narrow cochlear filter bandwidths; however, because the attempt 

failed (p. 156), Zwislocki was more inclined to suspect that the data was awry rather 

than consider his model wrong56.  

Active models provide even more adjustable parameters. Essentially, the 

active models allow for amplification stages between one transmission line stage and 

the next. This can work well in tuning frequency responses but it detracts from the 

physical realism of the model – in that the actual cochlea must make good use of all 

the signal energy available 57 . It cannot afford, like the 120-section electronic 

analogue58 of Lyon (1988), to employ a cascaded amplifier gain of 1800 just to 

prevent the traveling wave from dying out. Again, Hubbard and Mountain describe59 

an active model by Neely and Kim (1986) in which a power gain60 of 30 000 is 

called for. Zweig and Shera61 have commented on the enormous gains typically 

required in active models to match theory with experiment. Gold, of course, would 

be quick to point out the danger of boosting a signal by 90 dB in the presence of 

unavoidable noise (§I 1.4). 

 

3.2/b  Doubts about the adequacy of the stiffness map 

 
Even when the focus is kept on the stiffness of the embedded fibre, there are 

doubts that it can vary sufficiently between base and apex to tune the cochlea over 3 
 

 
55 Allen, J. B. and M. M. Sondhi (1979). Cochlear mechanics: time-domain solutions. J. Acoust. Soc. 
Am. 66: 123–132. [p. 128] 
56 Even though he gives the caveat (p. ix-x) that in auditory science “mathematical theory is often 
ignored or at least distrusted. In part, this is justified because the history of auditory research is full of 
examples of unrealistic mathematical and conceptual models that ignore existing experimental 
evidence” and contradict fundamental physical laws. Sentimentally, perhaps, he says (p. ix) that the 
simple classical picture of cochlear mechanics now has to be “reluctanctly” abandoned in the light of 
Kemp’s findings. 
57 Although in passive (linear) transmission line models, the primary wave suffers a power loss of 
about 15 dB before it reaches its best frequency [de Boer (1980), p. 160. See also de Boer, p. 267 of 
Mechanics and Biophysics of Hearing, edited by P. Dallos et al. (Springer: New York, 1990)].  
58 Lyon, R. F. and C. Mead (1988). An analog electronic cochlea. IEEE Transactions on Acoustics, 
Speech, and Signal Processing 36: 1119-1134. 
59 Hubbard, A. E. and D. C. Mountain (1996). Analysis and synthesis of cochlear mechanical function 
using models. In: Auditory Computation, edited by H. L. Hawkins et al. (Springer: New York), 62–
120. [p. 97] 
60 The ratio of power entering the system a given frequency to the power dissipated at the 
characteristic frequency. 
61 Zweig and Shera (1995), p. 2039. 
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orders of magnitude. The issue was first raised in connection with the tuning range of 

resonating fibres 62 , and is summarised in Fig. 6.3 of de Boer (1980) and its 

associated discussion63. 

In general, a broad trend linking upper and lower hearing limits and cochlear 

width and thickness can be discerned across species, but the correlation is poor and is 

contradicted by certain specialised animals like horse-shoe bats and elephants64. In a 

developmental study of gerbil cochleas, it was found that a region that codes for the 

same frequency can have basilar membranes of very different dimensions, depending 

on age65. Treating the basilar membrane as having simple mass–spring resonance 

leads to difficulties. To vary the frequency by 103 means that the combined mass and 

stiffness needs to vary by a factor of 106. Since the mass is generally accepted as 

more or less constant66, this requires stiffness (measured in terms of resistance to 

displacement by a probe, the ‘point stiffness’, divided by the width of the membrane) 

to vary a million-fold.  

Measurements show that the stiffness of the basilar membrane varies by less 

than this. Békésy, for example, measured a stiffness variation (using a fluid pressure 

of 1 cm water, which generated about 10 µm deflection) of only a hundred-fold67. 

One possible avenue is to go beyond the simple two-dimensional picture and call on 

three-dimensional fluid–membrane interactions68, although such a solution is by no 

means universally accepted.  

The summary figure of de Boer (1980) shows stiffness variations (and 

characteristic frequency) plotted against distance from the stapes. Although the 100-

fold variation of Békésy is depicted, his three data points obtained by pressing a hair 

on the membrane are also shown, and these are preferred because they show a 2.5 

order of magnitude variation in stiffness over a similar variation in frequency – even 
 

 
62 The discussion in Chapter 2 following Equation 2.1.  
63 de Boer (1980). Auditory physics. Physical principles in hearing theory. I. Physics Reports 62, 87-
174.de Boer Auditory physics. Physical principles in hearing theory. I. 
64 Echteler, S. M., et al. (1994). Structure of the mammalian cochlea. In: Comparative Hearing: 
Mammals, edited by R. R. Fay and A. N. Popper (Springer: New York), 134–171. 
65 Schweitzer, L., et al. (1996). Anatomical correlates of the passive properties underlying the 
developmental shift in the frequency map of the mammalian cochlea. Hear. Res. 97: 84-94. With age, 
the position representing a given frequency (11.2 kHz) shifted along the cochlea, being 90% from the 
base (near birth) and shifting to 65% (adult). To preserve place coding in accordance with traveling 
wave theory, the authors suggest that the stiffness of the partition must have changed. 
66 de Boer (1980), p. 166; Naidu and Mountain (1998), p. 130; Allen (2001), §1.3.1. 
67 Békésy (1960), p. 476. 
68 Steele, C. R. (1999). Toward three-dimensional analysis of cochlear structure. ORL – Journal for 
Oto-Rhino-Laryngology and Its Related Specialities 61: 238-251. 
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though this data requires an assumption that the point stiffness, which varies by 1.7 

orders, can be realistically converted into an area modulus. Extrapolating this limited 

data appears to give a mapping with a suitably steep slope. 

Work after Békésy was largely confined to measurements at or near the base 

until a provocative paper 69  by Naidu and Mountain (1998) confirmed Békésy’s 

original findings: in experiments on isolated gerbil cochleas, they could only 

measure a variation of 56 in the pectinate zone of the basilar membrane (below the 

outer hair cells) and a factor of 20 in its arcuate zone. Making allowance for 

variations in the width of the basilar membrane, they found a final volume 

compliance ratio of about 100 between base and apex. They conclude (p. 130) that 

“conventional theories that explain cochlear frequency analysis based on an 

enormous stiffness gradient and simplistic motion of the OC require substantial 

modification.” 

One attempt at explaining cochlear tuning is due to Wada et al. (1998) who 

measured thickness and length along the whole of the guinea pig cochlea70. Based on 

a computerised reconstruction and beam model, they found that the natural frequency 

at the basal turn was only 3.1 times that at the apical turn, assuming that the Youngs 

modulus and diameter of the constituent fibres was constant. Given that the variation 

was inadequate to produce wide-range tuning, the authors conclude that the 

assumption must be wrong, and that the modulus must vary. Unfortunately, direct 

evidence (which they cite on p. 5) shows that the Youngs modulus of human basilar 

membrane only varies by 50% between base and apex, so the question remains. 

Inadequate variation in tuning also emerged from another finite-element 

model of the cochlea71. In this case, geometry alone gave a 2-fold change, and 

allowing for stiffness variations a 20-fold difference between base and apex resulted. 

A way around the limitation is, the authors suggest, to suppose – ad hoc – that hair 

cells in the apex respond to a first vibrational mode while hair cells in the apex 

respond to a second. 

 

 
69 Naidu, R. C. and D. C. Mountain (1998). Measurements of the stiffness map challenge a basic tenet 
of cochlear theories. Hear. Res. 124: 124–131. 
70 Wada, H., et al. (1998). Measurement of guinea pig basilar membrane using computer-aided three-
dimensional reconstruction system. Hear. Res. 120: 1–6. 
71 Zhang, L., et al. (1996). Shape and stiffness changes of the organ of Corti from base to apex cannot 
predict characteristic frequency changes: are multiple modes the answer? In: Diversity in Auditory 
Mechanics, edited by E. R. Lewis et al. (World Scientific: Singapore), 472-478. 
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An effort to meet Naidu and Mountain’s challenge was made by Emadi et al. 

(2004), who used a vibrating stiffness probe on the basilar membrane of gerbils72 at 

various radial and longitudinal locations. In their unidirectional measurements, they 

focus on the minimum of the parabolic stiffness, values of which they took to reflect 

the basilar membrane fibres 73 . Of the four radial positions at which they took 

readings, three of them gave a longitudinal gradient comparable to those of Naidu 

and Mountain. However, the fourth, measured at the mid-pectinate location, gave a 

steeper longitudinal gradient (–5.7 dB/mm) than Naidu and Mountain (–3.0 dB/mm), 

and the authors argue that this set of data is the most relevant74. Putting this value 

into a simple resonance model and into a 3D fluid model, they calculate an excellent 

match between stiffness variation and frequency ratio between base and apex. 

As a critique, I would argue that, since fluid pressure over the whole 

membrane is the physiological stimulus, an average of all positions would be more 

representative. Moreover, the statistics of the analysis are marginal, in that the 

gradient of the line through the three error-barred points in their Fig. 5D carries large 

uncertainties. The primary author says 75  that the 95% confidence limits on the 

gradient are –6.2 and –3.0 dB/mm, the last figure corresponding to the gradient they 

wish to dispute. Moreover, the figures derive from averaging, after 5-point (5-µm) 

smoothing, all data from 1 µm deflection to 17 µm, and this processing may not yield 

the physiologically relevant value, particularly when most of the curves shown in 

Fig. 5B have non-linear slope (either less or more than 1 dB/dB, as shown in 

Fig. 5C). The non-linearity is a good reason to suspect that the statistical model 

applied to the data is not valid. 

Nevertheless, it is true that fluid models do provide a way of expanding the 

tuning range for a given stiffness range. The model76 used by Emadi et al., and its 

later form of development77,78, do give wide-range tuning; the difficulty is accepting 

 

 
72 The experiments were done both in vivo (base only) and in vitro (on a hemicochlea). As mentioned 
in §I 3.2/b, these authors used unidirectional probing of the basilar membrane. 
73 Although they acknowledge (p. 483) that the physiologically relevant stiffness may occur at smaller 
tissue deflections and be buried in the noise. 
74 The authors should not have expressed their findings in decibels, which applies to power, but their 
meaning, in terms of a ratio change of stiffness per millimetre, is clear enough. 
75 Personal communication to T. Maddess 2005/02/05. 
76 Steele, C. R. and J. G. Zais (1983). Basilar membrane properties and cochlear response. In: 
Mechanics of Hearing, edited by E. de Boer and M. A. Viergever (Delft University Press: Boston, 
MA), 29-36. 
77 Steele Toward three-dimensional analysis of cochlear structure. 
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the underlying finite-element model, which has some peculiar features. For example, 

the fluid pressure in the spiral sulcus is assumed central in stimulating inner hair 

cells, so that Steele argues (p. 241) that the whole purpose of the organ of Corti is to 

develop that pressure. He also uses (his Table 1) a Youngs modulus of 1 GPa for all 

parts of the organ of Corti, including the tectorial membrane but excepting Hensen 

cells, which seems overly simplistic. For example, in Chapter 5 measurements of the 

stiffness of the tectorial membrane are examined and values in the region of some 

kilopascals seem most appropriate.  

In conclusion, therefore, real doubts remain about being able to achieve a 

satisfactory range of tuning and, as Allen (2001) remarks, 3D models do not, without 

some radical assumptions, provide adequate sharpness. 

 

3.2/c  The spiral lamina is flexible 

 

The basilar membrane is supported on its outer side by the spiral ligament 

and on its inner side by the (osseous) spiral lamina. While the width of the partition 

is about constant along its length, the basilar membrane is relatively wide at the apex 

and tapers to its narrowest at the base. This arrangement suggested to Helmholtz, and 

to many since, that the basilar membrane is tonotopically tuned via its width. The 

problem, as pointed out by Kohllöffel79 (1983), is that the spiral lamina is in many 

animals as flexible as the basilar membrane. This author says (p. 215) that in unfixed 

human preparations the spiral lamina deflected as much as the basilar membrane 

(over the region 3–14 mm from the base when vibrated at frequencies up to 1 kHz). 

Using a hair probe, the human spiral lamina deflected nearly as much as the round 

window membrane.  

Interestingly, the flexibility of the spiral lamina was noted as early as 1680 

and formed the basis of DuVerney’s cochlear frequency analysis idea in 1684. Its 

  

 

 
78 Steele, C. R. and K.-M. Lim (1999). Cochlear model with three-dimensional fluid, inner sulcus and 
feed-forward mechanism. Audiol. Neurootol. 4: 197-203. 
79 Kohllöffel, L. U. E. (1983). Problems in aural sound conduction. In: Mechanisms of Hearing, edited 
by E. de Boer and M. A. Viergever (Delft University Press: Delft), 211-217. 
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flexibility is confirmed by a recent study80 in which the amplitude and tuning of the 

lamina in human cadavers was examined with a laser vibrometer. When exposed to 

air-conduction stimuli, the motion of the lamina (at 12 mm from the round window) 

was comparable to – and at some frequencies exceeded – the motion of the adjacent 

basilar membrane81. 

If the whole partition is flexible (and nearly constant in width), it removes 

one more factor by which tonotopic tuning can be produced. 

 

3.2/d  The basilar membrane rests on bone 

 

If the basilar membrane were essential for hearing, as the traveling wave 

theory supposes, then we would invariably find it present in a functioning cochlea. 

That is not always the case. 

In some cases we find a well formed organ of Corti, but it rests on solid bone, 

not the basilar membrane. Fig. 3.6 shows a microscopic section made by Shambaugh 

(1907) of the organ of Corti of a pig82  sitting upon solid bone, one of several 

observations of the basilar membrane that made Shambaugh think that its “thick, 

inflexible character” makes it an unsuitable candidate as a vibrating structure. He 

thought the tectorial membrane, which was always associated with the organ, a much 

better candidate. 

One may be tempted to argue that the pig was deaf. However, work in the 

1930s by Crowe, Guild, and Polvogt (cited by Tonndorf83 1959) indicates otherwise. 

In a post mortem study of human temporal bones, Polvogt and colleagues compared 

the results with audiograms taken before death and found that the person with a 

similar bony projection could hear, at least for frequencies lower than those 

corresponding to the site of the abnormality.  

 

 

 
80 Stenfelt, S., et al. (2003). Basilar membrane and osseous spiral lamina motion in human cadavers 
with air and bone conduction stimuli. Hear. Res. 181: 131-143. 
81 Stenfelt (2003), Fig. 5a. 
82 Shambaugh, G. E. (1907). A restudy of the minute anatomy of structures in the cochlea with 
conclusions bearing on the solution of the problem of tone perception. Am. J. Anat. 7: 245–257 (+ 
plates). 
83 Tonndorf, J. (1959). The transfer of energy across the cochlea. Acta Otolaryngol. 50: 171–184. 
[p. 182] 
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Fig. 3.6.  A pig’s organ of Corti, perfectly formed, sitting upon a solid bony plate. [From 
Fig. 3 of Shambaugh (1907)] 
 

3.2/e  Holes in the basilar membrane 

 

1. That same temporal bone study84 found other malformations in which there 

was either a hole in the basilar membrane or the bone separating one cochlear turn 

from another was lacking. In the first case there was open communication between 

the upper gallery of the first turn and the lower one of the second; in the second, two 

cochlear ducts stretched across one common channel. Again, the hearing thresholds 

of the affected ears were indistinguishable from those in the opposite, normally 

constructed, ears. One might predict that such holes would short-circuit a traveling 

wave, destroying sensitivity to all frequencies apical to the hole, but this did not 

happen. Another experiment reported by Tonndorf (loc. cit.) leads in a similar 

direction: Tasaki, Davis, and Legouix (1952) induced open communication between 

the adjacent turns of a guinea pig cochlea and found that cochlear microphonics 

apical to the injury site were unaffected.  

2. In many species of birds there is a naturally occurring shunt through the 

basilar membrane called the ductis brevis85 , 86 . In contrast to the helicotrema, it 

connects the galleries at the basal end. According to Kohllöffel, it is variable in size 
 

 
84 Polvogt, L. M. and S. J. Crowe (1937). Anomalies of the cochlea in patients with normal hearing. 
Ann. Otol. Rhinol. Laryngol. 46: 579-591. 
85 Kohllöffel (1983)  
86 Kohllöffel, L. U. E. (1984). Notes on the comparative mechanics of hearing. II. On cochlear shunts 
in birds. Hear. Res. 13: 77-81. 
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and occurrence, being absent in owls and extremely narrow in turkey, pheasant, and 

quail; in contrast, it is present in pigeon, woodpecker, duck, and songbirds, and is 

especially wide in goose, reaching a diameter of 0.6 mm. The anatomy of birds 

forced Helmholtz to reconsider his theory, and it appears these creatures once more 

prompt us to re-examine our models. 

3.  Finally, let us look more closely at normal human anatomy. We tend to 

accept the presence of the helicotrema as a convenient way for pressure in the two 

galleries to be equalized. The hole, about 0.4 mm2 in area, connects two ducts of 

about 1.2 mm2 (EiH, p. 435).  

But the form of the hole, as shown in Fig. 3.7, invites comment. There is no 

differential pressure at the helicotrema – it behaves hydraulically as a short circuit – 

and yet the organ of Corti retains the same form here as it does elsewhere in the 

cochlea: positioned near the apex of the triangular cochlear duct, but without a 

basilar membrane underneath. The question needs to be asked, are the hair cells at 

the helicotrema functional, because, if they are, they do not appear to be stimulated 

by motion of a basilar membrane.  

 
Fig. 3.7. Human cochlea, showing the form of the cochlear duct at the helicotrema87. The 
organ of Corti retains its standard form, even though the differential pressure is zero. [From 
Fig. 9 of Neubert (1950) and reproduced with permission of Springer-Verlag] 

 

 
87 Neubert, K. (1950). Die Basilarmembran des Menschen und ihr Verankerungssystem: ein 
morphologischer Beitrag zur Theorie des Hörens. Zeitschrift für Anatomie und 
Entwicklungsgeschichte 114: 539-588. A similar picture is depicted in de Boer (1984), Fig. 3.1a. 
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3.2/f  Zero crossings 

 

As pointed out by Shera (2001), the cochlea possesses a remarkable 

symmetry88 . As the intensity of stimulation increases, the zero crossings of the 

basilar membrane response (and acoustic nerve firings) stay fixed. Although the 

waveform’s centre of gravity moves to shorter times, the zero points stay put, as 

Fig. 3.8 makes plain. The phenomenon rules over nearly the entire dynamic range of 

the cochlea.  

 
Fig. 3.8.  Fixed zero crossings. As the intensity of a 1-kHz tone was raised from 44 to 
114 dB, the basilar membrane motion of a chinchilla was monitored by a laser vibrometer. 
The time is in periods of 14.5 kHz (CF). The structure of the wave form in the time domain 
stays virtually constant. [From Recio and Rhode (2000) via Shera (2001), and used with 
permission of the Acoustical Society of America] 
 

 

 

 
88 Shera, C. A. (2001). Intensity-invariance of fine-structure in basilar-membrane click responses: 
implications for cochlear mechanics. J. Acoust. Soc. Am. 110: 332-348. 
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Physically, the effect only makes sense, says Shera, if the local resonant 

frequencies of the partition are nearly independent of intensity. This places strong 

constraints on the way that outer hair cells work, calling for the cochlear amplifier 

not to affect the natural resonant frequency of its surroundings as it works to supply 

feedback forces. In fact, it contradicts many, if not most, cochlear models (pp. 332, 

345). In particular, it rules out all those models that require the outer hair cells to 

alter the stiffness (and impedance) of the partition.  

Shera presents a detailed mathematical analysis of how a harmonic oscillator 

interacts with a traveling wave, and how the dispersion of the latter introduces time 

and frequency effects. He sets out certain conditions under which the oscillator’s 

poles may stay fixed, but in general a traveling wave model will fail this 

requirement89. On the other had, it seems clear that a pure resonance model – such as 

the SAW model – will cope much better in meeting this condition: the independent 

oscillators will just gain strength as stimulus intensity is raised and the frequency 

(and time) structure will be preserved. 

de Boer and Nuttall (2003) recognise the peculiarity of the zero crossings90, 

but cannot suggest an answer. In fact, their active ‘feed-forward’ model doesn’t help 

because it is ‘non-causal’, meaning that motion of the basilar membrane at one point 

would instantaneously affect points further away 91 . Chadwick (1997) saw the 

drawback of such non-causality92, and remarked that it would mean a non-unique, 

non-realizable, and less useful model. I agree that this way of refining traveling wave 

models strains understanding, although it may be useful to see that from a traveling 

wave perspective a fast pressure wave is in fact non-causal.  

 

 

 
89 Cooper (2004) explains how low-frequency components will travel further and slightly faster than 
the high-frequency components, and low-intensity sounds will travel slightly further and slightly more 
slowly than higher intensity ones. [Cooper, N. P. (2004). Compression in the peripheral auditory 
system. In: Compression: From Cochlea to Cochlear Implants, edited by S. P. Bacon et al. (Springer: 
New York), 18-61.] It makes one ask how the auditory system, on this basis, can disentangle the 
components.  
90 de Boer, E. and A. L. Nuttall (2003). Properties of amplifying elements in the cochlea. In: 
Biophysics of the Cochlea: From Molecules to Models, edited by A. W. Gummer (World Scientific: 
Singapore), 331-342. 
91 A system is causal if it doesn’t depend on future values of the input to determine its output. A non-
causal system senses an input coming and gives an output before it does (Antoulas and Slavinksy, 
http://cnx.rice.edu/content/m2102/latest/) 
92 Chadwick, R. S. (1997). What should be the goals of cochlear modeling? J. Acoust. Soc. Am. 102: 
3054. Subsequently, de Boer defended his model [de Boer, E. (1999). Abstract exercises in cochlear 
modeling: reply. J. Acoust. Soc. Am. 105: 2984.] 
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3.2/g  Hear with no middle ear 

 

Before the days of antibiotics, it would be common for a middle ear infection 

to escalate to the point where there was total loss of the middle ear, including ear 

drum. The result was that the person was left only with oval and round windows, 

which opened directly to the ear canal. Surprisingly, such people do not suffer total 

hearing loss; they lose some 20–60 dB in sensitivity, but they can still hear, more so 

at low frequencies than high. In terms of the traveling wave theory, that is a major 

anomaly, because there should be no pressure difference across the partition to 

generate a stimulus, and any phase difference between the windows should virtually 

disappear at low frequency. 

Békésy recognised the contradiction, and sought to explain it (EiH, p. 105–

108). He suggested that the cochlea was not incompressible, so that even when sound 

impinged on the two windows in phase, the pressure could cause some movement of 

the windows. He imagined that some of the cochlear fluids could surge in and out of 

the cochlea through blood vessels or the “third windows” of the vestibular and 

cochlear aqueducts. If fluid flow is easier on the stapes side (it short-circuits stapes 

pressure), the round window pressure will force fluid to deflect the basilar membrane 

in a direction opposite to the usual – and hence the phase perception will be 180° 

different. Sound localisation experiments indeed show that, remarkably, people with 

only one middle ear hear sound 180° out of phase in that ear (EiH, Fig. 5-12), which 

tends to confirm Békésy’s conjecture93.  

Through introducing this mechanism, traveling wave theory can avoid an 

inherent contradiction. However, it is mentioned here as a signal that an alternative 

explanation is possible: that the outer hair cells can be stimulated directly by 

pressure.  

No matter what model one chooses, the “middleless” ear configuration 

provides major constraints on the compressibility of the cochlea, as Shera (1992) 

calculated94. He uses a network model and Békésy’s data to show that the degree of 

 

 
93 However, this fact is interpreted differently in Ch. 9 where it is used as evidence that the ear uses 
two detection systems: a pressure-detection one involving the outer hair cells, and a deflection 
mechanism involving the inner hair cells. 
94 Shera, C. A. and G. Zweig (1992). An empirical bound on the compressibility of the cochlea. J. 
Acoust. Soc. Am. 92: 1382-1388. 
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compressibility (ε, the ratio between the stiffness of the organ of Corti to the 

compressional stiffness of scala media) must be less than a few percent, but greater 

than zero (p. 1385). Similarly, Ravicz and colleagues95 performed experiments on 

cochleas of human cadavers and expressed the compressibility as an upper bound on 

a parameter α, where α was the ratio of the motion of the stapes with the round 

window blocked to the motion normally. They found α to range from 0.015 (at 

500 Hz) to 0.5 (at 30 Hz). 

The result obviously depends on the model, but it is worth keeping in mind as 

we consider how compressible living outer hair cells might be (Ch. D8) and evidence 

advanced against any compressibility whatever (§I 3.3/c below). 

 

3.2/h  Hear with blocked round window 

 

The traveling wave depends on a pressure difference between the oval 

window and the round window. Blocking the round window may then be expected to 

be a recipe for total loss of hearing. Again, that isn’t the case. 

The most startling and clear-cut instances are congenital, in which a person is 

born without a round window, an uncommon malformation called round window 

atresia96. Instead, the round window niche is filled with bone and the person suffers a 

hearing loss of 30–40 dB.  

Martin et al. (2002) confirmed the diagnosis in a bilateral case with high-

resolution CT scans and found associated hearing losses of about 40 dB97. They held 

back from surgery because they regard fenestration as likely to cause hearing loss 

rather than improvement. They mention (p. 801) that when round window absence is 

found in combination with stapes fixation, surgery is likely to lead to hearing loss 

(that is, they advise not interfering because the person is still able to hear). Linder et 

al. (2003) also did CT scans to confirm the condition in two cases and expressed 

puzzlement (p. 262) at the limited hearing deficit (40 dB or so), as they expected 
 

 
95 Ravicz, M. E., et al. (1996). An upper bound on the compressibility of the human cochlea. 
Midwinter Meeting, Association for Research in Otolaryngology 
(http://www.mit.edu/~ajmiller/epl/RaviczARO1996.pdf ) 
96 Linder, T. E., et al. (2003). Round window atresia and its effect on sound transmission. Otology and 
Neurotology 24: 259-263. 
97 Martin, C., et al. (2002). Isolated congenital round window absence. Ann. Otol. Rhinol. Laryngol. 
111: 799-801. 
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complete conductive hearing loss. They conclude that, instead of a traveling wave, 

the cochlea is sensitive to an alternative way of stimulation98. 

On the other hand, it is recognised that the pressure detection idea is not 

immune from criticism on this count either. If it were valid, then blocking the round 

window might be expected to increase hearing sensitivity, and this clearly does not 

happen. This problem is addressed in §D 8.2. 

 

3.2/i  Hear with no tectorial membrane 

 

According to the standard model, motion of the basilar membrane causes 

shear between the stereocilia of the hair cells and the tectorial membrane. In a 

situation where the tectorial membrane is absent, one might reasonably conclude that 

all hearing would be absent, but again the real situation confounds this outlook. 

It is possible to produce a knock-out gene in mice that leads to the loss of α-

tectorin, an essential component of the tectorial membrane matrix99. The result is that 

the affected mice have a completely detached tectorial membrane, and suffer a 

hearing loss of 35–40 dB. In terms of the standard model, however, we might expect 

to see total hearing loss, yet the authors report that outer hair cells still respond to 

sound with a reduced cochlear microphonic. How is that possible? One 

commentator100 suggested that the stereocilia must be moved by fluid drag, which 

could happen if the hair cells were moving side to side as well as up and down. 

However, in terms of the SAW model, a 40 dB loss is understandable because 

an essential feedback path is absent. However, it is still possible for the outer hair 

cells to provide an electrical response because they are reacting to the pressure wave, 

not a traveling wave. However, since the cells can no longer interact across rows, 

 

 
98 In the older literature, a mass of conflicting results on the role of the round window can be found, 
and not much ground can be gained by discussing it here. Many experimenters attempted to block the 
existing round windows of animals, but the problem is the extreme difficulty of achieving a true 
block, as even a minute air cavity would, given the vanishingly small displacements involved in 
hearing, provide sufficient compliance in the system. Nevertheless, they raise a real doubt about the 
necessity of a round window. One major doubt-raising paper [Hallpike, C. S. and P. Scott (1940). 
Observations on the function of the round window. J. Physiol. 99: 76-82.] favoured Pohlman’s idea of 
pressure-sensitive cochlear receptors (p. 81).  
99 Legan, P. K., et al. (2000). A targeted deletion in α-tectorin reveals that the tectorial membrane is 
required for the gain and timing of cochlear feedback. Neuron 28: 273-285. 
100 Corey, D. P. (2000). Sound amplification in the inner ear: it takes TM to tango. Neuron 28: 7-9. 



I 3 [37] 

 

DPOAEs are impossible (see Chapter 7), and this is just what Legan et al. found 

(p. 276).   

 

3.2/j  The casing of the cochlea is exceptionally hard 

 

The otic capsule in which the cochlea and its fluid contents are encased is 

noteworthy in its own right. The capsule is made of bone and, in humans, sits within 

the base of the skull. Remarkably, this bone is immensely hard, and this ivory-like 

bone is the hardest in the human body. Despite its small size, the otic capsule derives 

developmentally from 14 distinct ossification centres and the initial fetal architecture 

is maintained throughout adult life101.  

In whales, the inner ear is separate from the skull, so that it forms a spherical 

mass, the os perioticum, that has been described as a very compact, stony-hard 

‘glasslike’ bone102, the densest and hardest bone known in the animal kingdom. It is 

so solid that opening a specimen is a difficult and tedious job, often resulting in 

fracturing. When an animal dies, its soft spongy skeleton soon decays, but the os 

perioticum remains, littering the sea floor for millennia103. The question therefore 

arises, why is the otic capsule so hard? 

In terms of the standard model, this design effort is superfluous: all it is has to 

do is contain the fluid contents and be adequately stiffer than the basilar membrane. 

Given the high compliance of the round window, the dense bone seems unnecessarily 

hard. 

On the other hand, if the cochlea is designed to detect acoustic pressure, then 

the outlook changes considerably. In this case, the difference in acoustic impedance 

between the cochlear fluids and that of the capsule is crucial: acoustic energy will 

leak out of the cochlea unless there is a large ratio in acoustic impedance between the 

two. In terms of the proportion of energy reflected (R) at a boundary, Fletcher (1992) 

shows that (p. 98) 

 
 

 
101 Jahn, A. F. (1988). Bone physiology of the temporal bone, otic capsule, and ossicles. In: 
Physiology of the Ear, edited by A. F. Jahn and J. Santos-Sacchi (Raven: New York), 143-158. 
102 Reysenbach de Haan, F. W. (1956). Hearing in whales. Acta Oto-Laryngologica Suppl. 134: 1-114. 
[p. 44] 
103 Fossilised inner ear bones of whales, millions of years old, are therefore common [as a Google 
search confirms] and can be bought over the internet for a few dollars.  
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R = (z2 – z1)2 / (z1 + z2)2       (3.14) 

 

where z1 and z2 are the acoustic impedances of the two media. To prevent loss of 

acoustic energy from the cochlear fluids (z = 1.5 × 106 rayl) into the skull, it 

therefore becomes important to make the acoustic impedance (ρ c) of the 

surrounding bone as high as possible. The speed of sound in typical bone is about 

twice that in water, and its density greater by a similar factor, so that, using Eq. 3.14, 

we find that the energy reflected at the interface is only about a third. By making the 

density of cochlear bone double that of ordinary bone, the reflectance figure can be 

made to exceed 50%, which is then beginning to become a useful figure for 

containing the pressure wave. This is even more vital in the case of whales, because 

the loss will be not just to the skull, but to the surrounding water104.  

Interestingly, in guinea pigs and other rodents, the cochlea is encased only in 

thin bone and projects from the skull of the animal, a configuration greatly different 

to that in humans105 and leading to the suspicion that the hearing process in these 

animals may differ in important respects from ours.  

The issue of optimal design of the cochlea is a major one, and will be dealt 

with in the concluding chapter. Nevertheless, it is worth noting here that if the 

cochlea is configured to detect the fast pressure wave, then the presence of a round 

window nearby to an oval window appears counterproductive: if the windows move 

out of phase to each other, then the pressure waves generated by each would tend to 

cancel, leaving an evanescent wave which should decay rapidly with increasing 

distance from the windows. To avoid cancellation, a better design for pressure 

detection would be to have the round window at the far (apical) end of the cochlea, 

but the possibility is nonetheless worth exploring. 

 

3.2/k  Fast responses 

 

Traveling waves progress relatively slowly, starting at the base at about 

100 m/s and slowing down until at the apex their speed is more like 1 m/s. The slow 
 

 
104 Whale hearing is discussed in more detail in §3.3, where the special arrangement of their round 
window is outlined. 
105 Wysocki, J. (2005). Topographical anatomy of the guinea pig temporal bone. Hear. Res. 199: 103-
110. 
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speed is understood as the basis of the time delay in Kemp echoes, where the travel 

time to a tuned place on the partition and its return to the stapes underlies the long 

delays observed106. Here we note cases where the cochlear responses are too fast to 

be mediated by a traveling wave, and instead a fast pressure wave must be carrying 

them. 

1. Wilson hair-cell swelling model. The credit for seeing an association 

between outer hair cells and fast pressure waves must, in modern times, go to 

Wilson. Although he kept to the idea of traveling waves exciting the cells, he 

proposed that the activity of outer hair cells produced a change in volume, so that in 

this way a pressure wave could be generated and return almost instantly to the ear 

canal, thereby explaining Kemp echoes. This hair-cell swelling model was presented 

in a 1980 paper107 as a way of explaining why the cochlear microphonic recorded at 

the round window in response to a low-level 800-Hz tone burst appeared to occur 

simultaneously with the ear canal pressure recorded with a microphone.  

Since the electrical signal was instantaneous, so too must have been the 

acoustic signal conveyed from the outer hair cell, and a pressure wave is the only 

signal carrier fast enough. The data in the paper are not convincing by themselves, 

but the idea is an engaging one. However, in going against the mainstream it has not 

caught on108. 

If there is a negligible reverse travel time, where do long response times 

come from? Wilson still retained the idea that acoustic stimulation reached the outer 

hair cells via the traveling wave, but, even allowing for that forward propagation 

path, the long total echo delay meant an extra source of delay must be sought. He 

attributed this to the delay inherent in building up oscillation in a narrowly tuned 

filter – the ‘second filter’ delay. Noting that such an extended delay means the 

corresponding tuning would be uncommonly narrow – narrower than observed inner 

hair cell tuning – he suggested that the outer hair cells are actually more sharply 

tuned than inner hair cells. We are back into Gold territory. 
 

 
106 Even though making the time delay equal to twice the travel time is not as straightforward as it 
seems. For example, Shera and Guinan (2003) find that the delay is about 1.3–1.9 times the one-way 
travel time. 
107 Wilson, J. P. (1980). Model for cochlear echoes and tinnitus based on an observed electrical 
correlate. Hear. Res. 2: 527-532. 
108 It was considered briefly on pp. 522-523 of de Boer, E. (1980). Nonlinear interactions and the 
'Kemp echo'. Hear. Res. 2: 519-526. Wilson’s name was not attached to it, but the idea was 
considered unlikely and not considered further. 
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Fig. 3.9.  In response to a tone-burst stimulus, the ear canal pressure of the echo (recorded 
with a microphone) occurred simultaneously with the voltage due to the cochlear 
microphonic (recorded with an electrode). This suggested to Wilson that a fast pressure pulse 
(nearly as fast as the electrical correlate) was conveying the echo from the 800-Hz position 
on the basilar membrane to the ear canal. Stimulus enters cochlea as traveling wave (orange), 
builds up oscillation in second filter (maroon), and exits cochlea as pressure wave (green). 
[Adapted from Fig. 2 of Wilson (1980), with permission of Elsevier Science] 
 

 

In earlier chapters the suggestion was made that Wilson’s model be modified 

so as to introduce a simple symmetry: not only do outer hair cells produce a fast 

pressure wave but in addition the fast pressure wave directly stimulates the outer hair 

cells, in this way bypassing the traveling wave (at least at low sound pressure levels). 

Consequently, all the delays we see are now due to filter delay (the orange line in 

Fig. 3.9 becomes vertical, and the maroon line doubles in length), but given what we 

know about the sharpness of cochlear tuning, the additional factor of 2 should be able 

to be accommodated with a suitably high Q filter. Wilson calculates (the basis of 

which is not given) that the volume change necessary to produce an ear canal 

echo out 

tone-burst in 
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pressure of 20 dB SPL would require less than a 0.01% volume change in 300 outer 

hair cells (p. 530) and my own calculations suggest that this may be reasonable109. 

All the remaining material in this section is consistent with a two-way fast 

pressure wave and a slow build up in a highly tuned resonator. The filter could 

equally be considered a first filter as a second one. A reinterpretation of Shera and 

Zweig along these lines was given in §I 3.1/d. 

2. Fast distortion products.  It has been known for a long time that cochlear 

distortion products can occur remarkably quickly. In 1985, Brown and Kemp 

measured distortion products in gerbils, both acoustically in the ear canal and 

electrically via the cochlear microphonic110. They found several instances of delays 

at a small fraction of a millisecond (their Fig. 2), but in the main the delays were 

between 0.5 and 1.3 ms, slightly shorter than a two-way traveling wave. They were 

more puzzled that the delays in upper sideband distortion products (2f2 – f1) were 

shorter than for upper (2f1 – f2), and suggested that the acoustic distortion product 

may reach the base as ‘fluid borne sound waves’ (p. 197), in accordance with 

Wilson’s proposal. Even so, the extremely short delays they measured were not 

highlighted. 

A reason too much store has not been placed on distortion product 

measurements is that the mechanism is not well understood 111 . It is generally 

supposed that the interaction of the two primary frequencies takes place where the 

two traveling wave envelopes overlap on the partition. The observed result is an 

extended series of peaks and troughs, including much fine structure. The rapid phase 

and amplitude variations make data collection difficult and it has been easier to 

ignore discordant data.  

 

 

 
109 An OHC 50 µm long and 10 µm in diameter occupies a volume of 4 × 10–15 m3. When 300 of them 
change volume by 0.01%, the volume change is 10–16 m3. The cochlear fluid is incompressible, so this 
volume will displace the stapes and round window (about equally) and cause 15× this volume change 
at the ear drum. If the ear canal occupies a microphone-sealed volume of 1 cm3, the ear canal volume 
will change by about 1 part in 108. Changing the ear canal pressure of 105 Pa by 1 in 108 gives a 
pressure of 10–3 Pa, and this is an SPL of 34 dB.  
A change of 0.01% in volume could be effected by tilting the hinged cuticular plate by 0.1°. The 
cuticular plate can tilt by up to 15° [Zenner et al. (1988), p. 234].  
110 Brown, A. M. and D. T. Kemp (1985). Intermodulation distortion in the cochlea: could basal 
vibration be the major cause of round window CM distortion? Hear. Res. 19: 191-198. 
111 A proposal is made in Chapter D7. 



I 3 [42] 

  

 
 
Fig. 3.10. Grey = black + dotted. How an actual DPOAE (grey line) can be separated into 
two components, a low-latency contribution (black line) and a high-latency one (dotted line). 
[Data is for a 2f1– f2 DPOAE with f2/f1 = 1.2 and f1 = 51 dB and f2 = 30 dB SPL. From Fig. 1 
of Mauermann and Kollmeier (2004) with permission of the Acoustical Society of America] 
 

 

The whole picture has recently been brought into sharp focus by a trio of 

papers112,113,114 that demonstrate that a given DPOAE signal can be separated into 

two discrete components. Goodman et al. (2003) used an inverse FFT method on 

guinea pig data, Shera used a suppressor tone near the 2f1–f2 frequency in a human, 

and Mauermann and Kollmeier (2004) employed a time-windowing procedure, again 

with human data. In such ways, the experimenters were able to separate DPOAEs 

into (using the most recent paper’s terminology) a long-latency ‘reflection’ 

component (RCOAE, almost equivalent to an SFOAE) and a short-latency distortion 

component (DCOAE). The analyses reveal that a DPOAE is actually due to the 

interference of two components arising from two separate mechanisms, a conclusion 

that is not entirely new but which had not before been clearly demonstrated. As 

Fig. 3.10 illustrates, the separation provides a simpler picture of what may be going 

on. 

 

 
112 Goodman, S. S., et al. (2003). The origin of SFOAE microstructure in the guinea pig. Hear. Res. 
183: 7-17. 
113 Shera, C. A. (2004). Mechanisms of mammalian otoacoustic emission and their implications for 
the clinical utility of otoacoustic emissions. Ear Hear. 25: 86-97. See also Fig. 9 of Shera and Guinan 
(1999).  
114 Mauermann, M. and B. Kollmeier (2004). Distortion product otoacoustic emission (DPOAE) 
input/output functions and the influence of the second DPOAE source. J. Acoust. Soc. Am. 116: 2199-
2212. 
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In terms of amplitude variations, we see that instead of wide-ranging peaks 

and nulls the amplitude excursions are generally less. More dramatically, we see that 

the DPOAE phase curve is decomposed into two almost linear components: an 

RCOAE plot with a slope of about –1 cycle per 138 Hz, and a DCOAE plot, almost 

horizontal, with a slope of no more than about –1 cycle per 10 000 Hz. A major 

conclusion for the discussion here is that the horizontal component corresponds to a 

delay of no more than 0.1 ms and possibly much less, whereas the slow component 

corresponds to a delay of about 7.2 ms. The Shera paper shows a phase lag of less 

than 30° over the frequency range 2.6–7 kHz, corresponding to a time delay of about 

34 µs, whereas the Goodman et al. paper show an average phase slope of –55° over 

2–10 kHz, equivalent to a lag of some 19 µs. These are extremely small delays, 

suggestive of a fast mechanism – perhaps, I would venture, a compression wave. 

Shera has argued115 against any naïve equivalence between DPOAE phase gradients 

and wave travel times, but there is reason to think116 that the low phase gradient in 

fact represents the action of the pressure wave. The complete inference (drawn in 

more detail in Chapter R7) is that DPOAEs are due to the interaction of two tones at 

a single place on the partition where there are two highly tuned resonators; the tones 

enter and exit the cochlea via fast compression waves, and in between they interact 

through the slow build-up of highly tuned resonators.  

Such a picture may be disputed, but it does at least suggest that further 

examination of the phase slope of DCOAEs is warranted, as it certainly looks like a 

fast wave underlies them117. A recent paper118 confirms such an interpretation: it 

observed SFOAE latencies and found that “many of the latencies were too short to be 

considered valid” and were “apparently inconsistent with the reflection source 

hypothesis” (p. 3811). One of the explanations considered for the recurring “invalid” 

data is the reverse transmission path through the fluid, although the authors underline 

the need to reconcile this with long-latency observations, which are consistent with 

the conventional round-trip concept. The model in the preceding paragraph does this. 

 

 
115 Footnote 27 of Shera and Guinan (1999). 
116 Fuller, R. B. (1975). Synergetics: Explorations in the Geometry of Thinking. (Macmillan: New 
York). [p. xix] 
117 In all the papers showing a near-horizontal phase plot, none has sought to provide a physical 
interpretation. 
118 Konrad-Martin and Keefe Transient-evoked stimulus-frequency and distortion-product otoacoustic 
emissions in normal and impaired ears. 
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3. Fast suppression. The amplitude and frequency of a spontaneous emission 

can be disturbed by projecting a suppressing tone into the cochlea, and recording the 

time course of the process gives useful information about the oscillator dynamics. In 

one such study, the experimenters found that just prior to release from suppression, a 

prominent short-lived dip appeared 119 . The time-constant of the dip was found 

(p. 3718) to be 0.03 ms, a lag which strains an explanation based on interactions of 

traveling waves but matches the figures derived from the DPOAE phase 

measurements. 

 

3.2/l  A bootstrap problem 

 

An interesting perspective on the traveling wave theory is given 120  by 

Fukazawa (2002). If the fundamental stimulus to the outer hair cells is differential 

pressure – that is, pressure across the partition – how can the outer hair cells, 

embedded in the membrane, cause any change in that differential pressure? That is, 

the outer hair cells have nothing to push against: any force generated by them will 

pull down on the plateau of Corti at the same time as they push against the basilar 

membrane and the forces will cancel. It is the classic bootstrap problem in which 

internal forces can never change the momentum of a system. Fukazawa concludes 

that the cochlear amplifier can never get off the ground. 

 

3.2/m  No backward traveling wave  

 

Kemp introduced the idea of a backward traveling wave in order to explain 

cochlear echoes, and the concept is now a standard part of the modern traveling wave 

model (see §I 3.1/d), even though a backward traveling wave has never been directly 

observed. Wilson queried the concept121 in 1988, but it has persisted because without 

it active cochlear mechanics is left high and dry. A provocative discussion on the 
 

 
119 Fig. 2c (p. 3714) of Murphy, W. J., et al. (1995). Relaxation dynamics of spontaneous otoacoustic 
emissions perturbed by external tones. II. Suppression of interacting emissions. J. Acoust. Soc. Am. 
97: 3711-3720. 
120 Fukazawa, T. (2002). How can the cochlear amplifier be realized by the outer hair cells which have 
nothing to push against? Hear. Res. 172: 53–61. 
121 p. 114 of Basic Issues in Hearing, ed. Duifhuis, Horst, Wit (Academic, London, 1988). 
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issue can be found on pp. 583–586 of Biophysics of the Cochlea122 in which Dallos 

concurs that “there is absolutely no experimental evidence that shows there is a 

backward travelling wave.”123  

It is impossible to prove a negative, since lack of evidence is not evidence of 

lack. Perhaps the traveling wave is at such a low level it is beyond observation. 

Nevertheless, the longer it remains unobserved, the more doubts grow. The latest 

observations to draw a blank124 were done on the gerbil cochlea by Ren (2004) using 

a scanning laser interferometer to detect vibration of the stapes and of the partition. 

He projected two tones into the cochlea and detected the DPOAE at 2f1–f2. 

Significantly, the interaction generated a forward traveling wave – he could see the 

stapes vibrate at the 2f1–f2 frequency 50 µs before the basilar membrane at its best 

frequency did – but he could not see any motion on the basilar membrane before that 

stapes vibration. So what caused the stapes to vibrate? There didn’t seem to be any 

backward traveling wave, so Ren proposes a compression wave, even though he 

acknowledges it contradicts current theory. In supplementary material on the Nature 

web site, Ren discusses similar work by Narayan et al. (1998) and concludes that 

“This unambiguous finding in different species of experimental animals by two 

independent laboratories clearly demonstrates that the stapes vibration at the 

emission frequency and the consequent resulting otoacoustic emission in the ear 

canal are not mediated by the hypothetical backward travelling wave.” 

The problem of anomalous round trip travel times was raised in §I 3.1/d, and 

this also strengthens doubts about the existence of backward traveling waves.  

In brief, there are certain difficulties underlying traveling wave theory, and 

these are magnified when trying to sustain the case for a backward-traveling version. 

 

 

 
122 Ed. A. W. Gummer (World Scientific, Singapore, 2003). 
123 Gummer (2003) p. 584. Long candidly admits that “I think it goes back to most published 
experiments – they only show the beautiful and simple results. Every time I have done transient-
evoked emissions and even in some of our distortion-product emissions, although the major returning 
wave has a two-times travel-time, there are indications of a one-time travel-time, and [even though] 
Pat Wilson talked about it [and] other people have talked about it, it is not talked about much, we 
can’t explain it, so we don’t tend to stress it, but I am sure that it is there.” [ibid., p. 585] 
124 Ren, T. (2004). Reverse propagation of sound in the gerbil cochlea. Nat. Neurosci. 7: 333-334. 
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3.3  Summary 
 

This wide-ranging discussion has highlighted the major limitations of the 

traveling wave theory and has shown how these may have to do with neglecting the 

round window membrane and its generation of common-mode pressure. A later part 

of this thesis (Chapter D8) sets out evidence that outer hair cells do in fact appear to 

act as pressure detectors, and a mechanism is described whereby this could happen. 

However, at this point the hypothesis that outer hair cells detect acoustic pressure is 

taken as a viable theory, and a model of how this process – likened to a surface 

acoustic wave (SAW) resonator – could operate in the cochlea is presented in the 

following chapter. We will return to considerations of pressure detection in the 

cochlea in an assessment of supporting evidence for the model in Chapter D9. 




