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Abstract 

 
We define low-latency activity as strategies that respond to market events in the 
millisecond environment, the hallmark of proprietary trading by high-frequency traders 
though it could include other algorithmic activity as well. We propose a new measure of 
low-latency activity to investigate the impact of high-frequency trading on the market 
environment. Our measure is highly correlated with NASDAQ-constructed estimates of 
high-frequency trading, but it can be computed from widely-available message data. We 
use this measure to study how low-latency activity affects market quality both during 
normal market conditions and during a period of declining prices and heightened 
economic uncertainty. Our analysis suggests that increased low-latency activity improves 
traditional market quality measures—decreasing spreads, increasing displayed depth in 
the limit order book, and lowering short-term volatility. Our findings suggest that given 
the current market structure for U.S. equities, increased low-latency activity need not 
work to the detriment of long-term investors. 
 
JEL Classification: G10; G20; G23; G28 
 
Keywords: High-frequency trading; Limit order markets; NASDAQ; Order placement 
strategies; Liquidity; Market quality 
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1. Introduction  

Our financial environment is characterized by an ever increasing pace of both 

information gathering and the actions prompted by this information. Speed in absolute 

terms is important to traders due to the inherent fundamental volatility of financial 

securities. Relative speed, in the sense of being faster than other traders, is also very 

important because it can create profit opportunities by enabling a prompt response to 

news or market activity. This latter consideration appears to drive an arms race where 

traders employ cutting-edge technology and locate computers in close proximity to the 

trading venue in order to reduce the latency of their orders and gain an advantage. As a 

result, today’s markets experience intense activity in the “millisecond environment,” 

where computer algorithms respond to each other at a pace 100 times faster than it would 

take for a human trader to blink.  

While there are many definitions for the term “latency,” we view it as the time it 

takes to learn about an event (e.g., a change in the bid), generate a response, and have the 

exchange act on the response. Exchanges have been investing heavily in upgrading their 

systems to reduce the time it takes to send information to customers, as well as to accept 

and handle customers’ orders. They have also begun to offer traders the ability to co-

locate the traders’ computer systems in close proximity to theirs, thereby reducing 

transmission times to under a millisecond (a thousandth of a second). As traders have 

also invested in the technology to process information faster, the entire 

event/analysis/action cycle has been reduced for some traders to a couple of milliseconds. 

The beneficiaries from this massive investment in technology appear to be a new 

breed of high-frequency traders who implement low-latency strategies, which we define 

as strategies that respond to market events in the millisecond environment. These traders 

now generate most message activity in financial markets and according to some accounts 
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also take part in the majority of the trades.1 While it appears that intermediated trading is 

on the rise [with these low-latency traders serving as the intermediaries, e.g., Menkveld 

(2013, this issue)], it is unclear whether intense low-latency activity harms or helps the 

market.  

Our goal in this paper is to examine the influence of these low-latency traders on 

certain dimensions of market quality. More specifically, we would like to know how their 

combined activity affects attributes such as bid-ask spreads, the total price impact of 

trades, depth in the limit order book, and the short-term volatility of stocks.2 To 

investigate these questions, we utilize publicly-available NASDAQ order-level data that 

are identical to those supplied to subscribers and provide real-time information about 

orders and executions on NASDAQ. Each entry (submission, cancellation, or execution) 

is time-stamped to the millisecond, and hence these data provide a very detailed view of 

NASDAQ activity.  

We begin by providing a discussion of the players in this new millisecond 

environment: proprietary and agency algorithms. We document periodicities in the time-

series of market activity, which we attribute to agency algorithms. We also look at the 

speed at which some traders respond to market events—the hallmark of proprietary 

trading by high-frequency trading firms—and find that the fastest traders have an 

effective latency of 2-3 ms during our sample period.   

We propose a new measure of low-latency activity based on “strategic runs” of 

linked messages that describe dynamic order placement strategies. While our measure 

might reflect some activity originating from agency algorithms, our restriction to long 

strategic runs makes it more likely that the measure predominately captures the activity 

of high-frequency traders, and we believe that it is highly correlated with their presence 

in the market. As such, we view this measure as a proxy for the activity of high-

                                                 
1 See, for example, the discussion of high-frequency traders in the SEC’s Concept Release on Equity 
Market Structure (2010). 
2 Another dimension of market quality, the informational efficiency of prices (or price discovery), and its 
relationship to high-frequency trading is investigated in Brogaard, Hendershott, and Riordan (2012). 
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frequency traders. An advantage of our measure is that it can be constructed from 

publicly-available data, and therefore does not rely on specialty datasets that may be 

limited in scale and scope. We show that our measure is highly correlated with aggregate 

trading by high-frequency trading firms in the 120-stock NASDAQ HFT dataset studied 

in Brogaard (2012), Brogaard, Hendershott, and Riordan (2012), and Carrion (2013, this 

issue). To assess robustness, we attempt to exclude agency algorithms from our measure, 

and find that our conclusions are unchanged. However, due to the manner in which the 

measure is constructed, there is no certainty that it only captures high-frequency trading. 

We use our measure to examine how the intensity of low-latency activity affects 

several market quality measures. We find that an increase in low-latency activity reduces 

quoted spreads and the total price impact of trades, increases depth in the limit order 

book, and lowers short-term volatility. Our results suggest that the increased activity of 

low-latency traders is beneficial to traditional benchmarks of market quality in the current 

U.S. equity market structure, one that is characterized by both high fragmentation and 

wide usage of agency and proprietary algorithms. We use a variety of econometric 

specifications to examine the robustness of our conclusions. 

Furthermore, we employ two distinct sample periods to investigate whether the 

impact of low-latency trading on market quality differs between normal periods and those 

associated with declining prices and heightened uncertainty. Over October 2007, our first 

sample period, stock prices were relatively flat or slightly increasing. Over our second 

sample period, June 2008, stock prices declined (the NASDAQ index was down 8% in 

that month) and uncertainty was high following the fire sale of Bear Stearns. We find that 

higher low-latency activity enhances market quality in both periods.3  

Our paper relates to small but growing strands in the empirical literature on speed 

in financial markets and high-frequency trading (which is a subset of algorithmic trading 

comprised of proprietary algorithms that require low latency). With regard to speed, 

                                                 
3 We note that this does not imply that the activity of low-latency traders would help curb volatility during 
extremely brief episodes such as the “flash crash” of May 2010.   
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Hendershott and Moulton (2011) and Riordan and Storkenmaier (2012) examine market-

wide changes in technology that reduce the latency of information transmission and 

execution, but reach conflicting conclusions as to the impact of such changes on market 

quality. There are several papers on algorithmic trading that characterize the trading 

environment on the Deutsche Boerse (Prix, Loistl, and Huetl, 2007; ; Groth, 2009 Gsell, 

2009; Gsell and Gomber, 2009; Hendershott and Riordan, 2013), the interdealer foreign 

exchange market (Chaboud, Chiquoine, Hjalmarsson, and Vega, 2009), and the U.S. 

equity market (Hendershott, Jones, and Menkveld, 2011).  

A smaller set of papers focuses on high-frequency trading. Kirilenko, Kyle, 

Samadi, and Tuzun (2010) look at high-frequency traders in the futures market during the 

flash crash episode. Brogaard (2012) seeks to characterize high-frequency trading on 

NASDAQ and BATS, while Brogaard, Hendershott, and Riordan (2012) study the impact 

of high-frequency trading on price discovery in U.S. equities. Three other papers also 

appear in this special issue on high-frequency trading. Menkveld (2013, this issue) is a 

case study of a particular high-frequency trader who acts as a market maker on Chi-X and 

Euronext. Carrion (2013, this issue) uses the NASDAQ HFT dataset to examine the 

sources of profitability of high-frequency trading firms, how they carry out their 

strategies, and their impact on market efficiency. Hagströmer and Nordén (2013, this 

issue) use special data from NASDAQ OMX Stockholm to separately characterize the 

strategies of “market making” and “opportunistic” high-frequency trading firms.    

The rest of this paper proceeds as follows. The next section describes our sample 

and data. Section 3 provides an introductory discussion of the millisecond environment 

with some evidence on the activity of proprietary and agency algorithms. Section 4 

describes our measure of low-latency activity. In Section 5 we estimate the impact of our 

measure on diverse measures of market quality. In Section 6 we discuss related papers 

and place our findings within the context of the literature, and Section 7 concludes.  
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2. Data and sample  

2.1. NASDAQ order-level data 

The NASDAQ Stock Market operates an electronic limit order book that utilizes the 

INET architecture (which was purchased by NASDAQ in 2005).4 All submitted orders 

must be price-contingent (i.e., limit orders), and traders who seek immediate execution 

need to price the limit orders to be marketable (e.g., a buy order priced at or above the 

prevailing ask price). Traders can designate their orders to display in the NASDAQ book 

or mark them as “non-displayed,” in which case they reside in the book but are invisible 

to all traders. Execution priority follows price, visibility, and time. All displayed 

quantities at a price are executed before non-displayed quantities at that price can trade. 

The publicly-available NASDAQ data we use, TotalView-ITCH, are identical to 

those supplied to subscribers, providing real-time information about orders and 

executions on the NASDAQ system. These data are comprised of time-sequenced 

messages that describe the history of trade and book activity. Each message is time-

stamped to the millisecond, and hence these data provide a detailed picture of the trading 

process and the state of the NASDAQ book.  

We observe four different types of messages: (1) the addition of a displayed order 

to the book, (2) the cancellation (or partial cancellation) of a displayed order, (3) the 

execution (or partial execution) of a displayed order, and (4) the execution (or partial 

execution) of a non-displayed order. In other words, we observe every displayed order 

that arrives to the NASDAQ market, including the NASDAQ portion of Reg NMS 

Intermarket Sweep Orders and odd-lot orders. We do not observe submission and 

cancellation of non-displayed non-marketable limit orders, which are unobservable to 

market participants in real-time and hence are not part of the TotalView-ITCH data feed. 

                                                 
4 See Hasbrouck and Saar (2009) for a more detailed description of the INET market structure.   
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Since we observe all trades (including odd-lots), however, we know when a non-

displayed limit order is executed.5 

2.2. Sample 

Our sample is constructed to capture variation across firms and across market conditions. 

We begin by identifying all common, domestic stocks in CRSP that are NASDAQ-listed 

in the last quarter of 2007.6 We then take the top 500 stocks, ranked by market 

capitalization as of September 30, 2007. Our first sample period is October 2007 (23 

trading days). The market was relatively flat during that time, with the S&P 500 Index 

starting the month at 1,547.04 and ending it at 1549.38. The NASDAQ Composite Index 

was relatively flat but ended the month up 4.34%. Our October 2007 sample is intended 

to reflect a “normal” market environment.  

 Our second sample period is June 2008 (21 trading days), which represents a 

period of heightened uncertainty in the market, falling between the fire sale of Bear 

Stearns in March 2008 and the Chapter 11 filing of Lehman Brothers in September. 

During June, the S&P 500 Index lost 7.58%, and the NASDAQ Composite Index was 

down 7.99%. In this sample period, we continue to follow the firms used in the October 

2007 sample, less 29 stocks that were acquired or switched primary listing. For brevity, 

we refer to the October 2007 and June 2008 samples as “2007” and “2008,” respectively. 

 In our dynamic analysis, we use summary statistics constructed over 10-minute 

intervals. To ensure the accuracy of these statistics, we impose a minimum message 

count cutoff. A firm is excluded from a sample if more than 10% of the 10-minute 

                                                 
5 With respect to executions, we believe that the meaningful economic event is the arrival of the marketable 
order. In the data, when an incoming order executes against multiple standing orders in the book, separate 
messages are generated for each standing order. We view these as a single marketable order arrival, so we 
group as one event multiple execution messages that have the same millisecond time stamp, are in the same 
direction, and occur in a sequence unbroken by any non-execution message.  The component executions 
need not occur at the same price, and some (or all) of the executions may occur against non-displayed 
quantities. 
6 NASDASQ introduced the three-tier initiative for listed stocks in July 2006. We use CRSP’s NMSIND=5 
and NMSIND=6 codes to identify eligible NASDAQ stocks for the sample (which is roughly equivalent to 
the former designation of “NASDAQ National Market” stocks). 
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intervals have fewer than 250 messages. Net of these exclusions, the 2007 sample 

contains 351 stocks, and the 2008 sample contains 399 stocks. Our results concerning the 

impact of low-latency activity on market quality are robust to imposing a less stringent 

screen that leaves more than 90% of the stocks in the sample.7   

Table 1 provides summary statistics for the stocks in both sample periods using 

information from CRSP and the NASDAQ data. Panel A summarizes the measures 

obtained from CRSP. In the 2007 sample, market capitalization ranges from $789 million 

to $276 billion, with a median of slightly over $2 billion. The sample also spans a range 

of trading activity and price levels. The most active stock exhibits an average daily 

volume of 77 million shares; the median is about one million shares. Average closing 

prices range from $2 to $635 with a median of $29. Panel B summarizes data collected 

from NASDAQ. In 2007, the median firm had 26,862 limit order submissions (daily 

average), 24,015 limit order cancellations, and 2,482 marketable order executions.8 

3. The millisecond environment 

Much trading and message activity in U.S. equity markets is commonly attributed to 

trading algorithms.9 However, not all algorithms serve the same purpose and therefore 

the patterns they induce in market data and the impact they have on market quality could 

depend on their specific objectives. Broadly speaking, we can categorize algorithmic 

                                                 
7 Specifically, the less stringent screen only excludes stocks if more than 10% of the 10-minute intervals 
have fewer than 100 messages. This screen significantly increases the number of stocks in both sample 
periods (471 in 2007 and 456 in 2008), but the results are very similar to those discussed in Section 5 and 
presented in Tables 5, 6, and 7.   
8 These counts reflect our execution grouping procedure. In 2007, for example, the mean number of order 
submissions less the mean number of order cancellations implies that the mean number of executed 
standing limit orders is 45,508–40,943=4,565. This is above the reported mean number of marketable 
orders executed (3,791) because a single marketable order may involve multiple standing limit orders. As 
we describe in footnote 5, we group executions of standing limit orders that were triggered by a single 
marketable order into one event. 
9 The SEC’s Concept Release on Equity Market Structure cites media reports that attribute 50% or more of 
equity market volume to proprietary “high-frequency traders.” A report by the Tabb Group (July 14, 2010) 
suggests that buy-side institutions use “low-touch” agency algorithms for about a third of their trading 
needs.  
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activity as proprietary or agency. We consider high-frequency trading a subcategory of 

proprietary algorithms for which low latency is essential. Our paper mostly focuses on 

this low-latency activity and its impact on the market, but to establish the context we 

discuss both agency and proprietary algorithms in this section.  

Agency algorithms are used by buy-side institutions (and the brokers who serve 

them) to minimize the cost of executing trades in the process of implementing changes in 

their investment portfolios. They have been in existence for about two decades, but the 

last ten years have witnessed a dramatic increase in their appeal due to decimalization (in 

2001) and increased fragmentation in the U.S. equity markets (following Reg ATS in 

1998 and Reg NMS in 2005). These algorithms break up large orders into pieces that are 

then sent over time to multiple trading venues. The key characteristic of agency 

algorithms is that the choice of which stock to trade and how much to buy or sell is made 

by a portfolio manager who has an investing (rather than trading) horizon in mind. The 

algorithms are meant to minimize execution costs relative to a specific benchmark (e.g., 

volume-weighted average price or market price at the time the order arrives at the trading 

desk) and their ultimate goal is to execute a desired position change. Hence they 

essentially demand liquidity, even though their strategies might utilize nonmarketable 

limit orders. 

  In terms of technological requirements, agency algorithms are mostly based on 

historical estimates of price impact and execution probabilities across multiple trading 

venues and over time, and often do not require much real-time input except for tracking 

the pieces of the orders they execute. For example, volume-weighted average price 

algorithms attempt to distribute executions over time in proportion to the aggregate 

trading and achieve the average price for the stock. While some agency algorithms offer 

functionality such as pegging (e.g., tracking the bid or ask side of the market) or 

discretion (e.g., converting a nonmarketable limit buy order into a marketable order when 

the ask price decreases), typical agency algorithms do not require millisecond responses 

to changing market conditions.  
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We believe that agency algorithms drive one of the most curious patterns we 

observe in the millisecond environment: clock-time periodicity.  For a given timestamp t, 

the quantity mod(t,1000) is the millisecond remainder, i.e., a millisecond time stamp 

within the second. Assuming that message arrival rates are constant or (if stochastic) 

well-mixed within a sample, we would expect the millisecond remainders to be uniformly 

distributed over the integers {0,1,…,999}. The data, however, tell a different story.  

Figure 1 depicts the sample distribution of the millisecond remainders. The null 

hypothesis is indicated by the horizontal line at 0.001. The distributions in both sample 

periods exhibit marked departures from uniformity: large peaks occurring shortly after 

the one-second boundary at roughly 10-30 ms and around 150 ms, as well as broad 

elevations around 600 ms. We believe that these peaks are indicative of agency 

algorithms that simply check market conditions and execution status every second (or 

minute), near the second (or the half-second) boundary, and respond to the changes they 

encounter. These periodic checks are subject to latency delays (i.e., if an algorithm is 

programmed to revisit an order exactly on the second boundary, any response would 

occur subsequently). The time elapsed from the one-second mark would depend on the 

latency of the algorithm: how fast the algorithm receives information from the market, 

analyzes it, and responds by sending messages to the market. The observed peaks at 10-

30 ms or at 150 ms could be generated by clustering in transmission time (due to 

geographic clustering of algorithmic trading firms) or technology.10  

The similarities between the 2007 and 2008 samples suggest phenomena that are 

pervasive and do not disappear over time or in different market conditions. One might 

conjecture that these patterns cannot be sustainable because sophisticated algorithms will 

take advantage of them and eliminate them. However, as long as someone is sending 

messages in a periodic manner, strategic responses by others who monitor the market 

                                                 
10 We checked with NASDAQ whether their systems that provide traders with more complex order types 
(e.g., RASH) could be the source of these clock-time periodicities. NASDAQ officials contend that their 
systems do not create such periodicities. 
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continuously could serve to amplify rather than eliminate the periodicity. The clustering 

of agency algorithms means that the provision of liquidity by proprietary algorithms or 

by one investor to another is higher at these times, and hence conceivably helps agency 

algorithms execute their orders by increasing available liquidity. As such, agency 

algorithms would have little incentive to change, making these patterns we identify in the 

data persist over time.11 It is also possible, however, that the major players in the industry 

that designs and implements agency algorithms were unaware of the periodicity prior to 

our research. If this is indeed the case, and the predictability of buy-side order flow is 

considered undesirable for various reasons, our findings could lead to changes in the 

design of agency algorithms that would eliminate such periodicities in the future. 

Relative to agency algorithms, proprietary algorithms are more diverse and more 

difficult to concisely characterize. Nonetheless, our primary focus is a new breed of 

proprietary algorithms that utilizes extremely rapid response to the market environment. 

Such algorithms, which are meant to profit from the trading environment itself (as 

opposed to investing in stocks), are employed by hedge funds, proprietary trading desk of 

large financial firms, and independent specialty firms. These algorithms can be used, for 

example, to provide liquidity or to identify a trading interest in the market and use that 

knowledge to generate profit. Brogaard (2012) and Brogaard, Hendershott, and Riordan 

(2012) study a 120-stock dataset in which NASDAQ identified the trading by 26 high-

frequency firms in 2008 and 2009. They report that these firms are involved in 68.5% of 

NASDAQ dollar volume traded over that time period.12  

The hallmark of high-frequency proprietary algorithms is speed: low-latency 

capabilities. These traders invest in co-location and advanced computing technology to 

                                                 
11 This intuition is similar in spirit to Admati and Pfleiderer (1988), where uninformed traders choose to 
concentrate their trading at certain times in order to gain from increased liquidity even in the presence of 
informed traders. 
12 The NASDAQ classification excludes proprietary trading desks of large sell-side firms, as well as direct-
access brokers that specialize in providing services to small high-frequency trading firms, and therefore the 
total number of traders utilizing such low-latency strategies may be somewhat larger.  



11 

 

create an edge in strategic interactions. Their need to respond to market events 

distinguishes them from the majority of agency algorithms. We define low-latency 

trading as “strategies that respond to market events in the millisecond environment.” This 

definition is meant to capture all proprietary algorithms that require low latency (i.e., 

high-frequency traders) but could potentially include some agency algorithms that utilize 

low-latency capabilities. How fast are the low-latency traders? The definition above, 

which is formulated in terms of speed of response to market events, suggests that an 

answer to this question could be found by focusing on market events that seem especially 

likely to trigger rapid reactions. One such event is the improvement of a quote. An 

increase in the bid may lead to an immediate trade (against the new bid) as potential 

sellers race to hit it. Alternatively, competing buyers may race to cancel and resubmit 

their own bids to remain competitive and achieve or maintain time priority. Events on the 

sell side of the book, subsequent to a decrease in the ask price, can be defined in a similar 

fashion.  

 We therefore estimate the hazard rates (i.e., the message arrival intensities) of the 

above specific responses subsequent to order submissions that improve the quote. In 

Figure 2 we plot separately the conditional hazard rates for same-side submissions, same-

side cancellations, and executions against the improved quotes (pooled over bid increases 

and ask decreases). We observe pronounced peaks at approximately 2-3 ms, particularly 

for executions. This suggests that the fastest responders—the low-latency traders—are 

subject to 2-3 ms latency.  For comparison purposes, we note that human reaction times 

are generally thought to be on the order of 200 ms (Kosinski, 2012). The figure suggests 

that the time it takes for some low-latency traders to observe a market event, process the 

information, and act on it is indeed very short.  

 Since humans cannot follow such low-latency activity on their trading screens, 

one might wonder what it actually looks like. It is instructive to present two particular 

message sets that we believe are typical. Panel A of Table 2 is an excerpt from the 

message file for ticker symbol ADCT on October 2, 2007 beginning at 09:51:57.849 and 

ending at 09:53:09.365 (roughly 72 seconds). Over this period, there were 35 
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submissions (and 35 cancellations) of orders to buy 100 shares, and 34 submissions (and 

33 cancellations) of orders to buy 300 shares. The difference in order sizes and the brief 

intervals between cancellations and submissions suggest that the traffic is being 

generated by algorithms responding to each other. We highlight in gray some of the 

orders and cancellations in the table to make it easier to see what appear to be two 

algorithms that are engaged in strategic behavior attempting to position themselves at the 

top of the book: undercutting each other, canceling and resubmitting when the other 

algorithm cancels, and so on. The pricing of the orders cause the bid quote to rapidly 

oscillate between $20.04 and $20.05. Panel B of Table 2 describes messages (for the 

same stock on the same day) between 09:57:18.839 and 09:58:36.268 (about 78 seconds). 

Over this period, orders to sell 100 shares were submitted (and quickly cancelled) 142 

times. During much of this period there was no activity except for these messages. As a 

result of these orders, the ask quote rapidly oscillated between $20.13 and $20.14.  

The underlying logic behind each algorithm that generates such “strategic runs” 

of messages is difficult to reverse engineer. The interaction in Panel A of Table 2 could 

be driven by each algorithm’s attempt to position a limit order, given the strategy of the 

other algorithm, so that it would optimally execute against an incoming marketable order. 

The pattern of submissions and cancellations in Panel B could be an attempt to trigger an 

action on the part of other algorithms and then interact with them. After all, it is clear that 

an algorithm that repeatedly submits orders and cancels them within 10 ms does not 

intend to signal anything to human traders (who would not be able to discern such rapid 

changes in the limit order book). Such algorithms create their own space in the sense that 

some of what they do seems to be intended to trigger a response from (or respond to) 

other algorithms. Activity in the limit order book is dominated by the interaction among 

automated algorithms, in contrast to a decade ago when human traders still ruled.  

While agency algorithms are used in the service of buy-side investing and hence 

can be justified by the social benefits often attributed to delegated portfolio management 

(e.g., diversification), the social benefits of high-frequency proprietary trading are more 

elusive. If high-frequency proprietary algorithms engage in electronic liquidity provision, 
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then they provide a similar service to that of traditional market makers, bridging the 

intertemporal disaggregation of order flow in continuous markets. However, the social 

benefits of other types of low-latency trading are more difficult to ascertain. One 

argument sometimes made in the context of proprietary statistical arbitrage algorithms is 

that they aid price discovery by eliminating transient price disturbances, but such an 

argument in a millisecond environment is tenuous: at such speeds and in such short 

intervals it is difficult to determine the price component that constitutes a real innovation 

to the true value of a security as opposed to a transitory influence. The social utility in 

algorithms that identify buy-side interest and trade ahead of it is even harder to defend. It 

therefore becomes an empirical question to determine whether these high-frequency 

trading algorithms in the aggregate harm or improve the market quality perceived by 

long-term investors. Our paper seeks to answer this question.   

4. Low-latency trading and market quality: the measures  

Agents who engage in low-latency trading and interact with the market over millisecond 

horizons are at one extreme in the continuum of market participants. Most investors 

either cannot or choose not to engage the market at this speed.13 If we believe that 

healthy markets need to attract longer-term investors whose beliefs and preferences are 

essential for the determination of market prices, then market quality could be measured 

using time intervals that are easily observed by these investors. Therefore, in this section 

we develop measures that would allow us to characterize the influence of low-latency 

trading on liquidity and short-term volatility observed over 10-minute intervals 

throughout the day. 

To construct a measure of low-latency activity, we begin by identifying “strategic 

runs,” which are linked submissions, cancellations, and executions that are likely to be 

                                                 
13 The recent SEC Concept Release on Equity Market Structure refers in this context to “long-term 
investors … who provide capital investment and are willing to accept the risk of ownership in listed 
companies for an extended period of time” (p. 33). 
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parts of a dynamic algorithmic strategy. Our goal is to isolate instances of market activity 

that look like the interactions presented in Table 2. Since our data do not identify 

individual traders, our methodology no doubt introduces some noise into the 

identification of low-latency activity. We nevertheless believe that other attributes of the 

messages can used to infer linked sequences.  

In particular, our “strategic runs” (or simply, in this context, “runs”) are 

constructed as follows. Reference numbers supplied with the data unambiguously link an 

individual limit order with its subsequent cancellation or execution. The point of 

inference comes in deciding whether a cancellation can be linked to either a subsequent 

submission of a nonmarketable limit order or a subsequent execution that occurs when 

the same order is resent to the market priced to be marketable. We impute such a link 

when the cancellation is followed within 100 ms by a limit order submission or by an 

execution in the same direction and for the same size. If a limit order is partially 

executed, and the remainder is cancelled, we look for a subsequent resubmission or 

execution of the cancelled quantity. In this manner, we construct runs forward throughout 

the day.  

Our procedure links roughly 60% of the cancellations in the 2007 sample, and 

54% in the 2008 sample. Although we allow up to 100 ms to elapse from cancellation to 

resubmission, 49% of the imputed durations are one or zero ms, and less than 10% 

exceed 40 ms. The length of a run can be measured by the number of linked messages.  

The simplest run would have three messages: a submission of a nonmarketable limit 

order, its cancellation, and its resubmission as a marketable limit order that executes 

immediately (i.e., an “active execution”). The shortest run that does not involve an 

execution is a limit order that was submitted, cancelled, resubmitted, and cancelled or 

expired at the end of the day. Our sample periods, however, feature many runs of 10 or 

more linked messages. We identify about 46.0 million runs in the 2007 sample period and 

67.1 million runs in the 2008 sample period.  

Table 3 presents summary statistics for the runs. We observe that around 75% of 

the runs have 3 to 9 messages, but longer runs (10 or more messages) constitute over 
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60% of the messages that are associated with strategic runs. The proportion of runs that 

are (at least partially) executed is 38.1% in 2007 and 30.5% in 2008. About 8.1% (7.1%) 

of the runs in the 2007 (2008) sample period end with a switch to active execution. That 

is, a limit order is cancelled and replaced with a marketable order. These numbers attest 

to the importance of strategies that pursue execution in a gradual fashion.  

To construct a measure of low-latency trading that is more robust to measurement 

error, we transform the raw strategic runs in two ways. The first transformation is to use 

only longer runs—runs of 10 or more messages—to construct the measure. While our 

methodology to impute links between cancellations and resubmissions of orders can 

result in misclassifications, for a run with many resubmissions to arise solely as an 

artifact of such errors there would have to be an unbroken chain of spurious linkages. 

This suggests that longer runs are likely to be more reliable depictions of the activity of 

actual algorithms than shorter runs. While the 10-message cutoff is somewhat arbitrary, 

these runs represent more than half of the total number of messages that are linked to runs 

in each sample period, and we also believe that such longer runs characterize much low-

latency activity. Our conclusions on the impact of low-latency activity on market quality 

are unchanged when we include all runs.14 

The second transformation we use to reduce measurement error is to utilize time-

weighting of the number of runs rather than simply aggregating the runs or the messages 

in runs. We define our measure of low-latency activity, RunsInProcess, as the time-

weighted average of the number of strategic runs of 10 messages or more the stock 

experiences in an interval.15 Time-weighting helps us combat potential errors because it 

                                                 
14 To ensure that omitting shorter runs does not materially affect our conclusions, we used all strategic runs 
to construct an alternative measure of low-latency activity: AllRunsInProcess, and carried out exactly the 
same analysis. The results were similar to those discussed in Section 5 and presented in Tables 5, 6, and 7. 
15 The time-weighting of this measure works as follows. Suppose we construct this variable for the interval 
9:50:00 am-10:00:00 am. If a strategic run started at 9:45:00 am and ended at 10:01:00 am, it was active for 
the entire interval and hence it adds 1 to the RunsInProcess measure. A run that started at 9:45:00 am and 
ended at 9:51:00 am was active for one minute (out of ten) in this interval, and hence adds 0.1 to the 
measure. Similarly, a run that was active for 6 seconds within this interval adds 0.01.  



16 

 

ensures that roughly equivalent patterns of activity contribute equally to our measure, 

which can be demonstrated using the strategic run shown in Panel B of Table 2. This run, 

which lasts 78.5 seconds, contributes 0.129 (78.5/600) to RunsInProcess of stock ADCT 

in the interval 9:50-10:00 am on October 2, 2007. What if we were wrong and the 

inferred resubmission at time 9:57:20.761 actually came from a different algorithm, so 

that the activity described in Panel B of Table 2 was generated by one 48-message 

algorithm and another 94-message algorithm rather than a single 142-message algorithm? 

This should not alter our inference about the activity of low-latency traders from an 

economic standpoint, because the two shorter algorithms together constitute almost the 

same amount of low-latency activity as the single longer algorithm. The time-weighting 

of RunsInProcess ensures that the measure computed from the two algorithms is almost 

identical to the one originally computed from the single algorithm (the two will differ 

only by 0.005/600=0.000008 due to the 5 ms gap between the end of the first algorithm 

and the beginning of the second algorithm), and hence this type of error would not affect 

our empirical analysis.  

It is important to recognize that our measure of low-latency activity does not have 

an inherently positive relationship with market quality. In fact, if liquidity is provided by 

patient limit order traders (which is the case most often described in theoretical models), 

depth in the book is maximized when the cancellation rate is zero. In other words, 

liquidity is highest when limit orders stay in the book until they are executed, in which 

case our measure RunsInProcess is equal to zero. As traders begin cancelling orders, 

liquidity in the book worsens and our measure increases. This suggest that holding 

everything else equal, RunsInProcess should be negatively related to liquidity, though 

liquidity may decline only modestly if traders cancel but replace limit orders with other 

limit orders rather than switch to marketable orders. However, the relationship between 

RunsInProcess and liquidity is more complex because low-latency traders may be willing 

to submit more limit orders and provide more depth if they have the technology to cancel 

limit orders quickly enough to lower the pick-off risk of their orders. Hence, we do not 

know a priori whether the relationship between our measure of low-latency activity and 
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market quality is positive or negative in equilibrium, and this is what we test in  

Section 5.  

Our measure captures low-latency activity.16 One definition of “high-frequency 

trading” is proprietary trading that utilizes low latency. Trading firms that use low-

latency technology include all high-frequency traders, but could also include firms that 

implement very sophisticated agency algorithms. While most agency algorithms may not 

need such capabilities, and we have identified periodicity in the data that suggests lack of 

sophistication on the part of agency algorithms, it can definitely be the case that some 

low-latency activity originates from firms that do not carry out proprietary trading.  

The SEC in the Concept Release on Equity Market Structure (2010) refers to 

high-frequency traders as “professional traders acting in a proprietary capacity that 

engage in strategies that generate a large number of trades on a daily basis.” The SEC 

document suggests that firms engaging in this practice use high-speed sophisticated 

algorithms, employ co-location services that minimize latency, hold positions for very 

short intervals of time, submit and cancel many orders, and attempt to end the day with a 

flat inventory. Publicly-available NASDAQ data do not contain records of the accounts 

of each trading firms and hence the duration of their holdings and their end-of-day 

inventory position cannot be ascertained. Our measure attempts to pick up the other 

attributes (high-speed sophisticated algorithms that create dynamic strategies, fast 

responses that necessitate co-location, and the submission and cancellation of numerous 

orders) to identify the activity of high-frequency traders.17 In this sense it is a proxy that 

we believe would be highly correlated with their actual activity. We stress, though, that it 

is a proxy rather than a direct observation of their activity.  

                                                 
16 Hendershott, Jones, and Menkveld (2011) and Boehmer, Fong, and Wu (2012) use the number of 
messages in the market as a proxy for overall algorithmic activity. We believe that RunsInProcess is a 
better depiction of low-latency activity, which is a particular subset of algorithmic trading, than a simple 
message count.   
17 We thank a referee for this interpretation of our measure. 
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How does RunsInProcess compare with constructs based on the NASDAQ HFT 

dataset used in Brogaard (2012), Brogaard, Hendershott, and Riordan (2012), and Carrion 

(2013, this issue)? The NASDAQ HFT dataset covers 26 high-frequency trading firms 

and activity in 120 stocks during 2008 and 2009.  Because the identifications used to 

classify the high-frequency trading firms included in the dataset are not publicly 

available, it is difficult to validate or extend the sample. RunsInProcess, in contrast, is 

constructed from message data that are widely available for many markets and for longer 

time periods.   However, if there are high-frequency arbitrage strategies that utilize only 

marketable orders, our measure may not incorporate them, though we believe that their 

incidence would be highly correlated with other high-frequency activity that are captured. 

On the other hand, the classification in the NASDAQ HFT dataset excludes the 

proprietary trading desks of large sell-side firms, as well as orders that are sent to the 

market via direct access brokers that specialize in providing services to small high-

frequency trading firms. 

The observations in the NASDAQ HFT dataset are executions in which the buyer 

and seller are classified as HF (i.e., a high-frequency trader) or non-HF, and as active or 

passive.  The criteria used by NASDAQ to identify an HF trader are based on knowledge 

of the trading and order submission styles of each firm.  RunsInProcess is based on 

message sequences, and so may include some agency algorithms if these carry out 

strategies that require low latency, though most activity by agency algorithms should be 

excluded when we eliminate runs shorter than 10 messages. We construct several 

versions of our measure that attempt to exclude activity that could be associated with 

agency algorithms. In one version, for example, we exclude runs that start in the first 150 

ms of each second. The rationale is that the evidence presented in Section 3 could suggest 

that many agency algorithms operate in a periodic way and that if we exclude this period 

we may reduce their impact on our measure. In another version of the measure, we 

exclude runs where the average duration between a cancellation and a resubmission is 

more than 5 ms. The rationale is that high-frequency traders, but not necessarily agency 

algorithms, would invest in technology that would give them such capabilities. In fact, 
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the evidence in Section 3 seems to suggest that the technology utilized by some agency 

algorithms is much slower. Our results using these alternative versions of our measure 

corroborate the conclusions we obtain from the empirical work discussed in Section 5.18   

Since our second sample period (June 2008) overlaps with the trading data in the 

NASDAQ HFT dataset, we can examine the correlations between our measure of low-

latency activity and four measures constructed from the HFT dataset: 

1. Executed HF orders 

2. Executions with any HF participation (on either or both sides) 

3. Executions against passive HF orders 

4. Executions of active non-HF against passive HF orders 

The first two measures characterize overall HF activity; the second two focus on HF 

executions that supply liquidity. 

Of the 120 firms in the HFT dataset, 60 are NASDAQ stocks for which we use 

ITCH order-level data to construct the RunsInProcess measure.19 Table 4 shows 

Spearman and Pearson correlations between the HFT-dataset measures and 

RunsInProcess over all 10-minute intervals for all stocks. As expected, RunsInProcess is 

highly correlated with high-frequency liquidity-supplying activity (the third and fourth 

measures). Importantly, though, RunsInProcess is also highly correlated with the first and 

second measures, which are based on total HFT trading. The Spearman correlation is 

over 0.8 for both the order number and share volume measures irrespective of whether 

these are liquidity-supplying trades or total HFT trading. Thus, our measure of low-

latency activity is not restricted to solely capturing liquidity-supplying trades despite 

being comprised mostly of limit orders. This observation also suggests strong 

                                                 
18 We thank the editor, Tarun Chordia, for suggesting these ideas. Tables with the tests using these 
alternative versions of our measure are available from the authors. 
19 Out of the 60 stocks, 33 were in our June 2008 sample. We created the measure RunsInProcess for the 27 
additional stocks to be able to estimate the correlations in Table 4 using all 60 stocks that are available in 
the HFT dataset. 



20 

 

commonality between the liquidity-supplying and liquidity-demanding activities of high-

frequency traders.  

We emphasize that both our RunsInProcess measure and the trading measures 

from the HFT dataset are only proxies for the activity of high-frequency trading firms. In 

particular, most of the activity by high-frequency traders involves orders that do not 

execute. The measures computed from the HFT dataset use only executed orders, and 

therefore do not necessarily reflect overall activity.20 Still, the fact that our 

RunsInProcess measure and the measures of executed orders from the HFT dataset are 

highly correlated should be reassuring to researchers who carry out empirical analysis 

using either the publicly-available ITCH data or the HFT dataset to discern the overall 

impact of high-frequency trading firms. 

  In addition to our measure of low-latency activity, we use the ITCH order-level 

data to compute several measures that represent different aspects of NASDAQ market 

quality: three measures of liquidity and a measure of short-term volatility. The first 

measure, Spread, is the time-weighted average quoted spread (ask price minus the bid 

price) on the NASDAQ system in an interval. The second measure, EffSprd, is the 

average effective spread (or total price impact) of all trades on NASDAQ during the 10-

minute interval, where the effective spread is defined as the transaction price (quote 

midpoint) minus the quote midpoint (transaction price) for buy (sell) marketable orders. 

The third measure, NearDepth, is the time-weighted average number of (visible) shares in 

the book up to 10 cents from the best posted prices.21 The short-term volatility measure, 

                                                 
20 The HFT dataset contains additional information, depth snapshots and quotes, for several short periods, 
but none of them overlaps with our sample period. Hence, we use the available information on executed 
orders to construct the measures we correlate with RunsInProcess.   
21 We stress that spreads, effective spreads (or total price impact), and depth are measures of liquidity rather 
than direct measures of investor transaction costs. Investors can use both marketable orders (that pay the 
spread) and limit orders (that earn the spread), and hence the cost of execution for a certain position 
depends on whether investors utilize dynamic strategies consisting of both limit and marketable orders. 
While such dynamic strategies would no doubt incorporate estimates of the market quality measures we 
study, the relationship between the cost arising from the optimal strategy and these measures may not be 
monotonic.  
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HighLow, is defined as the highest midquote in an interval minus the lowest midquote in 

the same interval, divided by the midpoint between the high and the low (and multiplied 

by 10,000 to express it in basis points).  

5. Low-latency trading and market quality: analysis 

To facilitate aggregation and presentation, we standardize each series at the individual 

stock level to have zero mean and unit variance. We first examine correlations between 

these standardized series. RunsInProcess is negatively correlated with the quoted spread 

(–0.32 in 2007 and –0.37 in 2008), negatively correlated with the total price impact of 

trades (–0.16 and –0.11 in the two sample periods, respectively), positively correlated 

with depth in the NASDAQ limit order book (0.29 and 0.35), and negatively correlated 

with short-term volatility (–0.15 and –0.24). Since all measures except depth are negative 

proxies for market quality, these estimates uniformly indicate a positive association 

between RunsInProcess and market quality. 

We next examine the sensitivity of this association to the presence of control 

variables in three alternative linear models. The first model is: 

 , 1 , 2 , ,= + +i t i t i t i tMktQuality a RunsInProcess a TradingIntensity e , (1) 

where 1,...,=i N indexes firms, 1,...,=t T indexes 10-minute time intervals, MktQuality 

represents one of the market quality measures (Spread, EffSprd, NearDepth or HighLow), 

and TradingIntensityi,t is stock i’s total trading volume in the entire market (not just 

NASDAQ) in the previous 10 minutes (i.e., over interval t–1). The last variable is 

intended to capture the impact of intraday informational events or liquidity shocks, and 

by construction it is predetermined. The coefficients are pooled across stocks, and the 

zero-mean standardization eliminates the intercept in the model. 

 To allow for the possibility that market-wide return and volatility factors might 

drive both market quality and low-latency activity, the second model is:  

 
, 1 , 2 , 3 ,

4 , , ,
i t i t i t QQQQ t

QQQQ t i t

MktQuality a RunsInProcess a TradingIntensity a R

a R e

= + +

+ +
  (2) 
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where RQQQQ,t is the interval return on the NASDAQ 100 exchange traded fund, and its 

absolute value is a measure of volatility. We use the NASDAQ index in preference to the 

S&P index because NASDAQ is the primary listing exchange for all stocks in our 

sample. 

Our third specification is motivated by theoretical models that give rise to 

intraday patterns in liquidity (as well as various empirical findings of time-of-day effects 

in liquidity measures). For example, models of adverse selection (e.g., Glosten and 

Milgrom, 1985) generally predict higher spreads in the morning compared to the rest of 

the day. An afternoon increase in spreads is consistent with inelasticity of demand (e.g., 

Brock and Kleidon, 1992), while the analysis in Admati and Pfleiderer (1988) could be 

used to justify morning and afternoon patterns driven by implicit or explicit coordination 

of traders in the market. Accordingly, the third model incorporates morning and 

afternoon dummy variables: 

 
, 0 1 , 2 ,

3 4 , ,
i t i t i t

t t i t

MktQuality a a RunsInProcess a TradingIntensity
a DumAM a DumPM e

= + +

+ + +
 (3) 

where DumAMt is equal to one for intervals between 9:30 am and 11:00 am, and zero 

otherwise, and DumPMt is equal to one for intervals between 2:30 pm and 4:00 pm, and 

zero otherwise. Despite the zero-mean standardization, an intercept is required in this 

specification to capture the residual mid-day effects (11:00 am-2:30 pm). 

 Table 5 reports estimates of models (1), (2) and (3). The coefficient estimates are 

OLS, and the standard errors are computed using the Driscoll-Kraay extension of the 

Newey-West HAC estimator (Driscoll and Kraay, 1998; Baum, Schaffer, and Stillman, 

2010; Thompson, 2011). The Discoll-Kray procedure is a GMM technique for panels 

where both the cross-sectional and time dimensions are large. The moment conditions are 

constructed as cross-sectional averages, and so the estimates effectively cluster on time. 

The GMM framework is useful in that it readily accommodates the Newey-West 

autocorrelation correction. The coefficient estimates are identical to the OLS estimates, 
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but the standard errors are in principle robust to heteroscedasticity, autocorrelation, and 

general spatial (cross-firm) dependence. 

 Panel A of Table 5 presents estimated coefficients for model (1) in the 2007 and 

2008 samples. The most interesting coefficient is a1, which measures the association of 

low-latency activity with the market quality measures. We observe that higher low-

latency activity is associated with lower posted and effective spreads, greater depth, and 

lower short-term volatility. Moreover, the relationship between low-latency activity and 

market quality is similar in the 2007 and 2008 sample periods. Estimates for models (2) 

and (3) (in Panels B and C) are generally similar. 

 The OLS estimates cannot be interpreted as causal impact coefficients due to the 

possibility of endogeneity arising from simultaneity. For example, an exogenous drop in 

spreads might establish a more attractive environment for, and lead to an increase in, low-

latency activity. This mechanism would induce correlation between RunsInProcess and 

the errors of the regression, rendering OLS estimates inconsistent. 

 There are no clear and obvious candidates for instrumental variables. Most 

constructs based on stock-specific data for a given interval are so closely related to 

RunsInProcess or the market quality measures that they are subject to the same 

simultaneity concerns. We nevertheless believe that an effort to separate the impact of 

low-latency activity on spread, depth, and volatility from influences working in the 

opposite direction is warranted. We therefore turn to construction of instruments and 

specifications that might resolve, albeit imperfectly, the two effects. 

 A good instrument for low-latency activity in, say, model (1), should satisfy two 

requirements. It should be correlated with RunsInProcessi,t and it should also be 

uncorrelated with the ei,t disturbance. If low-latency activity has a significant market-

wide component, then a market-wide average of RunsInProcess is likely to satisfy the 

first requirement.  Market-wide factors in low-latency activity could plausibly arise from 

funding constraints or inventory risk management at the high-frequency trading firms. 

The experience of the flash crash documented in Kirilenko et al. (2011) and discussed in 

the joint CFTC/SEC report is one illustration (albeit dramatic) of this tendency (U.S. 
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Commodities Futures Trading Commission and the U.S. Securities and Exchange 

Commission, 2010).  

The second requirement (absence of correlation with ei,t) is more difficult to 

achieve. We can eliminate one obvious source of correlation, though, by excluding from 

the broader RunsInProcess average the contributions from RunsInProcessi,t (the variable 

we are attempting to instrument) and also contributions from stocks likely to be closely 

related to stock i by reason of common trading strategies. By way of illustration, consider 

the error term in Model I applied to the Spread measure of market quality. The time-t 

error for, say, Apple (eAAPL,t) inherently affects SpreadAAPL,t, which may in turn affect 

RunsInProcessAAPL,t. However, eAAPL,t would not directly affect RunsInProcess for other 

stocks, with the possible exception of other computer stocks and other NASDAQ 100 

stocks or S&P 500 stocks. The latter connections might arise from the pursuit of index 

strategies and within-industry pairs strategies. 

 The instrument for RunsInProcessi,t that we propose, denoted RunsNotINDi,t, is 

the average number of runs of 10 messages or more across all the stocks in our sample 

excluding: (1) the INDividual stock, stock i, (2) stocks in the same INDustry as stock i 

(as defined by the four-digit SIC code), and (3) stocks in the same INDex as stock i, if 

stock i belongs to either the NASDAQ 100 Index or the S&P 500 Index. Our hope is that 

by excluding the most likely candidates for such cross-stock strategies, RunsNotINDi,t 

would not be affected by the liquidity and volatility of stock i, strengthening the 

economic rationale for using it as an instrument.  

Beyond stocks in the same industry and the same index that are explicitly omitted 

from the instrument, our results should be robust to multi-stock algorithms that utilize 

concurrent trading in a small number of stocks. The average (minimum) number of stocks 

that are used in the constructions of RunsNotIND is 322.7 (250) in 2007 and 371.3 (290) 

in 2008, making it insensitive to concurrent trading in a handful of related stocks. For 

robustness, we repeated the analysis with an instrument computed as the median of 

RunsInProcessi,t (excluding stock i, stocks in the same industry, and stocks in the same 

index) in each interval because the median should be even less sensitive to outliers. Our 
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results with the median instrument are similar to those with RunsNotIND, suggesting that 

multi-stock algorithms are not a significant problem with respect to the validity of this 

instrument.22 

The exclusions used in the construction of RunsNotIND are motivated by the 

second requirement for a valid instrument, but they do not impair its ability to satisfy the 

first requirement: the correlation between RunsInProcessi,t and RunsNotINDi,t (pooled 

across all stocks and time intervals) is 0.521. We therefore estimate models (1), (2) and 

(3) with RunsNotINDi,t as an instrument for RunsInProcessi,t .The reported coefficient 

estimates are 2SLS, and the standard errors are (as above) Driscoll-Kraay with two-way 

clustering. 

 Panel A of Table 6 presents the estimated coefficients of model (1) side-by-side 

for the 2007 and 2008 sample periods. Contingent on the validity of our instrument, the 

coefficient a1 measures the impact of low-latency activity on the market quality 

measures. We observe that higher low-latency activity implies lower posted and effective 

spreads, greater depth, and lower short-term volatility. In fact, the results appear 

somewhat stronger than those using the simple OLS.23 In all regressions, Cragg-Donald 

(1993) statistics reject the null of weak instruments using the Stock and Yogo (2005) 

critical values.  

Panel B of Table 6 suggests that the influence of low-latency activity is not driven 

by omitted variables related to market return or volatility. In fact, the market’s return is 

almost never statistically significant. While market volatility is a significant driver behind 

                                                 
22 If some market participants implement complex algorithms whereby a single co-located algorithm makes 
low-latency trading decisions in a large number of stocks (say hundreds of stocks), the quality of our 
instrument may suffer. In fact, extensive trading of this nature would invalidate the instrument. However, 
talking to industry participants and regulators led us to believe that a single algorithm (i.e., a distinct 
process that runs on a co-located machine) is usually not responsible for high-frequency trading in many 
securities. Rather, each algorithm implements a strategy in a more limited set of securities, often a single 
stock. In particular, the speed requirements of competitive low-latency trading give rise to simpler, rather 
than more complex, algorithms. 
23 The finding that the results strengthen when the 2SLS instrument effectively removes noise from each 
stock’s RunsInProcessi,t  could suggest a prominent role for market-wide determinants of low-latency 
activity. 
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all of our measures of market quality, its inclusion has a negligible effect on the a1 

coefficients when we examine spreads, effective spreads, and depth, and only a minor 

effect when the dependent variable is short-term volatility. Panel C of Table 6 shows the 

results with time-of-day dummies. In general, the time-dummy coefficients suggest that 

the market is less liquid in the first hour and a half of trading and more liquid in the 

afternoon. However, time-of-day effects do not eliminate the impact of low-latency 

activity, testifying to the robustness of the effects we document.  

This analysis extends our understanding of the impact of low-latency activity on 

market quality by reducing the likelihood that the results are driven by reverse causality 

(i.e., the impact of the liquidity or volatility of a particular stock in the particular interval 

on RunsInProcessi,t). We note that despite the possible limitations of our instrument, the 

fact that the results strengthen when we move from the OLS to the instrumental variables 

estimation is consistent with low-latency trading impacting market quality.  

The next logical step is joint modeling of both the market quality measures and 

low-latency activity in a simultaneous-equations framework. While this would necessitate 

use of a separate instrument for the market quality measures, it offers at least one 

significant advantage. In models (1)-(3) we use lagged volume to capture stock-specific 

informational events or liquidity shocks. With a second equation, we could use a 

contemporaneous instrument in lieu of the lagged variable, and hence have a better 

control for stock-specific conditions in the same interval over which we measure the low-

latency activity.   

The instrument we use for market quality in the simultaneous-equations 

specifications is EffSprdNotNASi,t, which is the dollar effective spread (absolute value of 

the distance between the transaction price and the midquote) computed for the same stock 

and during the same time interval but only from trades executed on non-NASDAQ 

trading venues (using the TAQ database).  This measure reflects the general liquidity of 

the stock in the interval, but it does not utilize information about NASDAQ activity and 

hence would not be directly determined by the number of strategic runs that are taking 

place on the NASDAQ system, rendering it an appropriate instrument.  
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It might be argued that EffSprdNotNASi,t would not be exogenous if many low-

latency algorithms pursue cross-market strategies in the same security (e.g., if a single 

algorithm co-located with NASDAQ executes trades on both NASDAQ and another 

market). A cross-market strategy, however, cannot operate at the lowest latencies because 

an algorithmic program cannot be co-located at more than one market. This necessarily 

puts cross-market strategies at a disadvantage relative to co-located single-market 

algorithms. At least at the lowest latencies, therefore, we believe that the single-market 

algorithms are dominant.24  Considerations of liquidity in multiple markets are also 

common in agency algorithms that create a montage of the fragmented marketplace to 

guide their order routing logic to the different markets. These, however, most likely do 

not give rise to the long strategic runs that we use to measure the activity of proprietary 

low-latency traders (RunsInProcessi,t) and hence would not introduce reverse causality.  

We emphasize that the goal of this analysis is simply investigation of alternative 

approaches to addressing endogeneity concerns. The models are not inherently superior 

to the single-equation models, but their estimation is contingent on a modified set of 

assumptions, replacing lagged volume on the right-hand side with an attempt to explicitly 

model the contemporaneous market quality measures.  

We specify three two-equation econometric models, which are derived from the 

first set (models (1)-(3)).  Model (4) extends model (1) as: 

 , 1 , 2 , 1, ,

, 1 , 2 , 2, , .
i t i t i t i t

i t i t i t i t

MktQuality a RunsInProcess a EffSprdNotNAS e
RunsInProccess b MktQuality b RunsNotIND e

= + +
= + +

  (4) 

The instruments are EffSprdNotNASi,t and RunsNotINDi,t. Model (5) extends model (2) to 

admit common return and volatility measures: 

                                                 
24 Conversations with a NASDAQ official in 2010 provided support to this view. 
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QQQQ t QQQQ t i t

MktQuality a RunsInProcess a EffSprdNotNAS

a R a R e
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Model (6) introduces time-of-day dummy variables, following model (3): 
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 As in the earlier models, we estimate the coefficients in these systems using 

2SLS, and report robust standard errors (Driscoll-Kraay with two-way clustering). Panel 

A of Table 7 presents the estimated coefficients of Model IV side-by-side for the 2007 

and 2008 sample periods. As before, we observe that higher low-latency activity implies 

lower posted and effective spreads, greater depth, and lower short-term volatility. The 

results in the presence of market factors (model (5), Panel B) and time-of-day dummy 

variables (model 6, Panel C) generally agree. In all regressions, Cragg-Donald (1993) 

statistics reject the null of weak instruments using the Stock and Yogo (2005) critical 

values.  

To gauge the economic magnitudes implied by the a1 coefficients, we compute 

the change in a market quality measure for a representative stock implied by a given 

increase in low-latency activity. A one standard deviation increase in RunsInProcess 

implies a decrease of 26% in spreads in the 2007 sample period and a decrease of 32% in 

the 2008 sample period. A similar pattern whereby low-latency activity has a greater 

positive impact on market quality in 2008 is also observed for depth within 10 cents from 

the best prices, where one standard deviation increase in RunsInProcess implies an 

increase by 20% in the 2007 sample period (up 2,199 shares from a mean of 11,271 

shares) and an even greater increase (34%) is observed in the 2008 sample period when 

the market is under stress. A one standard deviation increase in RunsInProcess also 
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implies a decrease in short-term volatility of 29% in 2007 (down 12.3 basis points from a 

mean value of 42.1 basis points) and 32% in 2008.  

The fact that low-latency activity lowers spreads, increases depth, and decreases 

short-term volatility even to a greater extent in the 2008 sample period—when the market 

is relentlessly going down and there is heightened uncertainty in the economic 

environment—is particularly noteworthy. It seems to suggest that low-latency activity 

creates a positive externality in the market at the time that the market needs it the most. It 

could be that greater variability in the measures during stressful times simply means that 

statistical methods are better able to identify the relationships. However, there could be 

economic reasons for why we might observe this effect. It is reasonable to assume that 

higher volatility creates more profit opportunities for high-frequency traders. Even 

smaller stocks that normally are not very attractive to high-frequency traders due to the 

lack of volume can become profitable enough to warrant their attention during those 

times.  

 We find evidence consistent with this intuition when estimating the models 

separately on four quartiles ranked by the average market capitalization over the sample 

period. The a1 coefficients in the subsamples have the same sign as in the full sample, 

and are all statistically significant. While there is no consistent pattern across the quartiles 

in the 2007 sample period, the 2008 sample is different: it appears that during more 

stressful times, low-latency activity helps reduce volatility in smaller stocks more than it 

does in larger stocks. Hence, it is conceivable that the stronger results in the 2008 sample 

period are at least partially driven by increased activity of high-frequency traders in 

smaller stocks.25   

                                                 
25 We also estimate the specifications separately on subsamples formed as quartiles of NASDAQ’s market 
share of traded volume. Trading in the U.S. occurs on multiple venues, including competing exchanges, 
crossing networks, and Electronic Communications Networks. This fragmentation might jointly affect 
market quality and low-latency activity. Our results, however, show no significant patterns across market-
share quartiles. In other words, the beneficial impact of low-latency trading on the market quality measures 
is similar for stocks that have varying degrees of trading concentration on the NASDAQ system. The 
subsample results are available from the authors upon request. 
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To investigate whether our pooled estimates might be unduly influenced by 

outliers, we estimate model (4) stock-by-stock. Figure 3 presents histograms of the a1 

coefficient estimates. The first two panels of Figure 3, for example, show that almost all 

of the a1 coefficients are negative when the market quality measure is the quoted spread. 

The histograms of all other market quality measures demonstrate that the pooled results 

are not driven by outliers but rather represent a reasonable summary of the manner in 

which low-latency activity affects market quality in the cross-section of stocks. 

Panel B of Table 7 presents the results of model (5), where we add common factor 

information (return and volatility of the market) to the simultaneous-equations model. 

Market volatility appears to be an important determinant of the market quality measures 

in both sample periods (the a4 coefficient). As a determinant of low-latency activity, 

market volatility is significant only in 2007 (the b4 coefficient).  Market return has an 

impact on some of the market quality measures (especially depth and short-term 

volatility), but is not significant in the RunsInProcess equation. The estimates in this 

panel suggest that the inclusion of market return and volatility as independent variables 

does not eliminate the significant showing of the low-latency activity as a determinant of 

the market quality measures: all estimated a1 coefficients have the same signs as in Panel 

A of Table 7 and are highly statistically significant.  

Similar results are found in the estimates of model (6) (in Panel C of Table 7), 

which includes dummy variables to account for potential time-of-day effects. As in Table 

6, we observe that time-of-day variables exert their expected influence on market activity. 

The simultaneous-equation model also allows us to see that the intensity of low-latency 

trading is lower in the last hour and a half of trading (the b4 coefficient). Finally, the 

column of a1 coefficients clearly shows that our results that greater low-latency trading 

implies lower spreads and effective spreads, greater depth, and lower short-term volatility 

remain extremely robust.  
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6. Related literature 

Our paper can be viewed from two related angles: (1) speed of information dissemination 

and activity in financial markets, and (2) high-frequency trading (or algorithmic trading 

in general) and its impact on the market environment.   

Regarding speed, Hendershott and Moulton (2011) look at the introduction of the 

NYSE’s Hybrid Market in 2006, which expanded automatic execution and reduced the 

execution time for NYSE market orders from ten seconds to under a second. They find 

that this reduction in latency resulted in worsened liquidity (e.g., spreads increased) but 

improved informational efficiency. However, Riordan and Storkenmaier (2012) find that 

a reduction in latency (from 50 to 10 ms) on the Deutsche Boerse’ Xetra system was 

associated with improved liquidity. It could be that the impact of a change in latency on 

market quality depends on how exactly it affects competition among liquidity suppliers 

(e.g., the entrance of electronic market makers who can add liquidity but also crowded 

out traditional liquidity providers) and the sophistication of liquidity demanders (e.g., 

their adoption of algorithms to implement dynamic limit order strategies that can both 

supply and demand liquidity).26 

Early papers on algorithmic trading sought to establish stylized facts related to 

algorithmic activity (Prix, Loistl, and Huetl, 2007; Gsell, 2008; Gsell and Gomber, 2008; 

Groth, 2009), while later research evaluated its impact on the market (Chaboud, 

Chiquoine, Hjalmarsson, and Vega, 2009; Hendershott, Jones, and Menkveld, 2011; 

Boehmer, Fong, and Wu, 2012; Hendershott and Riordan, 2013).  

                                                 
26Cespa and Foucault (2011) and Easley, O’Hara, and Yang (2010) provide theoretical models in which 
some traders observe market information with a delay. The two papers employ rather different modeling 
approaches resulting in somewhat conflicting implications on the impact of differential information latency 
on the cost of capital, liquidity, and the efficiency of prices. Boulatov and Dierker (2007) investigate 
information latency from the exchange’s perspective: how can the exchange maximize data revenue? Their 
theoretical model suggests that selling real-time data can be detrimental to liquidity but at the same time 
enhances the informational efficiency of prices. Pagnotta and Philippon (2012) model speed as a 
differentiating attribute of competing exchanges. Moallemi and Sağlam (2010) discuss optimal order 
placement strategy for a seller facing random exogenous buyer arrivals. In their model, the seller pursues a 
pegging strategy, and the delayed monitoring caused by latency leads to costly tracking errors. 
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In particular, Hendershott, Jones, and Menkveld (2011) use the arrival rate of 

electronic messages on the NYSE as a measure of combined agency and proprietary 

algorithmic activity. Using an event study approach around the introduction of 

autoquoting by the NYSE in 2003, the authors find that an increase in algorithmic 

activity produces mixed results: quoted and effective spreads go down, but so does 

quoted depth. We, on the other hand, find an improvement in market quality using all 

measures, including depth and short-term volatility, and for all stocks rather than just the 

largest stocks.27 Two considerations could account for the difference in findings. Firstly, 

our measure of low-latency trading is designed to capture the activity of high-frequency 

proprietary algorithms rather than that of agency algorithms. Secondly, prior to the 

NYSE’s introduction of Hybrid Market in 2006, specialists may have faced less 

competition from high-frequency proprietary algorithms. The 2003 autoquoting change, 

therefore, may have mostly affected the activity of agency algorithms.  

Several recent papers focus on the activity of high-frequency traders in an attempt 

to characterize the impact of these proprietary algorithms on the market environment. 

Brogaard (2012) investigates the impact of high-frequency trading on market quality 

using two special datasets of 120 stocks: the aforementioned HFT dataset from 

NASDAQ, as well as another one from BATS with 25 high-frequency traders. He reports 

that high-frequency traders contribute to liquidity provision and that their activity appears 

to lower volatility. While he uses a measure of high-frequency trading different from the 

one we propose, his findings are consistent with ours. Brogaard, Hendershott, and 

Riordan (2012) use the NASDAQ HFT dataset to investigate the role high-frequency 

trading plays in price discovery. They estimate a model of price formation and report that 

when high-frequency trading firms trade by demanding liquidity, they do so in the 

                                                 
27 The average market capitalization (in billion dollars) of sample quintiles reported in Table 1 of 
Hendershott, Jones, and Menkveld (2009) is 28.99, 4.09, 1.71, 0.90, and 0.41. This corresponds rather well 
to our sample where the average market capitalization of quintiles is 21.4, 3.8, 2.1, 1.4, and 1.0, though we 
may have fewer very large and very small stocks compared to their sample.    
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direction of the permanent price changes and in the opposite direction to transitory price 

changes. Hence, they conclude that high-frequency traders help price efficiency.28  

Three other papers on high-frequency trading are published in this special issue of 

the Journal of Financial Markets. Carrion (2013, this issue) uses the NASDAQ HFT 

dataset to show that the aggregate profit patterns of high-frequency traders point to   

intraday market timing skill, but not necessarily the ability to profit from minute-by-

minute movements. High-frequency traders also appear to supply liquidity when it is 

scarce and demand it when it is more plentiful.  Menkveld (2013, this issue) looks at the 

entry of a large high-frequency trader that acts predominantly as a multi-venue market 

maker in Europe. The study characterizes the profits of the high-frequency trader and 

shows how its net position interacts with the price process. Hagströmer and Nordén 

(2013, this issue) have special data from NASDAQ OMX Stockholm that enable them to 

characterize the strategies of high-frequency trading firms. They categorize high-

frequency traders as either “market makers” or “opportunistic traders”, and find that 

those pursuing market making strategies appear to mitigate volatility in the market.   

 While we [as well as Brogaard (2012) and Brogaard, Hendershott, and Riordan 

(2012)] find a positive impact on market quality, traders engaged in low-latency activity 

could impact the market in a negative fashion at times of extreme market stress. The joint 

CFTC/SEC report regarding the “flash crash” of May 6, 2010, presents a detailed picture 

of such an event. The report notes that several high-frequency traders in the equity 

markets scaled down, stopped, or significantly curtailed their trading at some point during 

this episode. Furthermore, some of the high-frequency traders escalated their aggressive 

selling during the rapid price decline, removing significant liquidity from the market and 

hence contributing to the decline. Similarly, Kirilenko, Kyle, Samadi, and Tuzun (2011) 

investigate the behavior of high-frequency trading firms in the futures market during the 

                                                 
28 Chordia, Roll, and Subrahmanyam (2011) look at recent trends in market activity. They argue that 
market quality, especially the efficiency of price formation, has improved in recent years as trading volume 
increased, possibly in part due to high-frequency trading. 
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flash crash. They define “high-frequency traders” in the S&P 500 E-mini futures contract 

as those traders that execute a large number of daily transactions and fit a certain profile 

of intraday and end-of-day net positions. The authors identify 16 high-frequency traders 

using this definition, and conclude that while these traders did not trigger the flash crash, 

their responses exacerbated market volatility during the event. Our study suggests that 

such behavior is not representative of the manner in which low-latency activity impacts 

market conditions outside of such extreme episodes. 

Several recent theoretical papers attempt to shed light on the potential impact of 

high-frequency trading in financial markets (Cvitanic and Kirilenko, 2010; Gerig and 

Michayluk, 2010; Hoffmann, 2010; Jovanovic and Menkveld, 2010; Cohen and Szpruch, 

2011; Biais, Foucault, and Moinas, 2012; Cartea and Penalva, 2012; Jarrow and Protter, 

2012; Martinez and Rosu, 2013).  Some of these papers have specific implications as to 

the relationships between high-frequency trading and liquidity or volatility, which we 

investigate empirically.  

For example, Gerig and Michalyuk (2010) assume that automated liquidity 

providers are more efficient than other market participants in extracting pricing-relevant 

information from multiple securities. By using information from one security to price 

another security, these high-frequency traders are able to offer better prices, lowering the 

transaction costs of investors in the market. Hoffman (2010) introduces fast traders into 

the limit order book model of Foucault (1999). Their presence can (in some cases) lower 

transaction costs due to increased competition in liquidity supply. Cartea and Penalva 

(2012) construct a model in the spirit of Grossman and Miller (1988) except that they add 

high-frequency traders who interject themselves between the liquidity traders and the 

market makers. In equilibrium, liquidity traders are worse off in the presence of high-

frequency traders and the volatility of market prices increases.        

In general, the theoretical models demonstrate that high-frequency traders can 

impact the market environment (and other investors) positively or negatively depending 

on the specific assumptions regarding their strategies and the assumed structure of the 

economy [see, for example, the predictions in Jovanovic and Menkveld (2010) and Biais, 
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Foucault, and Moinas (2012)]. Since different types of proprietary algorithms may 

employ different strategies, a theoretical model that focuses on one strategy may shed 

light on the specific impact of such a strategy, but may not predict the overall effect that 

empirical studies find because the mixture of strategies in actual markets may overwhelm 

the effect of one strategy or the other. As such, while our results are more consistent with 

some models than others, we do not view them as necessarily suggesting that certain 

models are wrong. Rather, our results could point to the relative dominance of a subset of 

high-frequency traders who peruse certain strategies that improve market quality.  

7. Conclusions 

Our paper makes two significant contributions. First, we develop a measure of low-

latency activity using publicly-available data that can be used as a proxy for high-

frequency trading. Second, we study the impact that low-latency activity has on several 

dimensions of market quality both during normal market conditions and during a period 

of declining prices and heightened economic uncertainty. Our conclusion is that in the 

current market structure for equities, increased low-latency activity improves traditional 

yardsticks of market quality such as liquidity and short-term volatility. Of particular 

importance is our finding that at times of falling prices and anxiety in the market, the 

nature of the millisecond environment and the positive influence of low-latency activity 

on market quality remains. However, we cannot rule out the possibility of a sudden and 

severe market condition in which high-frequency traders contribute to a market failure. 

The experience of the “flash crash” in May of 2010 demonstrates that such fragility is 

certainly possible when a few big players step aside and nobody remains to post limit 

orders. While our results suggest that market quality has improved, we believe it is as yet 

an unresolved question whether low-latency trading increases the episodic fragility of 

markets, and we hope that future research will shed light on this issue.   

The millisecond environment we describe—with its clock-time periodicities, 

trading that responds to market events over millisecond horizons, and algorithms that 

“play” with one another—constitutes a fundamental change from the manner in which 
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stock markets operated even a few years ago. Still, the economic issues associated with 

latency in financial markets are not new, and the private advantage of relative speed as 

well as concerns over the impact of fast traders on prices were noted well before the 

advent of our current millisecond environment.29 The early advocates of electronic 

markets generally envisioned arrangements wherein all traders would enjoy equal access 

(e.g., Mendelson and Peake, 1979). We believe that it is important to recognize that 

guaranteeing equal access to market data when the market is both continuous and 

fragmented (as presently in the U.S.) may be physically impossible.  

The first impediment to equal access is the geographical dispersion of traders 

(Gode and Sunder, 2000). Our evidence on the speed of execution against improved 

quotes suggests that some players are responding within 2-3 ms, which is faster than it 

would take for information to travel from New York to Chicago and back (1,440 miles) 

even at the speed of light (about 8 ms). While co-location could be viewed as the ultimate 

equalizer of dispersed traders, it inevitably leads to the impossibility of achieving equal 

access in fragmented markets. Since the same stock is traded on multiple trading venues, 

a co-located computer near the servers of exchange A would be at a disadvantage in 

responding to market events in the same securities on exchange B compared to computers 

co-located with exchange B. Unless markets change from continuous to periodic, some 

traders will always have lower latency than others. It is of special significance, therefore, 

that our findings suggest that increased low-latency activity need not invariably work to 

the detriment of long-term investors in the post-Reg NMS market structure for U.S. 

equities.  

 

   

                                                 
29 Barnes (1911) describes stock brokers who, in the pre-telegraph era, established stations on high points 
across New Jersey and used semaphore and light flashes to transmit valuable information between New 
York and Philadelphia. He notes that some of the mysterious movements in the stock markets of 
Philadelphia and New York were popularly ascribed to these brokers. 
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Table 1 
Summary statistics 

The sample consists of the 500 largest firms (as ranked by market capitalization as of September 28, 2007) over two 
periods: October, 2007 (23 trading days), and June 2008 (21 trading days). A firm is dropped from the sample if the 
proportion of 10-minute intervals with fewer than 250 messages is above 10%. After applying the screen, our 
sample consists of 351 stocks in the October 2007 sample period and 399 stocks in the June 2008 sample period. 
Panel A reports statistics derived from the CRSP database. Equity market capitalization is as of the last trading day 
prior to the start of the sample period. Panel B presents statistics derived from the NASDAQ TotalView-ITCH 
database. Depth on the book, near depth (within 10 cents of the best bid or ask) and quoted spread are time-weighted 
averages for each firm. The effective spread is defined as the twice the transaction price less the quote midpoint for a 
marketable buy order (or twice the midpoint less the transaction price for a sell order), and the average is share-
weighted. 

Panel A: CRSP Summary Statistics 

 

2007 2008 

Market 
capitalization 

($Million) 

Avg. 
closing 

Price ($) 

Avg. Daily 
Volume 
(1,000s) 

Avg. 
Daily 

Return 
(%) 

Market 
capitalization 

($Million) 

Avg. 
closing 

Price ($) 

Avg. Daily 
Volume 
(1,000s) 

Avg. 
Daily 

Return 
(%) 

Mean 6,609 37.09 3,172 0.109 5,622 31.88 2,931 -0.565 
Median 2,054 29.08 1,074 0.130 1,641 24.96 1,111 -0.516 
Std 20,609 41.54 8,083 0.570 19,348 38.93 6,410 0.615 
Min 789 2.22 202 -2.675 286 2.32 112 -3.449 
Max 275,598 635.39 77,151 1.933 263,752 556.32 74,514 0.817 
 
Panel B. NASDAQ (TotalView-ITCH) Summary Statistics 

 Avg. Daily  
Limit Order 
Submissions 

Avg. Daily 
Limit Order 

Cancellations 

Avg. Daily 
Marketable 

Order 
Executions 

Avg. 
Daily 
Shares 

Executed 
(1,000s) 

Average 
Depth  

(1,000s) 

Average 
Near 

Depth 
(1,000s) 

Average
Quoted 
Spread 

($) 

Average
Effective 
Spread   

($) 

2007 

Mean 45,508 40,943 3,791 1,400 486 57 0.034 0.025 
Median 26,862 24,015 2,482 548 147 11 0.025 0.019 
Std 73,705 68,204 4,630 3,231 1,616 257 0.032 0.021 
Min 9,658 8,013 695 130 26 1 0.010 0.009 
Max 985,779 905,629 62,216 32,305 15,958 3,110 0.313 0.214 

2008 

Mean 54,287 50,040 3,694 1,203 511 43 0.035 0.023 
Median 34,658 31,426 2,325 483 154 10 0.023 0.016 
Std 61,810 56,728 4,676 2,618 1,767 152 0.041 0.024 
Min 8,889 7,983 291 42 20 1 0.010 0.008 
Max 593,143 525,346 61,013 32,406 25,004 2,482 0.462 0.257 
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Table 2 
Examples of strategic runs for ticker symbol ADCT on October 2, 2007 

A strategic run is a series of submissions, cancellations, and executions that are linked by direction, size, and timing, and which are likely to arise from a single 
algorithm. The examples are taken from activity in one stock (ADC Telecommunications, ticker symbol ADCT) on October 2, 2007. In the two cases presented 
here, the activity constitutes all messages in this stock. Panel A reports order activity starting around 9:51:57 am. Shading identifies messages corresponding to 
100- and 300-share runs. Panel B reports activity starting around 9:57:18 am. This run is active for one minute, eighteen seconds, and comprises 142 messages. 

Panel A: ADCT order activity starting at 9:51:57.849 
Time Message B/S Shares Price Bid Offer 
09:51:57.849 Submission Buy 100 20.00 20.03 20.05 
09:52:13.860 Submission Buy 300 20.03 20.03 20.04 
09:52:16.580 Cancellation Buy 300 20.03 20.03 20.04 
09:52:16.581 Submission Buy 300 20.03 20.03 20.04 
09:52:23.245 Cancellation Buy 100 20.00 20.04 20.05 
09:52:23.245 Submission Buy 100 20.04 20.04 20.05 
09:52:23.356 Cancellation Buy 300 20.03 20.04 20.05 
09:52:23.357 Submission Buy 300 20.04 20.04 20.05 
09:52:26.307 Cancellation Buy 300 20.04 20.05 20.07 
09:52:26.308 Submission Buy 300 20.05 20.05 20.07 
09:52:29.401 Cancellation Buy 300 20.05 20.04 20.07 
09:52:29.402 Submission Buy 300 20.04 20.04 20.07 
09:52:29.402 Cancellation Buy 100 20.04 20.04 20.07 
09:52:29.403 Submission Buy 100 20.00 20.04 20.07 
09:52:32.665 Cancellation Buy 100 20.00 20.04 20.07 
09:52:32.665 Submission Buy 100 20.05 20.05 20.07 
09:52:32.672 Cancellation Buy 100 20.05 20.04 20.07 
09:52:32.678 Submission Buy 100 20.05 20.05 20.07 
09:52:32.707 Cancellation Buy 100 20.05 20.04 20.07 
09:52:32.708 Submission Buy 100 20.05 20.05 20.07 
09:52:32.717 Cancellation Buy 100 20.05 20.04 20.07 
09:52:32.745 Cancellation Buy 300 20.04 20.04 20.07 
09:52:32.745 Submission Buy 100 20.05 20.05 20.07 
09:52:32.746 Submission Buy 300 20.05 20.05 20.07 

Time Message B/S Shares Price Bid Offer 
09:52:32.747 Cancellation Buy 100 20.05 20.05 20.07 
09:52:32.772 Submission Buy 100 20.02 20.05 20.07 
09:52:32.776 Cancellation Buy 300 20.05 20.04 20.07 
09:52:32.777 Cancellation Buy 100 20.02 20.04 20.07 
09:52:32.777 Submission Buy 300 20.04 20.04 20.07 
09:52:32.778 Submission Buy 100 20.05 20.05 20.07 
09:52:32.778 Cancellation Buy 300 20.04 20.05 20.07 
09:52:32.779 Submission Buy 300 20.05 20.05 20.07 
09:52:32.779 Cancellation Buy 100 20.05 20.05 20.07 
09:52:32.807 Cancellation Buy 300 20.05 20.04 20.07 
09:52:32.808 Submission Buy 100 20.02 20.04 20.07 
09:52:32.808 Submission Buy 300 20.04 20.04 20.07 
09:52:32.809 Cancellation Buy 100 20.02 20.04 20.07 
… the interaction between the two strategic runs continues  
for 95 additional messages until a limit order of  the 
300-share run is executed by an incoming marketable order 
at 09:53:09.365.  
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Panel B: ADCT order activity starting at 9:57:18.839 
Time Message B/S Shares Price Bid Ask 

09:57:18.839 Submission Sell 100 20.18 20.11 20.14 
09:57:18.869 Cancellation Sell 100 20.18 20.11 20.14 
09:57:18.871 Submission Sell 100 20.13 20.11 20.13 
09:57:18.881 Cancellation Sell 100 20.13 20.11 20.14 
09:57:18.892 Submission Sell 100 20.16 20.11 20.14 
09:57:18.899 Cancellation Sell 100 20.16 20.11 20.14 
09:57:18.902 Submission Sell 100 20.13 20.11 20.13 
09:57:18.911 Cancellation Sell 100 20.13 20.11 20.14 
09:57:18.922 Submission Sell 100 20.16 20.11 20.14 
09:57:18.925 Cancellation Sell 100 20.16 20.11 20.14 
09:57:18.942 Submission Sell 100 20.13 20.11 20.13 
09:57:18.954 Cancellation Sell 100 20.13 20.11 20.14 
09:57:18.958 Submission Sell 100 20.13 20.11 20.13 
09:57:18.961 Cancellation Sell 100 20.13 20.11 20.14 
09:57:18.973 Submission Sell 100 20.13 20.11 20.13 
09:57:18.984 Cancellation Sell 100 20.13 20.11 20.14 
09:57:18.985 Submission Sell 100 20.16 20.11 20.14 
09:57:18.995 Cancellation Sell 100 20.16 20.11 20.14 
09:57:18.996 Submission Sell 100 20.13 20.11 20.13 
09:57:19.002 Cancellation Sell 100 20.13 20.11 20.14 
09:57:19.004 Submission Sell 100 20.16 20.11 20.14 
09:57:19.807 Cancellation Sell 100 20.16 20.11 20.13 
09:57:19.807 Submission Sell 100 20.13 20.11 20.13 
09:57:20.451 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.461 Submission Sell 100 20.13 20.11 20.13 
09:57:20.471 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.480 Submission Sell 100 20.13 20.11 20.13 
09:57:20.481 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.484 Submission Sell 100 20.13 20.11 20.13 
09:57:20.499 Cancellation Sell 100 20.13 20.11 20.14 

Time Message B/S Shares Price Bid Ask 

09:57:20.513 Submission Sell 100 20.13 20.11 20.13 
09:57:20.521 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.532 Submission Sell 100 20.13 20.11 20.13 
09:57:20.533 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.542 Submission Sell 100 20.13 20.11 20.13 
09:57:20.554 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.562 Submission Sell 100 20.13 20.11 20.13 
09:57:20.571 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.581 Submission Sell 100 20.13 20.11 20.13 
09:57:20.592 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.601 Submission Sell 100 20.13 20.11 20.13 
09:57:20.611 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.622 Submission Sell 100 20.13 20.11 20.13 
09:57:20.667 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.671 Submission Sell 100 20.13 20.11 20.13 
09:57:20.681 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.742 Submission Sell 100 20.13 20.11 20.13 
09:57:20.756 Cancellation Sell 100 20.13 20.11 20.14 
09:57:20.761 Submission Sell 100 20.13 20.11 20.13 
… the strategic run continues for 89 additional messages  
until it stops at 09:58:36.268.  
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Table 3 
Strategic runs 

A strategic run is a series of submissions, cancellations, and executions that are linked by direction, size, and timing, and which are likely to arise from a single 
algorithm. We sort runs into categories by length (i.e., the number of linked messages). The table reports statistics on number of runs, messages, and executions 
(separately active and passive) within each category. An active execution occurs when a run is terminated by canceling a resting limit order and submitting a 
marketable limit order. A passive execution occurs when a resting limit order that is part of a run is (at least in part) executed by an incoming marketable order. 
 

 
Length 

Of 
Runs 

Runs 
(#) 

Runs 
(%) 

Messages 
(#) 

Messages 
(%) 

Active 
Exec. (#) 

Active 
Exec. Rate 

Passive 
Exec. (#) 

Passive 
Exec. Rate 

Total 
Exec. (#) 

Total 
Exec. 
Rate 

2007 

3-4 20,294,968 44.11% 79,695,563 15.67% 1,954,468 9.63% 4,981,521 24.55% 6,922,605 34.11% 
5-9 13,540,437 29.43% 89,204,570 17.54% 1,012,573 7.48% 4,715,922 34.83% 5,706,905 42.15% 

10-14 5,650,415 12.28% 65,294,103 12.84% 267,517 4.73% 1,808,138 32.00% 2,069,393 36.62% 
15-19 1,854,002 4.03% 31,229,102 6.14% 153,839 8.30% 654,241 35.29% 805,414 43.44% 
20-99 4,337,029 9.43% 153,384,374 30.16% 301,266 6.95% 1,575,876 36.34% 1,871,244 43.15% 
100+ 333,308 0.72% 89,735,209 17.65% 26,039 7.81% 116,465 34.94% 141,962 42.59% 

All 46,010,159 100.00% 508,542,921 100.00% 3,715,702 8.08% 13,852,163 30.11% 17,517,523 38.07% 

2008 

3-4 31,012,203 46.24% 122,325,313 19.53% 2,427,326 7.83% 5,552,338 17.90% 7,970,158 25.70% 
5-9 19,758,076 29.46% 130,370,772 20.82% 1,287,276 6.52% 5,436,189 27.51% 6,705,727 33.94% 

10-14 7,941,089 11.84% 91,486,978 14.61% 385,902 4.86% 2,186,628 27.54% 2,566,974 32.33% 
15-19 2,533,217 3.78% 42,663,802 6.81% 219,403 8.66% 795,483 31.40% 1,012,340 39.96% 
20-99 5,583,768 8.33% 191,395,420 30.56% 398,771 7.14% 1,712,015 30.66% 2,105,346 37.70% 
100+ 239,751 0.36% 48,084,901 7.68% 15,541 6.48% 62,838 26.21% 78,171 32.61% 

All 67,068,104 100.00% 626,327,186 100.00% 4,734,219 7.06% 15,745,491 23.48% 20,438,716 30.47% 
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Table 4 
RunsInProcess and measures derived from the NASDAQ HFT dataset 

RunsInProcessi,t is the time-weighted average of the number of strategic runs of 10 messages or more for stock i in 
10-minute interval t.The NASDAQ HFT dataset identifies the active and passive participants of trades as either 
high-frequency or non-high-frequency participants. For the 60 stocks common to the HFT dataset and our sample, 
during June, 2008, we compute, for each stock and 10-minute interval, alternative measures of high-frequency 
participation. We then estimate Pearson and Spearman correlations between each measure and RunsInProcessi,t over 
all 10-minute intervals for all stocks (60*819=49,410 observations). All p-values, computed against the null 
hypothesis of zero correlation, are below 0.001.  
 
  Correlation with RunsInProcess 

Spearman  Pearson  

Executed HF orders Shares 0.812 0.654 
Frequency count 0.809 0.658 

Executions with any HF participation (active and/or passive) Shares 0.818 0.666 
Frequency count 0.814 0.644 

Executions against passive HF orders Shares 0.817 0.682 
Frequency count 0.810 0.634 

Executions of active non-HF against passive HF orders Shares 0.816 0.685 
Frequency count 0.809 0.643 
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Table 5 
Low-latency trading and market quality: OLS estimates 

This table presents pooled panel regression analyses that relate low-latency activity to market quality. The low-
latency activity measure is RunsInProcessi,t, the time-weighted average of the number of strategic runs of 10 
messages or more for stock i in ten-minute interval interval t. MktQualityi,t is a placeholder denoting: Spreadi,t, the 
quoted spread; EffSprdi,t, the effective spread; NearDepthi,t, book depth within 10 cents of the best bid and offer; 
and, HighLowi,t, the midquote range divided by the midquote average. TradingIntensityi,t is the stock’s total trading 
volume during the previous 10 minutes. ,QQQQ tR is the return on the NASDAQ 100 index ETF. DumAMt is a morning 
dummy variable (equal to one between 9:30 am and 11:00 am); DumPMt is an afternoon dummy variable (2:30 pm 
to 4:00 pm). We standardize each (non-dummy) variable by subtracting from each observation the stock-specific 
time-series average and dividing by the stock-specific time-series standard deviation. Coefficient estimates are OLS; 
p-values (against a two-sided alternative) are computed using the Driscoll-Kraay extension of the Newey-West 
estimator.  
Panel A: Model (1): , 1 , 2 , 1, ,i t i t i t i tMktQuality a RunsInProcess a TradingIntensity e= + +  

  2007 2008 
  a1 a2 a1 a2 

Spread Coef. 
p-value 

−0.214 
(<.001) 

0.096 
(<.001) 

–0.275 
(<.001) 

0.046 
(0.036) 

EffSprd Coef. 
p-value 

–0.170 
(<.001) 

0.103 
(<0.001) 

–0.193 
(<.001) 

0.038 
(0.001) 

NearDepth Coef. 
p-value 

0.246 
(<.001) 

–0.104 
(<.001) 

0.297 
(<.001) 

–0.003 
(0.888) 

HighLow Coef. 
p-value 

–0.056 
(<.001) 

0.322 
(<.001) 

–0.117 
(<.001) 

0.229 
(<.001) 

Panel B. Model (2): , 1 , 2 , 3 , 4 , 1, ,i t i t i t QQQ t QQQQ t i tMktQuality a RunsInProcess a TradingIntensity a R a R e= + + + +  

  2007 2008 
  a1 a2 a3 a4 a1 a2 a3 a4 

Spread Coef. 
p-value 

–0.204 
(<.001) 

0.080 
(<.001) 

–0.010 
(0.654) 

0.171 
(<.001) 

–0.267 
(<.001) 

0.039 
(0.093) 

–0.014 
(0.533) 

0.141 
(<.001) 

EffSprd Coef. 
p-value 

–0.164 
(<.001) 

0.094 
(<.001) 

–0.005 
(0.680) 

0.095 
(<.001) 

–0.189 
(<.001) 

0.034 
(0.003) 

–0.006 
(0.687) 

0.076 
(<.001) 

NearDepth Coef. 
p-value 

0.238 
(<.001) 

–0.092 
(<.001) 

0.031 
(0.086) 

–0.131 
(<.001) 

0.292 
(<.001) 

0.001 
(0.977) 

–0.014 
(0.539) 

–0.081 
(<.001) 

HighLow Coef. 
p-value 

–0.038 
(0.002) 

0.295 
(<.001) 

–0.007 
(0.678) 

0.298 
(<.001) 

–0.099 
(<.001) 

0.215 
(<.001) 

0.003 
(0.890) 

0.309 
(<.001) 

Panel C. Model (3): , 0 1 , 2 , 3 4 ,= + + + + +i t i t i t t t i tMktQuality a a RunsInProcess a TradingIntensity a DumAM a DumPM e  

  2007 2008 

  a0 a1 a2 a3 a4 a0 a1 a2 a3 a4 

Spread Coef. 
p-value 

–0.089 
(<.001) 

–0.151 
(<.001) 

0.069 
(<.001) 

0.678 
(<.001) 

–0.224 
(<.001) 

–0.142 
(<.001) 

–0.144 
(<.001) 

0.011 
(0.546) 

0.931 
(<.001) 

–0.226 
(<.001) 

EffSprd Coef. 
p-value 

–0.060 
(<.001) 

–0.129 
(<.001) 

0.085 
(<.001) 

0.437 
(<.001) 

–0.134 
(<.001) 

–0.082 
(<.001) 

–0.115 
(<.001) 

0.018 
(0.053) 

0.548 
(<.001) 

–0.143 
(<.001) 

NearDepth Coef. 
p-value 

0.018 
(0.415) 

0.191 
(<.001) 

–0.090 
(<.001) 

–0.538 
(<.001) 

0.402 
(<.001) 

0.031 
(0.036) 

0.165 
(<.001) 

0.004 
(0.777) 

–0.719 
(<.001) 

0.509 
(<.001) 

HighLow Coef. 
p-value 

–0.152 
(<.001) 

–0.004 
(0.775) 

0.286 
(<.001) 

0.617 
(<.001) 

0.095 
(0.034) 

–0.244 
(<.001) 

–0.009 
(0.346) 

0.170 
(<.001) 

1.004 
(<.001) 

0.141 
(<.001) 
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Table 6 
Low-latency trading and market quality: 2SLS estimates 

The table presents pooled panel regression analyses that relate low-latency activity to market quality. The low-
latency activity measure is RunsInProcessi,t, the time-weighted average of the number of strategic runs of 10 
messages or more for stock i in ten-minute interval interval t. As an instrument for RunsInProcessi,t we use 
RunsNotINDi,t, which is the average of RunsInProcess for all other stocks, excluding stock i itself, stocks in the 
same four-digit SIC industry as i, and stocks in the same index as i. MktQualityi,t is a placeholder denoting: Spreadi,t, 
the quoted spread; EffSprdi,t, the effective spread; NearDepthi,t, book depth within 10 cents of the best bid and offer; 
and, HighLowi,t, the midquote range divided by the midquote average. TradingIntensityi,t is the stock’s total trading 
volume during the previous 10 minutes. ,QQQQ tR is the return on the NASDAQ 100 index ETF. DumAMt is a morning 
dummy variable (equal to one between 9:30 am and 11:00 am); DumPMt is an afternoon dummy variable (2:30 pm 
to 4:00 pm). We standardize each (non-dummy) variable by subtracting from each observation the stock-specific 
time-series average and dividing by the stock-specific time-series standard deviation. Coefficient estimates are 
2SLS; p-values (against a two-sided alternative) are computed using the Driscoll-Kraay extension of the Newey-
West estimator.  
 
Panel A: Model (1): , 1 , 2 , ,= + +i t i t i t i tMktQuality a RunsInProcess a TradingIntensity e  

  2007 2008 
  a1 a2 a1 a2 

Spread Coef. 
p-value 

–0.682 
(<0.001) 

0.104 
(<0.001) 

–0.959 
(<0.001) 

0.050 
(<0.001) 

EffSprd Coef. 
p-value 

–0.493 
(<0.001) 

0.109 
(<0.001) 

–0.654 
(<0.001) 

0.041 
(<0.001) 

NearDepth Coef. 
p-value 

0.460 
(<0.001) 

–0.107 
(<0.001) 

0.804 
(<0.001) 

–0.007 
(0.729) 

HighLow Coef. 
p-value 

–0.437 
(<0.001) 

0.329 
(<0.001) 

–0.648 
(<0.001) 

0.233 
(<0.001) 

 
Panel B: Model (2): , 1 , 2 , 3 , 4 , ,= + + + +i t i t i t QQQQ t QQQQ t i tMktQuality a RunsInProcess a TradingIntensity a R a R e  

  2007 2008 
  a1 a2 a3 a4 a1 a2 a3 a4 

Spread Coef. 
p-value 

–0.642 
(<0.001) 

0.090 
(<0.001) 

–0.007 
(0.719) 

0.146 
(<0.001) 

–0.939 
(<0.001) 

0.045 
(0.001) 

–0.011 
(0.481) 

0.102 
(<0.001) 

EffSprd Coef. 
p-value 

–0.471 
(<0.001) 

0.101 
(<0.001) 

–0.004 
(0.759) 

0.077 
(<0.001) 

–0.644 
(<0.001) 

0.039 
(<0.001) 

–0.004 
(0.682) 

0.050 
(<0.001) 

NearDepth Coef. 
p-value 

0.426 
(<0.001) 

–0.096 
(<0.001) 

0.030 
(0.093) 

–0.120 
(<0.001) 

0.794 
(<0.001) 

–0.004 
(0.825) 

–0.015 
(0.438) 

–0.052 
(0.004) 

HighLow Coef. 
p-value 

–0.360 
(<0.001) 

0.302 
(<0.001) 

–0.005 
(0.752) 

0.280 
(<0.001) 

–0.593 
(<0.001) 

0.220 
(<0.001) 

0.004 
(0.774) 

0.281 
(<0.001) 
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Panel C: Model (3): , 0 1 , 2 , 3 4 ,= + + + + +i t i t i t t t i tMktQuality a a RunsInProcess a TradingIntensity a DumAM a DumPM e  

  2007 2008 

  a0 a1 a2 a3 a4 a0 a1 a2 a3 a4 

Spread Coef. 
p-value 

–0.051 
(0.055) 

–0.448 
(<.001) 

0.083 
(<.001) 

0.514 
(<.001) 

–0.240 
(<.001) 

–0.120 
(<.001) 

–0.552 
(<.001) 

0.019 
(0.198) 

0.676 
(<.001) 

–0.094 
(0.027) 

EffSprd Coef. 
p-value 

–0.032 
(0.054) 

–0.349 
(<.001) 

0.095 
(<.001) 

0.317 
(<.001) 

–0.145 
(<.001) 

–0.063 
(<.001) 

–0.462 
(<.001) 

0.025 
(<.001) 

0.331 
(<.001) 

–0.030 
(0.218) 

NearDepth Coef. 
p-value 

0.017 
(0.471) 

0.199 
(<.001) 

–0.091 
(<.001) 

–0.534 
(<.001) 

0.402 
(<.001) 

0.031 
(<.001) 

0.155 
(0.051) 

0.004 
(0.781) 

–0.725 
(<.001) 

0.512 
(<.001) 

HighLow Coef. 
p-value 

–0.120 
(<.001) 

–0.255 
(<.001) 

0.298 
(<.001) 

0.480 
(<.001) 

0.082 
(0.068) 

–0.225 
(<.001) 

–0.367 
(<.001) 

0.177 
(<.001) 

0.781 
(<.001) 

0.257 
(<.001) 
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Table 7 
Low-latency trading and market quality: simultaneous equation estimates 

The table presents pooled panel regression analyses that relate low-latency activity to market quality. The low-
latency activity measure is RunsInProcessi,t, the time-weighted average of the number of strategic runs of 10 
messages or more for stock i in ten-minute interval interval t. As an instrument for RunsInProcessi,t we use 
RunsNotINDi,t, which is the average of RunsInProcess for all other stocks, excluding stock i itself, stocks in the 
same four-digit SIC industry as i, and stocks in the same index as i. MktQualityi,t is a placeholder denoting: Spreadi,t, 
the quoted spread; EffSprdi,t, the effective spread; NearDepthi,t, book depth within 10 cents of the best bid and offer; 
and, HighLowi,t, the midquote range divided by the midquote average. As an instrument for MktQualityi,t we use 
EffSprdNotNasi,t, which is the average dollar effective spread from executions on other (non-NASDAQ) trading 
venues. ,QQQQ tR is the return on the NASDAQ 100 index ETF. DumAMt is a morning dummy variable (equal to one 
between 9:30 am and 11:00 am); DumPMt is an afternoon dummy variable (2:30 pm to 4:00 pm). We standardize 
each (non-dummy) variable by subtracting from each observation the stock-specific time-series average and dividing 
by the stock-specific time-series standard deviation. Coefficient estimates are 2SLS; p-values (against a two-sided 
alternative) are computed using the Driscoll-Kraay extension of the Newey-West estimator.  
 

Panel A. Model (4): , 1 , 2 , 1, ,

, 1 , 2 , 2, ,

= + +
= + +

i t i t i t i t

i t i t i t i t

MktQuality a RunsInProcess a EffSprdNotNAS e
RunsInProccess b MktQuality b RunsNotIND e

 

  2007 2008 
  a1 a2 b1 b2 a1 a2 b1 b2 

Spread 
Coef. –0.534 0.567 –0.052 0.494 –0.615 0.526 –0.107 0.461 
p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

EffSprd 
Coef. –0.203 0.382 –0.079 0.500 –0.143 0.219 –0.265 0.475 
p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

NearDepth 
Coef. 0.380 –0.237 0.123 0.484 0.716 –0.116 0.379 0.359 
p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

HighLow 
Coef. –0.350 0.476 –0.063 0.497 –0.475 0.452 –0.126 0.464 
p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) 

 

Panel B. Model (5):
, 1 , 2 , 3 , 4 , 1, ,

, 1 , 2 , 3 , 4 , 2, ,

= + + + +

= + + + +

i t i t i t QQQQ t QQQQ t i t

i t i t i t QQQQ t QQQQ t i t

MktQuality a RunsInProcess a EffSprdNotNAS a R a R e

RunsInProccess b MktQuality b RunsNotIND a R a R e
 

   a1 a2 a3 a4 b1 b2 b3 b4 

2007 

Spread Coef. –0.471 0.539 –0.001 0.139 –0.059 0.496 0.001 0.017 
p-value (<.001) (<.001) (0.963) (<.001) (<.001) (<.001) (0.878) (0.004) 

EffSprd Coef. –0.167 0.365 0.051 0.074 –0.089 0.502 0.005 0.015 
p-value (<.001) (<.001) (0.012) (0.002) (<.001) (<.001) (0.179) (0.011) 

NearDepth Coef. 0.341 –0.221 0.044 –0.095 0.141 0.485 –0.006 0.022 
p-value (<.001) (<.001) (0.005) (<.001) (<.001) (<.001) (0.192) (0.001) 

HighLow Coef. –0.240 0.428 –0.032 0.251 –0.075 0.501 –0.002 0.028 
p-value (<.001) (<.001) (0.027) (<.001) (<.001) (<.001) (0.609) (<.001) 

2008 

Spread Coef. –0.595 0.509 0.040 0.124 –0.105 0.461 –0.011 –0.013 
p-value (<.001) (<.001) (0.254) (0.001) (<.001) (<.001) (0.219) (0.147) 

EffSprd Coef. –0.132 0.210 0.022 0.066 –0.263 0.475 –0.010 –0.009 
p-value (<.001) (<.001) (0.291) (<.001) (<.001) (<.001) (0.361) (0.421) 

NearDepth Coef. 0.713 –0.114 –0.056 –0.047 0.369 0.362 0.009 –0.003 
p-value (<.001) (<.001) (0.040) (0.064) (<.001) (<.001) (0.542) (0.835) 

HighLow Coef. –0.448 0.430 0.176 0.243 –0.126 0.464 0.007 0.005 
p-value (<.001) (<.001) (<.001) (<.001) (<.001) (<.001) (0.447) (0.629) 
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Panel C. Model (6): , 0 1 , 2 , 3 4 1, ,

, 0 1 , 2 , 3 4 2, ,

= + + + + +
= + + + + +

i t i t i t t t i t

i t i t i t t t i t

MktQuality a a RunsInProcess a EffSprdNotNAS a DumAM a DumPM e
RunsInProccess b b MktQuality b RunsNotIND b DumAM b DumPM e

 

   a0 a1 a2 a3 a4 b0 b1 b2 b3 b4 

2007 

Spread 
Coef. –0.022 –0.437 0.555 0.215 –0.121 0.002 –0.055 0.498 0.016 –0.026 
p-value (0.187) (<.001) (<.001) (<.001) (<.001) (0.734) (<.001) (<.001) (0.358) (0.085) 

EffSprd 
Coef. –0.002 –0.184 0.380 0.039 –0.032 0.004 –0.082 0.502 0.008 –0.023 
p-value (0.846) (<.001) (<.001) (0.002) (<.001) (0.606) (<.001) (<.001) (0.679) (0.133) 

NearDepth 
Coef. 0.033 0.150 –0.207 –0.494 0.350 –0.001 0.149 0.499 0.078 –0.072 
p-value (0.121) (0.003) (<.001) (<.001) (<.001) (0.879) (<.001) (<.001) (<.001) (<.001) 

HighLow 
Coef. –0.127 –0.220 0.466 0.372 0.183 –0.005 –0.067 0.503 0.029 –0.008 
p-value (<.001) (<.001) (<.001) (<.001) (<.001) (0.508) (<.001) (<.001) (0.093) (0.630) 

2008 

Spread 
Coef. –0.051 –0.566 0.518 0.160 0.063 0.033 –0.095 0.475 –0.049 –0.094 
p-value (<.001) (<.001) (<.001) (<.001) (0.094) (0.001) (<.001) (<.001) (0.022) (0.003) 

EffSprd 
Coef. –0.006 –0.143 0.218 0.011 0.013 0.037 –0.232 0.485 –0.062 –0.099 
p-value (0.330) (<.001) (<.001) (0.376) (0.319) (<.001) (<.001) (<.001) (0.005) (0.002) 

NearDepth 
Coef. 0.037 0.160 –0.137 –0.646 0.486 0.025 0.361 0.473 0.169 –0.275 
p-value (0.011) (0.023) (<.001) (<.001) (<.001) (0.013) (<.001) (<.001) (<.001) (<.001) 

HighLow 
Coef. –0.194 –0.383 0.417 0.508 0.335 0.015 –0.120 0.479 –0.004 –0.061 
p-value (<.001) (<.001) (<.001) (<.001) (<.001) (0.130) (<.001) (<.001) (0.857) (0.046) 
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Figure 1 
Clock-time periodicities of market activity 

This figure presents clock-time periodicities in message arrival to the market. The data contain millisecond  time stamps. The one-second remainder is the time 
stamp mod 1,000, i.e., the number of ms past the one-second mark. We plot the sample distribution of one-second remainders side-by-side for the 2007 and 2008 
sample periods. The horizontal lines in the graphs indicate the position of the uniform distribution (the null hypothesis).  
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Figure 2 
Speed of response to market events 

This figure depicts response speeds subsequent to a specific market event. The market event is an improved quote via the submission of a new limit order — 
either an increase in the best bid price or a decrease in the best ask price. Subsequent to this market event, we estimate (separately) the hazard rates for three 
types of responses: a limit order submission on the same side as the improvement (e.g., buy order submitted following an improvement in the bid price); a 
cancellation of a standing limit order on the same side; and, an execution against the improved quote (e.g., the best bid price is executed by an incoming sell 
order). In all estimations, any event other than the one whose hazard rate is being estimated is taken as an exogenous censoring event. The estimated hazard rate 
plotted at time t is the estimated average over the interval [t–1 ms, t). The hazard rate for a response can be interpreted as the intensity of the response conditional 
on the elapsed time since the conditioning event. 
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Figure 3 
Histogram of a1 coefficients in simultaneous equation estimates at the firm level 

 
For each of the market quality measures (HighLow, EffSprd, Spread, and NearDepth) the specification [model (4)], 

 , 1 , 2 , 1, ,

, 1 , 2 , 2, , ,
i t i t i t i t

i t i t i t i t

MktQuality a RunsInProcess a EffSprdNotNAS e
RunsInProccess b MktQuality b RunsNotIND e

= + +
= + +

 

is estimated at the individual firm level using 2SLS with instruments RunsNotIND and EffSprdNotNas. Each histogram 
depicts the distribution of the a1 coefficient estimates for the indicated year and market quality measure. 
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