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Nonparametric Kernel Estimation of Multiple Hedge Ratios 

 

I.  Introduction 

The hedge ratio is traditionally estimated by simple regression such as OLS and SUR.  

However, this procedure is statistically inefficient because it ignores heteroskedasticity, which 

implies that estimates could not explain information inflow in prices.  Since futures and spot 

prices exhibit time varying volatility, they should be represented by conditional heteroskedastic 

shocks (the conditional covariance of futures and cash prices), and this would lead to optimal 

hedge ratios that may change over time.  With the development of autoregressive conditional 

heteroskedasticity (ARCH) and generalized ARCH (GARCH) models, various studies have been 

conducted to get efficient estimates of time varying hedge ratios (McNew and Fackler, 1994; 

Garcia, Roh, and Leuthold, 1995; Bera, Garcia, and Roh, 1997). 

These analyses have been performed in a parametric context, involving a complete 

specification of the process of interaction among important variables, which may lead to error in 

the hedging decision.  Specifically, these analyses are based on several assumptions.  The 

functional form of the conditional mean of cash prices given futures prices is assumed to be 

known, usually linear.  The conditional variance of cash prices given futures prices and the 

autocorrelation of error terms are assumed specified.  The parametric joint density (data 

generating process) of cash prices given futures prices is assumed normal.  Last, prices are often 

considered to be nonstochastic even though ARCH-type models incorporate stochastic features.  

Due to these assumptions, optimal hedge estimation in a parametric framework may not be 

robust to slight inconsistencies between data and any particular parametric specification.  Thus, 
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any misspecification in this regard may lead to erroneous estimation of the hedge ratio, usually 

exaggerating the variance. 

This study develops and tests a new method for estimating time varying hedge ratios, a 

kernel-based nonparametric partial derivative estimator, specifically locally polynomial kernel 

regression, which reduces the number of arbitrary parametric restrictions.  This estimator is 

consistent under most circumstances, such as rigid dependence of the error terms and an 

unknown functional form, and gives a better fit to the time series that often have fat tails.  Thus, 

hedge ratios that are dependent on past values of conditioning variables can be consistently 

estimated within this nonparametric framework.  The potential benefits of using this estimator 

are that it avoids the potential errors introduced by functional misspecification and expands the 

settings in which the estimator can be shown to be consistent, thus, permitting more efficient risk 

management (Ullah, 1988; Wand and Jones, 1995).  This technique has never before been 

applied to optimal hedge ratio estimation and can be applied to both single commodity and 

simultaneous production decisions on outputs and inputs.  As an example, it is applied here to the 

hog feeding complex.   

If the functional form of the conditional mean of cash prices given futures prices is 

known, then the parametric approach will perform better or at least as well as the nonparametric 

approach.  Therefore, a simple linear model and a GARCH-type model are developed to estimate 

time varying hedge ratios to compare with the nonparametric estimation.  

The accuracy of hedge ratios, estimated by these three different methods, are evaluated in 

terms of maximizing expected return and variance reduction comparison.  In addition, the 

accuracy of hedge ratios are evaluated and compared to various hedging strategies including 

naïve hedging, single-commodity hedging, and no hedging.  
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II.  Hedging Rules 

Hog producers face multiple price risks due to the volatile prices of live hogs and feed 

grains, and often achieve the objective of reducing these price risks by forward pricing through 

either the futures market or forward cash market.1  Since buyers of hogs such as meat packers 

charge for their services, prices offered through forward cash contracts may be less than those 

offered using futures market, and hence the futures market is often preferred to the forward cash 

market.  Another advantage of using the futures market comes from marketing flexibility.   

In this study the feeding (final) stage of hog production (wean-to-finish) is considered 

because it is the main stage of hog production where large amounts of feed grains are consumed.  

It takes around 4 months to reach final market weight of hogs of about 225 pounds, a stage 

which begins when the hogs weigh about 60 pounds.  Among various feed ingredients, corn is 

the major feed grain, and around 615 pounds per hog are fed during this final period.2  Corn 

provides dietary energy in the form of carbohydrates and fat.  The hedging decision framework is 

composed by two stages.  The first stage, from t-6 to t-4, constitutes a planning period before 

feeding begins (t refers to when the output is marketed, and time is measured in months).  At t-6, 

hedging occurs by simultaneously taking long positions in the input and a short position in the 

output in the futures market.  Hedges on inputs are held for two months until the feeding begins.  

Corn is purchased for the feeding of hogs at t-4 in the cash market.  At the same time, those input 

                                                
1 Forward pricing is not the only alternative to managing pricing risk.  Floor pricing through the options market 
provides a minimum price while allowing the producer to take advantage of any higher prices.  Forward pricing on 
the other hand will provide more price protection against lower prices than will floor pricing, but also precludes 
gains from higher prices. 
2 Another potentially important input is soybean meal.  However, the amount of soybean meal consumed per hog is 
approximately only 10% of total feed grains while corn takes around 85%.  Also, in a similar analysis for live cattle, 
Noussinov and Leuthold (1999) found that the coefficient for the soybean meal hedge ratio was insignificant and did 
not affect the overall hedging results.  In addition, soybean meal adds a third dimension to the kernel estimation, 
which would make the procedure used in this study very complex. 
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hedges taken at t-6 are liquidated.  After feeding, the live hogs are sold in the cash market at t 

and the associated output futures position held for six months is lifted.  

Then, the returns from cash and futures transactions of hogs and corn at time t can be 

written as 

)()( 6,4,6,,6,6,4,, −−−−−− −+−+−= tCtCtCtHtHtHtCtHt FFFFPPR ββ ,  (1) 

where P and F stand for cash and futures prices, respectively, and H and C are abbreviated for 

hogs and corn respectively.  6, −tHβ and 6, −tCβ  are hedge ratios for hogs and corn at time t-6. 

This equation assumes no transaction costs.  Assuming unbiasness in futures market, hedge 

ratios for multiproduct can be generated by the mean-variance framework.  The variance of 

returns in (1) can be written as 
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Hedge ratios of single commodity is simply )var(),cov( FFP , where time subscripts for hedge 

ratios are omitted for simplicity. 
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III.  Econometric Model and Data 

Locally Polynomial Kernel Estimation 

Since nonparametric estimation does not define the functional form, a general 

nonparametric regression model with n data points ( ){ } n

iii YX 1, =  follows as 

    iii uXmY += )(                (5) 

where )()( xXYExm == , 0)( =xuE  and { }ltt ZFX −= , .  The stochastic nature of the 

relationship is represented by the zero-mean random shock ut.  Y is easily replaced by Pt, and X is 

replaced by Ft and Zt-l, where Zt-l  is other relevant information, and ml ,,1�= .  Our aim is to 

estimate the slopes of )(ˆ iXm .  The conditional expectation of the partial derivative of Pt w.r.t. Ft 

can be derived to obtain hedge ratios, 

( ) ( )ltt
t

ltt
t

mtttt
t ZF

F

m
ZF

F

ZZFPE
HR −−

−−

∂
∂=

∂
∂

= ,),(
,,, 1 � .  (6) 

The value of the function HRt, which is dependent on Ft and Zt-l at a particular point, gives the 

value of the partial derivative of the conditional expectation functional with respect to the 

concurrent futures price variable. 

In the parametric approach, the critical assumptions of the response function )( iXm  are 

known functional form and normality of error terms.  Any misspecification in )( iXm  causes 

serious consequences for econometric inference; for example, the estimators of the regression 

parameters can be seriously biased.  Since the nonparametric approach does not rely on the 

assumptions underlying the parametric approach, it has more flexibility and is more efficient in 

estimating the complicated unknown response function )( iXm . 
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Locally polynomial kernel (LPK) estimation is utilized in this study and is known to 

produce a good fit to a sample characterized by nonlinear relationships.  The locally optimal 

hedge ratio can be achieved and represented by partial derivatives or derivatives in given 

directions.  There are two important benefits of using LPK.  First, it overcomes boundary 

problems, which often misleads a kernel estimation in an erroneous direction.  Second, it is easy 

to get partial derivatives of )(ˆ iXm  because the purpose of LPK is to produce the partial 

derivatives of the estimated regression function in addition to a reasonable approximation to the 

unknown response function.  This would thereby provide nonconstant and time-varying hedge 

ratios which account for all the relevant information of hog and corn prices.  These hedge ratios 

obtained by LPK are extended into 3-dimension from 2-dimension, hedge ratios over futures 

price changes and time. 

Local polynomial kernel estimates the regression function at a particular point by 

“locally” fitting a pth degree polynomial to the data via weighted least squares.  

To demonstrate the model, the model (5) is modified as follows, 

iiii uXsXmY )()( 2/1+= , ni ,,1�=     (7) 

where, ( )xXYExm ==)( , ( )xXYVarxs ==)( , and { }iu  are i.i.d.  The objective of this model 

is to estimate partial derivatives up to the pth order p
i

p dXxmd )(  without imposition of m(x) and 

p
i

p dXxmd )(  belonging to the parametric family of functions.   

The local polynomial kernel estimator ),;(ˆ hpxm  at a point x is obtained by fitting the 

polynomial pT
p

T xx )()(10 βββ +++ �  to the ( )ii YX ,  using weighted least squares with kernel 

weights )( iH XxK − .  Attention will be devoted to the local linear least squares kernel estimator, 

which corresponds to fitting a degree-one polynomial (p=1).  Then the multivariate polynomial is 
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of the form, )(10 xTββ +  and T
d ),,( 1111 βββ �= .  The problem is to find arguments β  that 

solve: 

         )()( xxx
T

xx XYWXYMin ββ −−     (8) 
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, and { })(,),(diag 1 nHHx XxKXxKW −−= � .  H is a 

d×d symmetric positive definite matrix depending on n.  K is a d-variate kernel, 

)()( 2/12/1
vHKHvK H

−−= .  It assigns weight to a particular point Yi for estimation at a particular 

point x depending on how far a data point Xi is from the prediction point x, and ( )21 ,, xxx �= .  

In other words, the observations close to x have more influence on the regression estimate at x 

than those farther away.  The kernel, K, is a continuous, bounded, and symmetric probability 

density function.  The assumptions are as follows, 

∫ ∫ ∫ === 2
2 )( and ,0)( ,1)( kdvvKvdvvvKdvvK . 

The matrix H  controls how weight is apportioned among closer and more distant data points.  

Each data point Xi gets its own weight.  Under the common assumption ( )22
1 ,,diag dhhH �= , 

higher values of bandwidth tend to discount distance between Xi and x less than the lower values.  

As bandwidth gets smaller, the local linear fitting process depends heavily on those observations 

that are closest to x and tends to yield a wigglier estimate.  Thus, very low h would correspond to 

an interpolation of the data and very high h would give a least squares fit of a pth order 

polynomial.   

Assuming the invertibility of xx
T
x XWX , (8) has a solution of  
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The prediction of the conditional expectation function m(x) is given by the first element in (9).  

The remainder of the coefficient, 1β̂ , in the locally linear case, represents estimates of the first 

partial derivatives with respect to each of the variable, Xi.  The local least squares estimator of 

m(x) is then  

( ) YWXXWXeHxm x
T
xxx

T
x

T 1

1);(ˆ
−

= ,    (10) 

where e1 is the (d+1)×1 vector having 1 in the first entry and all other entries 0.  Thus, the value 

of );(ˆ Hxm  is the height of the fit 0β̂ .  The hedge ratio at x is then, 

       ( ) YWXXWXeHxHR x
T
xxx

T
x

T
t

1

2);(ˆ −
== β ,   (11) 

where e2 is the (d+1)×1 vector with a 1 in its 2 coordinates and zero’s elsewhere.  A major 

advantage of (10) and (11) is that it is easy to visualize how the estimator is using the data when 

estimating m at a point x.  The estimate );(ˆ Hxm , which is )(ˆ xXYE = , can be evaluated at any 

value of x to yield the nonparametric estimator of the regression function.  Clearly, out-of-sample 

forecasts, conditional on a set of known X values, can be calculated using (10). 

Explicit formulae can be driven from (10) and (11) to estimate the regression function 

and hedge ratios in (9) for local linear (p=1): 
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where ∑
=

− −−=
n

i
iH

j
ij XxKXxns

1

1 )()(ˆ .3 

Choice of Optimal Bandwidth 

Kernel estimator is described as a sum of ‘bumps’ placed at the observations, and the 

kernel function K determines the shape of the bumps, the shape of the weights, while the window 

width h determines their width, the size of the weights.  As h becomes large, the smoothness of 

estimation will increase.   

The choice of optimal bandwidth, h, remains of prime importance for the analysis to 

produce a good fit to sample data, which controls the tradeoff between bias and variance.  

Among several, the plug-in approach is utilized to select h in this study. 

Plug-in bandwidth selectors are based on the simple idea of “plugging in” estimates of 

the unknown quantities that appear in formulae for the asymptotically optimal bandwidth (Wand 

and Jones, 1995).   

The value of h should be guessed first to obtain a preliminary estimate of m(x).  For 

simplicity, the errors are homoskedastic with common variance, 2σ , then the natural selection of 

asymptotically optimal bandwidths as pilot bandwidth becomes 
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where g is a bandwidth.  Meanwhile a estimator for 2σ is 

                                                
3 Details on the proof are available from the author. 
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Wand and Jones (1995) suggested estimating m′′ (x) to avoid the problem that g and λ are 

dependent on another bandwidths, and so on.  Use this estimate of m′′ (x) to choose the 

bandwidth.  Then direct plug-in rules for selection of smoothing parameters are in the form of 
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This procedure is iterative until it reaches convergence. 

GARCH Model 

In this study, the BEKK technique is employed in BGARCH and MGARCH 

specification.4  Time series diagnostics led to the following econometric specification of the 

model, which has ARMA and exogenous variables in the conditional mean: 
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where C is constant mean, P and F are cash and futures prices, and < denotes changes in prices.  

),0(~] [ t
T

tFtPt VMNeee =  and T
t

TT
tt

T
t BVBAeeAAAV 1111111 )( −−− ++= .  A, A1, B1 are d×d 

matrices, and Vt is symmetry and non-negative-definiteness of the conditional covariance matrix. 

 The log likelihood function for the BEKK model (Engle and Kroner, 1995) is: 

                                                                                                                                                       
 
4 This model is referred to as BEKK specification due to the results obtained by Baba, et al (1989). 
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)( πθ  ,   (10) 

where θ  denotes all unknown parameters in et and Vt, T is the sample size, and N is the number 

of mean equations.  Conditional normality has been assumed. 

Data Description 

The hog producer is assumed to begin planning for, and subsequently feeding, a new lot 

of hogs every week.  Percentage changes in weekly (Wednesday) cash and futures closing prices 

are used for January 1990 to June 1999 (last two years for lean hogs), providing 493 number of 

observations: 332 for live hogs and 161 for lean hogs.5  Wednesday is selected because on that 

day both cash and futures trading is active with relatively high and stable trading volume.  

Omaha cash and central Illinois bid prices serve as the cash prices for hogs and corn, 

respectively, because of their relatively high volume and wide acceptance as market barometers. 

Lean hog prices are converted to live hog prices by multiplying by 0.74 to get overall hog 

hedge ratios.  Lean hog values represent the carcass, averaging a 74% yield from live hogs. 

Futures contracts selected are those that will be the nearby ones when hedges are lifted, and these 

futures positions are maintained throughout the hedging period without adjustment.  Data during 

the delivery months are not used.  

IV.  Estimation Results and Nonconstant Hedge Ratios 

Primary Time Series Analysis 

 The presence of a unit root is tested in each price level and change by performing 

Augemented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests.  These tests confirm that all 

data are stationary except hog futures.  Hence, these data are converted into percentage changes 

to be stationary.  Jarque-Bera normality tests on percentage changes of each series indicate that 
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the null hypothesis of normality is rejected for corn cash, hog cash, and hog futures.  The 

normality hypothesis is again rejected for the parametric joint density of cash given futures in the 

GARCH model, implying an assumption violation.  Conditional heteroskedasticity is identified 

under the assumption of normality, but since the assumption is broken, this result is not valid. 

Model Selection  

Model choice for kernel regression methods is the subject of ongoing research.  Three 

methods are used: R-square, approximate F-test, sum of squared residuals (SSR), and cross-

validation.  The following models are selected among several, 

),,( jtittt FPFfP −−= , 

where 1== ji  for corn and 3,,1�== ji  for hogs in single commodity hedging.  Also 1=i  

and 2,,1�=j  are selected for both corn and hogs in multiproduct hedging. 

 In this study two types of models are considered with various lags.  One is the traditional 

GARCH model with constant mean, C, and the other is ARMA and exogenous variables in the 

conditional mean.  Using AIC and BIC model selection, the second model is selected with 

ARMA (1,1) and lag 1 of futures prices for both single-commodity and multiproduct hedging, 

.,111111

,111111

Fttttt

Pttttt

eePFCF

eeFPCP

++++=∆
++++=∆

−−−

−−−

θβφ
θβφ

 

AIC and BIC model selection is again used to select simple linear models as follows,  

),,( jtittt FPFgP −−= , 

where 1== ji  for corn, and 3,,1 and 1 �== ji  for hogs in single commodity hedging.  Also 

1== ji  is selected for both corn and hogs in multiproduct hedging. 

Estimated Hedge Ratios 

                                                                                                                                                       
5 The final live hog contract is December 1996 and the first lean hog contract is February 1997. 
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Figures 1 through 6 present the estimated hedge ratios of two alternatives, Local 

Polynomial Kernel (LPK) (figures 1 through 4) and GARCH (figures 5 and 6), which are 

nonconstant and time varying hedge ratios.  Unlike GARCH, hedge ratios produced by LPK are 

extended into three-dimension.  They, however, are traced into two 2-dimension figures for easy 

understanding of how hedge ratios are related to the percentage changes in futures prices and 

time.  Both corn and hogs are clearly nonconstant for both alternatives.  Figures 1 and 2 show the 

relationship between hedge ratios and percentage futures price changes as given by LPK.  These 

ratios give an idea to hog producers the many different positions (hedge ratios) they might take 

in the futures market as futures prices change.  For example, if a hog producer wants to hedge the 

input, corn, and expects corn futures price to change by 5.2% (0.052) in two months from today, 

the producer needs to take a position in the corn futures market by 0.90 as indicated in figure 1.  

Figures 3 and 4 given by LPK and figures 5 and 6 given by GARCH present the relationship 

between hedge ratios and estimated time period.   

The estimation results for single-commodity and multiproduct hedges from OLS, LPK 

and GARCH during the estimation years from January 3, 1990 to June 30, 1999 are reported in 

table 1.  The hedge ratios using LPK reported here are estimated at the mean level of each price 

series.  That is, ),,( itittt FPFfP −−= , where 3,,1�=i .  As we go from single commodity to 

multiproduct hedging, LPK produces bigger hedge ratios for corn (0.94 to 1.16) and smaller 

hedge ratios for hogs (0.79 to 0.55).  In the mean time, GARCH generates smaller hedge ratios 

for both commodities (1.11 to 0.93 for corn and 1.05 to 0.62 for hogs) and OLS remains at the 

same ratios (0.95 for corn and 0.91 for hogs).   

For single commodity hedging, LPK generates the smallest estimated hedge ratio (0.94 

for corn and 0.79 for hogs), both being significantly less than one.  Meanwhile, BGARCH 
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produces the largest hedge ratio (1.11 for corn and 1.05 for hogs), which is significantly larger 

than one for corn and but not statistically different from one for hogs.  Interestingly, the corn 

hedge ratios for all three alternatives are significantly different from one while only the hog 

hedge ratio generated by LPK is significantly different from one.  Thus, if only hogs are hedged 

based on a simple regression and BGARCH, the returns defined in (1) are not statistically 

different from a naïve hedge.   

Unlike the single commodity hedging, MGARCH in the multiproduct case yields the 

smallest hedge ratios for both corn.  Corn is statistically indistinguishable from the naïve hedge, 

while hogs are significantly less than one.  Hog producers should over hedge corn and under 

hedge hogs at the same time when LPK is used.  The estimated hedge ratios from LPK and 

MGARCH for hogs are far less than the one, different from OLS in the multiproduct hedging. 

Hedging Effectiveness 

The hedging effectiveness of the various models is examined based on two measures: the 

proportional reduction in the unhedged variance of returns and the proportional increase in the 

unhedged return.  The larger the reduction in variance and the larger the increase in return, the 

higher the degree of hedging effectiveness.  Equation (1), with hedge ratios specified by the 

various procedures, is used to calculate the weekly return and its variance.  The variance of 

returns also is calculated for a naïve hedge which offsets the spot price risk by taking futures 

positions in corn and hogs based on the fixed proportions of the production technology.   

The results of the in-sample and out-of-sample hedging are presented in tables 2 and 3.  

Two sample periods are used to test hedging efficiency; period of live hog trading only from 

January 3, 1990 to May 30, 1996 and the full sample from January 3, 1990 to June 30, 1999.  

During the in-sample period, based on 280 observations for live hogs shown in table 2 and 436 
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observations for all hogs in table 3, no dramatic difference is found in returns across the 

alternative models within either sample period.  Unhedged returns at the mean and variances 

show the highest values of ($369.29, 0.0874) and ($364.41, 0.1209) for live hog and full sample 

periods, respectively.6  These variances lead to the dramatically wide ranges of return, $180 to 

$561.60 and $72 to $573.60 per hog, for the two respective periods.  Larger variance reduction is 

associated with Naïve, SLPK, and BGARCH models relative to OLS and multiproduct hedging 

models.  Among alternatives, SLPK performs well for both measures and for both sample 

periods.  It outperforms BGARCH in both measures, and produces larger reduction in variance 

than multiproduct hedging models do and similar decrease in mean return to multiproduct 

hedging models for both sample periods.  Thus, it seems that SLPK is a good alternative, which 

balances fairly high return and variance reduction on the mean-variance frontier.   

MGARCH performs slightly better than MLPK for both measures, return and variance, 

and for both in-sample periods but is hard to conclude that MGARCH is superior to MLPK.  

Caution is needed to prefer MGARCH to MLPK because the major assumption of GARCH, 

normality of error terms, has been violated.  Thus, using MGARCH based on the violated 

assumption may cause erroneous results in managing price risk.  In the mean time, since LPK 

does not depend on any parametric assumptions, it is more useful for firms to use in price risk 

management.  Hence, LPK is likely to be a reliable method to estimate hedge ratios because no 

critical assumptions are required. 

The out-of-sample results, which are based on 52 observations for the live hog period and 

57 observations for the full period, are different.  Hedge ratios of each model are one-week ahead 

forecasted based on the estimated hedge ratios by each method with keeping the same number of 

                                                
6 Additional costs beyond corn are not considered here. 
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observations.  For example, 437th and 438th hedge ratios of LPK are forecasted by )(ˆ xXYE =  

using 1 to 436th and 2 to 437th observations, respectively.  Out-of-sample performance for the 

two periods is depicted by models in figures 7 and 8 to visualize how the alternatives relate to 

each other.   

Often, naïve hedging has been found to surpass current available models in variance 

reduction such as GARCH, and is found to perform better than both single and multiple GARCH 

and OLS for the live hog period in table 2; 43% versus 38.43%, 33.06%, 36.57%, and 33.47% 

for BGARCH, SOLS, MGARCH, and MOLS, respectively.  Both SLPK and MLPK, however, 

outperform naïve model in variance reduction during the live hog period, showing around 

53.51% and 45.45% of reduction.  Larger variance reduction leads to larger decrease in return 

relative to unhedged, and smaller variance reduction in variance results in smaller decrease in 

return.  For example, around 17.78% and 10.17% of decreases in return are produced by SLPK 

and OLS, respectively, which yield 53.51% and 33.06% of variance reduction.  Since SLPK 

results in large reduction in return even though it leads to the largest reduction in variance, 

MLPK is a good alternative, which balances variance reduction and less decrease in return on the 

mean-variance frontier. 

For the out-of-sample of the full sample period, MLPK and MGARCH outperform single 

hedging models in terms of variance reduction.  MGARCH performs slightly better than MLPK, 

48.34% and 46.62%, respectively, but again MLPK might be better to use because of the 

violated assumption in the GARCH model.  In addition, MLPK produces the largest increase in 

return, 27.30% while MGARCH results in 13.10% increased return.  Therefore, MLPK is the 

best alternative, which produces the biggest mean return and a large reduction in variance.   
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Naïve hedging generates larger variance reduction than other single hedging models but 

only slightly better than SLPK.  However, SLPK might be better than naïve hedging for 

balancing return and variance.  SLPK realizes 25.69% increase in return relative to unhedged 

while naïve hedging shows 20.57% increase.  In other words, SLPK increase return and decrease 

variance, 4.25% and 1.6%, respectively, relative to naïve.   

The out-of-sample full period is when hedging instruments are most needed because 

being unhedged is much riskier than in earlier periods.  The unhedged produces the smallest 

mean return and highest variance, showing the range of return, $16.80 to $321.60 per hog, and 

all hedging alternatives tested here lead to increased return and reduction in variance.  This might 

be due to the fact that hog prices are highly unstable in this latter period: hog prices dramatically 

fell and plummeting to 57-year lows of less than $10/cwt in December 1998.  Thus, using the 

futures market helps limit possible losses in this volatile market. 

Mixed results are found between in- and out-of-sample.  SLPK might be a better 

alternative on the mean-variance frontier relative to naïve, GARCH and OLS for both in-sample 

periods because it shows good combinations of return and risk that a hog producer could assume.  

MLPK is a better alternative for the same reasons with SLPK for both out-of-sample periods, 

which is consistent with the results that Garcia, Roh, and Leuthold (1995) and Tzang and 

Leuthold (1990) have found.  Multiproduct hedging leads to the balance of larger reduction in 

variance and increase in return (or less decrease in return), indicating the importance of 

incorporating multiple price risk in the estimation of hedge ratios.   

V.  Conclusion 

 This study has examined the use of nonconstant and time-varying optimal hedge ratios 

for the hog industry.  A nonparametric, locally polynomial kernel approach is used and compared 
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to parametric approaches, BGARCH and MGARCH, and OLS models.  Nonparametric models 

have not previously been applied to hedge ratio estimation, and used in price risk management.  

For the in-sample periods, SLPK is found to be a better alternative on the mean-variance frontier 

relative to naïve, GARCH and OLS.   

MLPK is a better alternative for both out-of-sample periods because it shows good 

combinations of return and risk that a hog producer could assume.  MGARCH performs nearly 

as well as MLPK.  This study, however, suggests taking a special care when using MGARCH as 

a price risk management tool because one of the parametric assumptions, normality, is violated.  

Because of the potential assumption violations associated with the estimation and 

implementation of hedge ratios by GARCH models, LPK is a reasonable alternative for 

estimating hedge ratios to manage price risks.   

 This study suggests a new method, locally polynomial kernel, to estimate nonconstant 

hedge ratios, which is independent of parametric assumptions.  This technique can have broad 

application to many types of agribusiness firms, and needs to be tested in other situations.  

Further study is currently underway to see whether or not LPK performs reasonably well 

compared to GARCH when normality is maintained.   
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Table 1. Estimated Hedge Ratios for Corn and Hogs (1990 – 1999) 
Single Commodity Hedge 

BGARCH(1,1) for GARCH 
Multiproduct Hedge 

MGARCH(1,1) for GARCH 
 

Corn Hog Corn Hog 
Hedge Ratio        0.95        0.91        0.95        0.91 

t-Ratio (β = 0)      36.99      10.07      36.19        9.85 OLS 
t-Ratio (β = 1)        1.86        0.89        1.89        0.90 
Hedge Ratio        0.94        0.79        1.16        0.55 

t-Ratio (β = 0)      24.83        6.31      27.79        1.96 LPK 
t-Ratio (β = 1)        1.66        1.73        3.82        1.63 
Hedge Ratio        1.11        1.05        0.93        0.62 

t-Ratio (β = 0)      30.21      14.30        7.27        6.43 GARCH 
t-Ratio (β = 1)        3.07        0.69        0.57        3.94 

 
Table 2. Hedging Effectiveness, Live Hog Period 

(The unit of return is dollar) 
 In-Sample (1/3/1990 ~ 5/30/1995) Out-of-Sample (6/1/1995 ~ 5/30/1996) 
 Return/hog PI Var/lb PR Return/hog PI Var/lb PR 

Unhedged 369.29  0.0874  385.39  0.0484  
Naïve 360.93 -0.0226 0.0477 0.4542 337.51 -0.1242 0.0276 0.4300 
SLPK 364.23 -0.0137 0.0467 0.4657 316.88 -0.1778 0.0225 0.5351 

BGARCH 361.01 -0.0224 0.0477 0.4542 337.35 -0.1247 0.0298 0.3843 
SOLS 364.09 -0.0141 0.0567 0.3513 346.18 -0.1017 0.0324 0.3306 

         
MLPK 364.00 -0.0143 0.0539 0.3833 357.88 -0.0714 0.0264 0.4545 

MGARCH 364.26 -0.0136 0.0538 0.3844 367.82 -0.0456 0.0307 0.3657 
MOLS 364.02 -0.0143 0.0564 0.3547 365.60 -0.0514 0.0322 0.3347 

PI, PR and Var are percentage increase, percentage reduction, and variance, respectively.  S and 
M denote single commodity hedging and multiproduct hedging, respectively. 

 
Table 3. Hedging Effectiveness, Full Sample Period 

(The unit of return is dollar) 
 In-Sample (1/3/1990 ~ 5/30/1998) Out-of-Sample (6/1/1998 ~ 6/30/1999) 
 Return/hog PI Var/lb PR Return/hog PI Var/lb PR 

Unhedged 364.41  0.1209  228.80  0.0813  
Naïve 360.32 -0.0112 0.0517 0.5724 275.87 0.2057 0.0500 0.3850 
SLPK 361.47 -0.0081 0.0509 0.5790 287.59 0.2569 0.0508 0.3752 

BGARCH 359.97 -0.0122 0.0510 0.5782 283.49 0.2390 0.0566 0.3038 
SOLS 361.28 -0.0086 0.0590 0.5120 268.13 0.1719 0.0576 0.2915 

         
MLPK 361.91 -0.0069 0.0699 0.4218 291.26 0.2730 0.0434 0.4662 

MGARCH 361.92 -0.0068 0.0694 0.4260 258.78 0.1310 0.0420 0.4834 
MOLS 361.27 -0.0086 0.0712 0.4111 268.56 0.1738 0.0538 0.3383 

PI, PR and Var are percentage increase, percentage reduction, and variance, respectively.  S and M 
denote single commodity hedging and multiproduct hedging, respectively.
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Figure 1: Hedge Ratios for Corn Using LPK
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Figure 2: Hedge Ratios for Hogs Using LPK
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Figure 3: Hedge Ratios for Corn Using LPK
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Figure 4: Hedge Ratios for Hogs Using LPK
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Figure 5: Hedge Ratios for Corn Using GARCH
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Figure 6: Hedge Ratios for Hogs Using GARCH
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Figure 7: Out-of-Sample for Live Hog Period
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Figure 8: Out-of-Sample for Full Sample Period
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