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ABSTRACT

Decision under Risk, Uncertainty and Ambiguity: Theory and Experiments
BY
Jimmy Martinez-Correa

April 27, 2012

Committee Chair: Glenn W. Harrison
Major Academic Unit: Department of Risk Management and Insurance

I combine theory, experiments and econometrics to undertake the task of disentangling the
subtleties and implications of the distinction between risk, uncertainty and ambiguity. One
general conclusion is that the elements of this methodological trilogy are not equally
advanced. For example, new experimental tools must be developed to adequately test the
predictions of theory. My dissertation is an example of this dynamic between theoretical
and applied economics.
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The distinction between risk, uncertainty and ambiguity is a subtle and important one for
individual decision-making Knight (1921, p. 19-20) was the first to explicitly make a

distinction between two of the three concepts:

The essential fact is that “risk” means in some cases a quantity susceptible
of measurement, while at other times it is something distinctly not of this
character; and there are far-reaching and crucial differences in the bearings of
the phenomenon depending on which of the two is really present and
operating...It will appear that a measurable uncertainty, or “risk” proper, as we
shall use the term, is so far different from an unmeasurable one that it is not in
effect an uncertainty at all. We shall accordingly restrict the term
“uncertainty” to cases of the non-quantitative type.

The measurable nature that Knight (1921, p. 198) confers to risk corresponds to situations
in which “...all the alternative possibilities [states of nature| are known and the probability
of occurrance of each can be accurately ascertained.” On the contrary, uncertainty
corresponds to situations in which the possible states of nature and/or the probability of
occurrance of each state are not foreseeable with complete confidence.

Knight’s distinction between risk and uncertainty has been deemed operationally useless by
some economists,! the most likely reason being the implications for the theory of
Subjective Expected Utility (SEU) due to Savage (1972). A decision-maker that follows the
postulates of SEU theory, in particular Postulate 2 or the Sure-Thing Principle, should
treat equally a 50:50 chance of winning a prize in the roll of a fair die and a subjectively

assessed 50:50 chance of winning the same prize if the price of a stock goes up. It is in this

L An example of this claim is the introduction by Borch (1968, p. xiii) in the proceedings of a conference
held in 1966 and called Risk and Uncertainty: “It was Frank H. Knight who first used ‘risk’ and ‘uncertainty’
as two different, well-defined concepts. His book Risk, Uncertainty and Profit, which appeared in 1921,
opened the way for systematic studies of the uncertainty elements in economics, and Knights terminology
has been widely accepted by a whole generation of economists. It seems, however, that it no longer serves
any useful purpose to distinguish between risk and uncertainty.”
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probabilistic sense that risk is identified with uncertainty in the theory of SEU:
independent of the nature of the event, two events should be treated equally as long as
they are assigned the same probability weight.

Ellsberg (1961) was the first to challenge the latter implication of the SEU theory, adding a
critical nuance between risk, uncertainty and ambiguity. He used thought experiments to
characterize situations in which the risk-uncertainty identity may not be satisfied. In doing
so he resuscitated some of the arguments of Knight (1921) and others. Ellsberg (1961) used
thought experiments to characterize situations in which the risk-uncertainty identity may
not be satisfied. Relying on the psychology literature, Ellsberg (1961) chose the term
ambiguity® to describe situations under which it might not be desirable to behave
according to the postulates of SEU theory, or to describe cases in which these principles
themselves might be inadequate to predict decision-makers’ behavior.

Ellsberg (1961, p. 657) argued that the violations of the postulates in Savage (1972) might
be related to the ambiguity of information which, he defines as “a quality on the amount,
type, reliability and ‘unanimity’ of information giving rise to one’s degree of ‘confidence’ in
an estimate of relative likelihoods.” Ellsberg (1961, p. 657) also considers ambiguity to be a
condition that lies between two polar cases: complete ignorance and risk. In the latter, “a
subject is willing to base his decisions on a definite and precise choice of a particular

Y

distribution,” while in the former case, a “decision-maker lacks any information whatever

on the relative likelihoods. In ambiguous situations, like the famous Ellsberg’s two-urns

2 According to Hamilton (1957, p. 200) the term “[ijntolerance to ambiguity’ was first conceptualized by
Frenkel-Brunswik (1949) who defined it as ‘preference for familiarity, symmetry, definiteness and regularity,...
a tendency towards black-white solutions, over-simplified dichotomizing, premature, unqualified either/or
solutions...”
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thought experiment, decision-makers do not know enough about the problem to rule out a
series of possible probability distributions.

Ellsberg (1961) identified the Sure-Thing Principle as a key postulate to explain the type
of violations of SEU theory that he studied. Segal (1987, 1990, 1992) argues that the
Independence Axiom in the Expected Utility (EU) theory in von Neumann and
Morgenstern (1953), which is closely related to the Sure-Thing Principle, is best viewed as
a combination of two axioms: the Compound Independence Axiom and the Reduction of
Compound Lotteries (ROCL) Axiom.? Segal (1987, 1990) also proposes that ambiguous
situations can be characterized as a compound lottery where the first stage is over the
possible probability distributions, each of which assigns weights to the relevant states of
nature. In his framework ambiguity sensitive preferences do not satisfy ROCL under
subjective probabilities. In fact, many contemporary models of decisions under ambiguity,
such as Gilboa and Schmeidler (1989), Klibanoff et al. (2005), Ghirardato et al. (2004),
share the same feature: under ambiguity people may have multiple priors, and even if
subjects are able to define a non-degenerate subjective probability distribution over those
priors, they will not behave as if they “boil down” the distribution to the weighted average
probability.

One possible characterization of distinction between risk, uncertainty and ambiguity can be
proposed.* Risk corresponds to situations in which objective probabilities or subjective

probabilities, “tamed” by ROCL, can be assigned to the possible states of nature.

3See Harrison, Martinez-Correa and Swarthout [2012] for a formal definition of the three axioms.
4The following definitions are my interpretations of how Harrison (2011a, p. §4) defines each of the three
concepts.



Uncertainty corresponds to situations in which subjective beliefs do not satisfy ROCL.
Ambiguity corresponds to situations in which there is not enough information to form a
unique subjective belief distribution or, in an extreme case, to define a probability
distribution at all. In the rest of this dissertation, an using this terminology, by referring to
objective probabilities we refer to situations in the risk domain, and when dealing with
subjective probabilities we refer to situations under uncertainty and ambiguity that may or
may not be in the risk domain depending on the validity of ROCL for the decision maker.
One can restate this characterization of the distinction between risk, uncertainty and
ambiguity in a way that puts the focus squarely on the validity of the ROCL axiom. Risk
is defined as any situation in which the decision maker behave as if ROCL applies to
well-defined objective or subjective belief distributions. Uncertainty can then be defined as
any situation in which the decision-maker behaves as if a well-defined objective or
subjective belief distribution exists, but that ROCL does not apply to it. Hence the whole
distribution matters for behavior, not just the weighted average of the distribution.
Ambiguity can then be defined as any situation in which the decision maker behaves as if
no well-defined objective or subjective belief distribution exists, and ROCL cannot logically
be applied.

This dissertation is a collection of interrelated essays that are building blocks to
thetheoretical and empirical study of the subtle implications of the distinction between risk,
uncertainty and ambiguity (RUA). Chapter 1 is a byproduct of the topic that motivated
this thesis (insurance) and the literature surveyed in the rest of the dissertation, and

reviews the literature on behavioral insurance. Chapter 2 theoretically studies individual



X1

decision-making towards risk management and insurance under ambiguity. Chapter 3, 4
and 5 build the path to empirically study decisions under uncertainty and ambiguity. These
chapters focus on testing ROCL with objective probabilities and identifying the necessary
methodologies to test its validity in the domain of subjective probabilities. The latter
objective is a vital step to rigorously study decisions under uncertainty and ambiguity. The
following paragraphs explained in more detail the main findings of each chapter.

Chapter 1 reviews the theoretical, experimental and econometric applications of different
behavioral assumptions in the field of insurance that can help characterize the difference
between RUA. This chapter defines some methodological guidelines for the emerging field
of Behavioral Insurance. Chapter 2 theoretically studies the impact of ambiguity on risk
management and insurance decisions, and the optimality of insurance contracts. The
tractable approach used in this chapter allows one to study the interaction between risk
and ambiguity attitudes. In particular, when insurance decisions are made independently
of other assets, for a given increase in wealth, both risk and ambiguity attitudes interact in
nontrivial ways to determine the change in insurance demand. When a non-traded asset is
introduced, this model predicts behavior that is inconsistent with some implications of
classical portfolio theory that assumes SEU theory. It is possible to characterize a
counterexample to a classical result in insurance economics where an insurance contract
with a straight deductible is dominated by a coinsurance contract. Finally, it is found that
a modified Borch rule characterizes the optimal insurance contract with bilateral risk and
ambiguity attitudes, as well as heterogeneity in beliefs.

Chapter 3 presents experimental evidence on the validity of ROCL in the domain of



xii

objective probabilities. Subjects do not violate ROCL when they are presented with only
one choice that is played for money. However, when subjects are provided with many
choices and only one choice is chosen for payoffs, they violate ROCL. An important
methodological conclusion, that has been made by others in similar studies,’ is that
payment protocols can create distortions in experimental tests of basic axioms of decision
theory. This chapter is a necessary prelude to rigorously study ROCL with subjective
probabilities, and Appendix A of the chapter outlines the implied experimental procedures
and hypothesis testing methods to evaluate the validity of ROCL under subjective
probabilities.

Chapter 4 evaluates the binary lottery procedure for inducing risk neutral behavior. The
main result is that the binary lottery procedure works robustly to induce risk neutrality
when subjects are given one risk task defined over objective probabilities. Similarly,
Chapter 5 evaluates the binary lottery procedure for inducing risk neutral behavior in a
subjective belief elicitation task. Therefore, this is a natural extension of Chapter 4 to the
domain of subjective probabilities, and both contribute methodological “stepping stones”
to the test of ROCL for subjective beliefs. Chapter 5 provides evidence which supports the
hypothesis that the binary lottery procedure induces linear utility in a subjective
probability elicitation task that uses the Quadratic Scoring Rule. We also show that the
binary lottery procedure can also induce direct revelation of subjective probabilities in
subjects with certain Non-Expected Utility preference representations. These last two

chapters are important building blocks to study decisions under RUA because inducing

®See for example Cox et al. (2011) and Harrison and Swarthout (2012).
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linear utility in subjects provides degrees of freedom to experimenters to directly study
subjective beliefs. The dissertation combines theory, experiments and econometrics to
undertake the task of disentangling the subtleties and implications of the distinction
between risk, uncertainty and ambiguity. One general conclusion is that the elements of
this methodological trilogy are not equally advanced. For example, new experimental tools
must be developed to adequately test the predictions of theory. My dissertation is an

example of this dynamic between theoretical and applied economics.
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Chapter 1

Behavioral Insurance: A Survey

by Glenn W. Harrison and Jimmy Martinez-Correa

Abstract

Behavioral insurance applies alternative models of human behavior to insurance
decisions. The use of alternative models allows an evaluation of the effect of different
behavioral assumptions on inferences about insurance markets. We consider
theoretical, experimental and econometric applications of different behavioral
assumptions. The literature is reviewed and some gaps filled, providing a systematic
overview of the field of behavioral insurance. We consider the effect of allowing for
rank-dependent probability weighting, loss aversion, ambiguity and the presence of
traded and non-traded assets on the classic theorems of insurance economics. We
review experimental evidence on different facets of insurance from the laboratory and
the field, including randomized control trials of alternative insurance products.
Finally, we review the subtle econometric issues that arise when estimating models of
behavior towards insurance, particularly when using naturally occurring data. A
unifying theme of our review is the importance of allowing for alternative behavioral
assumptions when undertaking welfare evaluations of insurance products and
regulatory policies. Our review also contains numerous cautions about the subtleties
of theoretical, experimental and econometric work in the field of behavioral insurance.



1.1 Introduction

The generic insurance product involves an agent giving up a certain amount of money ex
ante some event in the expectation of being given some money in the future if something
unfortunate occurs. Evaluation of the benefits of the product require that one specify risk
and time preferences of the agent, since the benefits of the product are risky, and in the
future, while the costs are normally certain and up front. We must also know the subjective
beliefs that the agent used to evaluate the product, and then make some assumptions,
explicit or not, with respect to uncertainty aversion or ambiguity aversion. Of course, there
is a “revealed preference” argument that if the product is (not) taken up it was perceived
to be a positive (negative) net benefit. But that is only the starting point of any serious
evaluation of the product. From a normative perspective, what if the subjective beliefs
were off, in the sense that the individual would revise them if given certain information?
Behavioral insurance approaches this generic characterization of the insurance product by
allowing a wide range of assumptions about behavior. Since the evolving literature on
behavioral insurance grew out of experimental economics, behavioral economics and
behavioral finance, we make some general comments about the nature of research in those
areas as a necessary ‘preliminary” to detailed discussion of insurance. The norms of
research, including standards of rigor in statements of theory and empirical tests, differs
widely in these areas, and we take a clear stance on what methodologies should be
employed. In particular, we stress the role of theory, rigorous experimental design, and

structural econometrics. It is described the role of insurance discussions in the development



of decision theory under risk and uncertainty as well as the frontier of behavioral insurance.
We emphasize that this survey focuses on the behavioral foundations of individual decision
making under symmetric information. One of the purposes is then to survey the different
individual behavioral assumptions which, with respect to classical approaches, might have
very different implications for market and aggregate behavior in the presence of

informational problems like moral hazard and adverse selection.

1.2 Preliminaries on Behavioral Economics

Behavioral economics is often presented as putting “people” back into economics, in the
sense that the received paradigm had no essential role for agents that anyone would ever

recognize as being human.

1.2.1 Stylized Facts

One characteristic of behavioral economics is a reliance on some “stylized facts” about
behavior that are not as firmly established as one might like. Of course it is good to start
with evidence, but sometimes the evidence is not available without the help of a theoretical
structure or specific experimental procedures that bring with them potential confounds.
Data can sometimes be easy to measure, but rarely is it easy to interpret rigorously.

To illustrate the role of theory, if one pays subjects for one of K choice tasks chosen at
random, inferences about the validity of expected utility theory require that one maintain

the (mixture) independence axiom. There is an obvious circularity in having to invoke an



axiom that one then wants to reject. Many behavioral studies invoke something referred to
as “the isolation effect,” which is often a behavioral assertion that a subject views each
choice in an experiment as independent of other choices in the experiment. When used
formally, this hypothesis is usually the same as the (mixture) independence axiom.
Nonetheless, appeal to the “isolation effect” is often invoked informally as “an empirical

" much as a magic talisman is used to ward off evil spirits.

matter,’
To illustrate the role of experimental procedures, consider ground zero, the Allais Paradox.
It is now well documented that experimental subjects simply do not fall prey to the Allais
Paradox like decision-making lemmings when one presents the task for real payments and
drops the word “millions” after the prize amount: see Conlisk (1989), Harrison (1994),
Burke et al. (1996) and Fan (2002). Subjects appear to crank out the EV when given real
tasks to perform, and the vast majority behave consistently with EUT as a result. This is
not to claim that all anomalies or stylized facts are untrue, but there is a casual tendency
in the behavioral economics literature to repeatedly assume stylized facts that are simply
incorrect.

With respect to expected utility theory (EUT), the evidence suggests that some subjects
violate the assumptions in some settings, but it is not universal. Mixture models allow one
to identify the fraction of the population that violate EUT, and recent estimates place that
around 50% in developed countries and undeveloped countries (Harrison and Rutstrom,
2008; Harrison et al., 2010). With respect to time preferences, there is little evidence for

“hyperbolicky” discounting when one uses samples representative of the population rather

than students, and stakes that avoid artefactual effects of rounding errors (Andersen et al.,



2011a,b). If one does use student populations, then there is again evidence for roughly

50:50 mixtures of exponential discounting and hyperbolic discounting (Coller et al., 2012).

1.2.2 Straw Men

The second issue is the misrepresentation of received theory. Studies that claim to use the
expression homo economicus provide a clear sign in an academic context that someone is
engaged in polemics rather than science. The details of some prominent examples are
provided by Harrison (2011b, §3), and need not be aired yet again, but the manner in
which real economists have abused the definition of “received theory” is staggering.
Actually, what is staggering is the manner in which this has been tolerated by consumers
that know better. We prefer to address this by constructive discussion of what we can
model, with care and qualification.

We also strictly avoid attaching the label “rational” to any set of axioms or theoretical
structures. This is not because we have no interest in normative judgments, but simply to

avoid a counterproductive bog of rhetoric.

1.2.3 Behavioral Econometrics

Beware of behavioral economists claiming to be able to estimate a latent structural
parameter with one or two questions. One cannot say what the probability weighting
parameter is without saying something about the utility function. Similarly, one cannot say
what the loss aversion parameter of Prospect Theory is without saying something about

probability weighting and utility curvature. And then one has to allow probability



weighting and utility curvature to differ over gains and losses. These all involve delicate
structural inferences, which cannot be avoided by not caring for rigor.

For example, Fehr and Goette (2007) estimate a loss aversion parameter using what we will
call a Blind Loss Aversion model of behavior, “extending” the Myopic Loss Aversion model
of Benartzi and Thaler (1995). They ask subjects to consider two lotteries, expressed here

in equivalent dollars instead of Swiss Francs:

Lottery A: Win $4.50 with probability 1/2, lose $2.80 with probability 1/2.
Otherwise get $0.

Lottery B: Play six independent repetitions of lottery A. Otherwise get $0.

Subjects could participate in both lotteries, neither, or either. Fehr and Goette (2007)
assume that subjects have a linear utility function for stakes that are this small, relying on
the theoretical arguments of Rabin (2000). They also assume that there is no probability
weighting: even though Quiggin (1982, p. §4) viewed 1/2 as a plausible fixed point in
probability weighting, most others have assumed or found otherwise. If one is blind to the
effects of curvature of the utility function and probability weighting then the only thing left
to explain choices over these lotteries is loss aversion. On the other hand, it becomes
“heroic” to then extrapolate those estimates to explain behavior that one has elsewhere
(p.304) assumed to be characterized by stakes large enough that strictly concave utility is
plausible a priori. Of course, the preferred model (p.306) assumes away concavity and only
uses the loss aversion parameter, but without explanation for why behavior over such

stakes should be driven solely by loss aversion instead of risk attitudes more generally.

'We use the term “risk attitudes” here in the broader sense of including possible effects from nonlinear



A second difficulty in behavioral econometrics is a tendency to use Ordinary Least Squares
(OLS) for, well, everything. In some cases this is a safe and easy descriptive device, but in
many other cases it can be dangerous. Imagine a setting in which subjects are choosing a
portfolio allocation and over 95data-generating process for the “now that I am
contributing, how much” decision. And so on. These are all familiar issues, which we just
conveniently forget.

A final difficulty in some quarters is the use of “parameter calibration” to fit a model,
perhaps using some squared-error metric. This can be justifiable as approximating the
point estimates from maximum likelihood tolerably well in many settings, but avoids any
mention of sampling errors. Matters are compounded by these calibrated point estimates
being used for hypothesis testing (e.g., a t-test on a vector of point estimates).

If academics do not object to statistical practices of this kind loudly and repeatedly in
seminars, and they do not, then we get the quality of empirical behavioral research we pay

for.

1.2.4 Hypothetical Bias

It is a pity to have to keep saying this, but hypothetical bias exists. In general one gets
different answers if one asks hypothetical questions than if one asks comparable questions
with real consequences. The abuse of experimental methods and results here is not due to
subtle methodological error, but just plain bad scholarship that is uncritically tolerated.

One common modus operandi in behavioral economics is to cite some casual, hypothetical

utility functions, probability weighting and loss aversion.



study of behavior that finds some odd and startling things, and then briefly mention that
the same results are obtained when one uses real incentives, e.g., the literature on
discounting anomalies, such as (Loewenstein and Prelec, 1992, §II). The problems here are
not fixed by thinking more carefully from a methodological perspective, but by simply
calling a spade a spade.

One also has to object that there have been decades of mischievous debate about
hypothetical bias that has diverted resources inefficiently. We stress that this is of
immediate policy significance in the area of environmental damage assessment (Harrison,
2006), and not just a procedural issue for backwater debate between experimenters. By all
means do a hypothetical study to scope out an issue, if you must and are lazy, but dont
leave it there if something interesting is discovered. Dont misquote assertions that one gets
the same results: in general, and that is the key, one does not (Harrison and Rutstrém,
2008). Read (2005) is a wonderful, blunt satire of the arguments in favor of using
hypothetical rewards, although some might read him as seriously advocating the positions
he so brilliantly undermines.

The influential survey of Camerer and Hogarth (1999) is widely misquoted as concluding
that there is no evidence of hypothetical bias in lottery choices. What Camerer and
Hogarth (1999) actually conclude, quite clearly, is that the use of hypothetical rewards
makes a difference to the choices observed, but that it does not generally change the
inference that they are led to draw about the validity of EUT. Since the latter typically
involves paired comparisons of response rates in two lottery pairs (for example, in common

ratio tests), it is logically possible for there to be (1) differences in choice probabilities in a



given lottery depending on whether one uses real or hypothetical responses, and (2) no
difference between the effect of the EUT treatment on lottery pair responses depending on
whether one uses real or hypothetical responses.

Furthermore, Camerer and Hogarth (1999) explicitly exclude from their analysis the
mountain of data from experiments on valuation that show hypothetical bias. Their
rationale for this exclusion was that economic theory did not provide any guidance as to
which set of responses was valid. This is an odd rationale, since the mere fact that
hypothetical and real valuations differ so much tells us that at least one of them is wrong.

Y

Thus one does not actually need to identify one as reflecting “true preferences,” even if
that is an easy task a priori, in order to recognize that there are differences in behavioral

between hypothetical and real responses.

1.2.5 wwSs: What Would Savage Say?

One of the great, and lasting, contributions of behavioral economics is that we now have
many rich models of behavior, potentially allowing structural understanding of insurance
behavior.

But we also realize that there are some basic confounds to reliable inference about
behavior. These are not side technical issues. Risk attitudes can involve more than
diminishing marginal utility, and we have no significant problems identifying alternatives
paths to risk aversion through probability weighting. Loss aversion is much more fragile,
until we can claim to know the appropriate reference points for agents. Time preferences

can be characterized, and appear to hold fewer problems than early experimental studies
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with lab subjects suggest.

But the 600 pound gorilla confound is the subjective belief that decision-makers hold in
many settings. This is the one that is widely ignored.? What Savage (1971, 1972) showed
was that, under some (admittedly strong) assumptions, one could infer a subjective
probability and a utility function from observable behavior. The subjective probability and
the utility function would each be well-behaved in the classical senses, but one could not,
in general, make claims about the one without knowing or assuming something about the
other.?

The suggestion is not that casual assumptions about possible subjective beliefs should be
used to rationalize “rational behavior” in every setting, but that inferences about cognitive
failures, and the need for nudges, hinge on our descriptive knowledge of what explains
behavior. If we rule out some factor, then something else may look odd, just as a balloon
bulges on one side if you press it on the other side. To take a simple example, assume that
there is a risk premium, but one uses either a model that assumes that 100 percent of the
observed behavior is due to diminishing marginal utility or a model that assumes that 100
percent of the observed behavior is due to probability pessimism. The first model will
generate concave utility functions and impose zero probability weighting, and the second
model will generate convex probability weighting functions and impose linear utility

functions: both will likely explain the risk premium tolerably well. But the two models can

2An important exception, from the behaviorist side of the Force, is Koszegi and Rabin (2008). They
write (p.196ff.) about the “impossibility of Skinnerian welfare economics” in the absence of measurement of
subjective beliefs.

3Machina and Schmeidler (1992) provide an important extension to show that “probabilistic sophistica-
tion,” in the sense of making decisions with underlying probabilities that obey the usual axioms of probability,
did not require EUT. In particular, Rank-Dependent Utility models, with increasing probability weighting
functions, would suffice.
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have very different implications for the design of development policy that “works” in any
interesting sense.

Of course, in some settings it is simply not possible to “go back to the well” and elicit
information of this kind. However, there is no reason why one cannot use information from
one sample, even from a different population if necessary, to condition inferences about

another sample, to see the effect.

1.3 Theoretical Models

We focus on the core setting in which there are no asymmetric information problems in the
design of insurance. We later discuss extensions, but there are enough complexities in this

core setting to warrant careful review.

1.3.1 Risk
Risk Attitudes, Utility Functions and Insurance Demand

Bernoulli (1738, p. 29-30) is perhaps one of the first references in the literature analyzing
insurance and its rationality both for the person offering the insurance coverage and the
one buying it. Bernoulli used an expected utility argument, that was later axiomatized by
von Neumann and Morgenstern (1953), vNM henceforth, to calculate the threshold in
personal wealth that provides a rationale for a person to buy or sell insurance of
commodities shipped by sea.

Bernoulli’s work is best known for explaining the “St. Petersburg paradox,” which
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consisted in a person foregoing the possibility of playing a gamble with infinite expected
value for a finite and not very large amount. He proposed that individuals make choices
according to the “moral expectation” or expected utility of uncertain alternatives, where a
concave logarithmic utility function is assumed to model the utility of wealth. This was a
novel approach in his time when expected value was the accepted normative approach to
make decisions between uncertain prospects. One assumption implicit in Bernoulli’s moral
expectation argument is that the concavity of the utility function implies decreasing
marginal utility, an still widely accepted behavioral assumption. However, by the 1950’s
many academics were puzzle by observed behavior, such as people gambling, which
contradicts the generality of decreasing marginal utility. For example, ubiquitous
decreasing marginal utility would imply that a person would always reject a fair gamble in
which it is equiprobable to win or lose one dollar. This brought into question the validity
of EUT, even though decreasing marginal utility is not a requirement in the system of
axioms in vVINM.

Friedman and Savage (1948, p. 282) provided an explanation to seemingly puzzling
observed choices such as people with lower income buying insurance but simultaneously
buying lottery tickets. This is an issue that was extensively debated and it was considered
that a “theory of uncertainty must account for the presence of both” (Arrow, 1951, p. 407).
Friedman and Savage considered that the contradictory behavior can be explained within
the classical EUT framework of vNM, if one departs from the assumption that individuals
exhibit decreasing marginal utility at all levels of income, which is not a requirement at all

in the vNM framework, but keeps the principle of expected utility maximization. Their
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strategy to explain the contradictory behavior is to allow for a utility function that exhibits
decreasing marginal utility at lower levels of income, and increasing marginal utility at
higher levels of income. These imply a utility function that is concave for lower levels of
income and convex for higher levels of income. A utility function with these features would
explain why people choose to buy insurance to protect themselves from relatively small
losses, but buy lottery tickets that could imply attaining relatively high levels of income.
Markowitz (1952, p. 155) advanced a relatively similar hypothesis to explain the joint
observance of insurance purchasing and gambling behavior. Markowitz also proposed a
utility function of wealth that does not exhibit decreasing marginal utility everywhere, as
in Friedman and Savage (1948), but that avoids counterintuitive implications of their
approach. For example, the explanation in Friedman and Savage (1948) would imply that a
sufficiently rich man would be willing to offer insurance even if this means losses in
expected value terms or a sufficiently poor individual never gambling, both being
implications that are quite debatable. Markowitz (1952, p. 156) also pointed out that his
explanation implies a preference for positively skewed distributions of wealth. This means
that individuals would exhibit a preference for distributions that offer low probability of
very high realizations of wealth and relatively high probability of lower levels of wealth; in
other words, the opportunity of a long shot is very valued by subjects.

The concave-convex nature of the utility was early tested in the seminal work of Mosteller
and Nogee (1951, p. 404) who concluded that “... there is some support for the
inflection-point analysis offered by Friedman and Savage, although this support is not

wholly satisfactory- i.e., there is no contradiction, but the support is meager.” Markowitz’s
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amendment to the Friedman-Savage utility function was tested by Weitzman (1965, p. 26)
who used aggregate data from horse bets and found that the “results of this study show
that the crowd at the race track behaves as if it were composed of a group of individuals
each of whom possesses an identical utility function of the Markowitz variety.” However,
Yaari (1965b) showed in an experimental setting that one doesn’t need to introduce the
non-convexity* in individuals’ preferences to explain the co-existence of gambling and
insurance in the subjects’ portfolio. Yaari (1965b, p. 290) found that attitudes towards
probabilities played a role and that “one finds that some subjects tend to overstate low
probabilities and to understate high probabilities.”

Quiggin (1993) provided a similar explanation to the insurance-gamble puzzle but within
the Rank-Dependent Utility (RDU) model. He proposes (p. 88ff.) an explanation that
involves both optimism towards probabilities (concavity in the probability weighting

function) and outcome risk aversion (concave utility function):

Assuming that U is concave, the choices of an optimist facing uncertainty
will reflect a balance between two conflicting forces. Optimism encourages risk
taking but decreasing marginal utility discourages it. Since the effects of
probability weighting are independent of the scale of the bet, optimism will
tend to predominate when bets are small (that is, when all the outcomes are
near the current wealth level). Outcome risk aversion will tend to predominate
when bets are large. For example, an optimist faced with the opportunity to
participate in an actuarially fair bet will always wish to put some money on
(since EU analysis shows that behavior approaches risk neutrality as
distributions collapses to the mean). However, as the stake increases outcome
risk aversion will start to play a role. Thus, with small stakes, small winning
probabilities and large prizes, there will be a trade-off between optimism and
outcome risk aversion.

Machina (1982, p. 280-282) proposed the fanning out hypothesis which is capable of also

4We mean convexity in the set-theoretic sense of the word.
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explaining the insurance-gambling puzzle by allowing subjects to have a tendency to prefer
positively skewed distributions. For example, a subject exhibiting preferences that fan out
would prefer to buy a lottery that induces a positively skewed distribution of wealth, if the
initial wealth is assumed to be certain. Similarly, the same subject can exhibit a preference
for insurance since in the simplest case it can transform a negatively skewed distribution
into a symmetric certain one that assigns probability one to a given level of wealth.
Consequently, buying a lottery or insurance induce a distribution of wealth that is
relatively positively skewed with respect to the initial distribution. Thus a subject
satisfying the fanning out hypothesis of preferences can explain the seemingly contradicting
the observation that people that buy insurance also gamble on lotteries. It is worth
mentioning that this observation can be explained within the assumption of general risk
aversion by allowing for indivisibility of expenditure and goods (Ng, 1965; Flemming,
1969), commitments in expenditure (Chetty and Szeidl, 2007; Chen and Mahani, 2011),
making consumption and not wealth the argument of the utility function and introducing a
borrowing constraint (Hakansson, 1970) and imperfection in the capital markets and
intertemporal considerations (Kim, 1973).

The original formulation of prospect theory in Kahneman and Tversky (1979, p. 281), but
also the cumulative version in Tversky and Kahneman (1992), can explain the popularity
of insurance and gambling. They claim that the overweighting of small probability favors
long shots like lottery tickets that pay large amounts with small probabilities over the
expected value of the gambles. They also claim that people may prefer small losses

represented, by an insurance premium, over large losses with small probabilities if they are
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overweighted. Kahneman and Tversky (1979, p. 286) argue that the original version of
Prospect Theory is able to predict both insurance and gambling for small probabilities, but
they also claim that their “analysis fall far short of a fully adequate account for these
complex phenomena.” They argue that there is evidence that purchase of insurance is often
done in the medium range of probabilities but that small probabilities are often neglected
below certain threshold. Slovic et al. (1977, p. 253), Kunreuther et al. (1978) and
Schoemaker and Kunreuther (1979) found that in hypothetical situations people prefer to
buy insurance for low-loss events that have high probability to purchase insurance for
low-probability, high-loss events.Laury et al. (2009) replicated the results in Slovic et al.
(1977) with hypothetical questions, but found the under-insurance of low

probability /high-loss events, which is mainly based on field studies, does not hold in
rigorous experimental conditions with real economic stakes. In fact Laury et al. (2009,

p. 18) found that “individuals are more likely to purchase insurance for
higher-consequence, lower probability events” when the framing of the hypothetical
insurance situation is less abstract and the potential losses are clearly express in dollar
amount. They also find that this insurance demand pattern is “strongest when incentives
are real and subjects face the prospect of actually losing money” and conclude that “if

7

there is a threshold for insuring against catastrophic events,” as hypothesize by Kunreuther

and Pauly (2004, 2005), “then factors other than loss probability must be considered.”
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Optimal Risk-Sharing Arrangements and Insurance Decisions in the Absence of

Other Risks

One of the landmark contributions in insurance economics is Borch (1962) who used the
framework in Arrow (1964) to model a problem of a reinsurance market where risk is the
only commodity and many reinsurers bargain to come to a Pareto-optimal risk-sharing
agreement. The most important results are that any risk sharing agreement includes a
mutuality principle (Gollier, 1992, p. 7) where all parties give their endowments up to a
pool, thus only aggregate social risks matter since they cannot be diversified. A risk
sharing rule that depends on risk tolerances and the Pareto weights, known as the Borch
rule, is used to assign the risk allocations to each party.

Arrow (1963, p. 971-973) showed in a bilateral setting that, if both the insured and the
insurer are risk averse expected utility maximizers, the Borch rule applies. In particular,
the Pareto optimal risk-sharing agreement is a coinsurance contract in which the
distribution of risk depends on the bargaining power and risk aversion of each party.
Machina (2000, p. 62-64) shows the robustness of the bilateral result in Arrow (1963) when
subjects’ preferences have a non-expected utility (non-EU) representation that generalized
expected utility. Machina (2000, p. 65-70) also shows that the mutuality principle does
hold in a general environment with many parties that exhibit non-EU preference
representations; however, the original Borch’s risk sharing rule is no longer sufficient in this
environment, it is only a necessary condition. One needs to further assume that the
non-expected utility indifference maps are outcome convex for the Borch rule to be

sufficient for Pareto-optimality.
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There is evidence of Borch’s results both from the laboratory and from naturally occurring
data. For instance, using data from three villages in India, Townsend (1994) tested what
he calls the “full insurance” hypothesis in which all idiosyncratic risks are diversified and
risk-sharing agreements depend on risk attitudes and bargaining power of the parties
involved. Townsend (1994, p. 584) found that his hypothesis is rejected but individual
consumption co-moves with the village’s consumption average, thus consumption is not
seriously affected by idiosyncratic risk. In a more recent paper, using data from Thai
households, Chiapori et al. (2011, p. 1) control for heterogeneity and found that they
cannot reject the hypothesis of full risk-sharing, where more risk averse households are
insured by less risk averse households. In an experimental setting Bone et al. (1999) found
the puzzling behavior that the risk-sharing agreements among trading partners was
characterized by unconditional equal allocations across several prospects. In a follow-up
study, Bone et al. (2004, p. 35) attributed this behavior partly to the complexity of the
original task because they find that when giving simple choices to pairs of subjects with
different elicited risk attitudes “partners largely favour ex ante efficiency over ex post
equality.”

Arrow (1963, p. 969-971) showed that if an insurer is willing to offer any insurance contract
at a premium that depends only on the actuarial value of the loss, then the most preferred
insurance contract of an expected utility-maximizer and risk averse individual is one with
full insurance above a deductible.Vajda (1962) demonstrated a related result in the context
of reinsurance that an insurance contract with a straight deductible provides the lowest

variance to the insured. Raviv (1979) generalized Arrow’s results and found that the
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optimal contract involves a coinsurance arrangement above a deductible. Raviv also
showed that the cost of insurance is the driving force of the deductible result and the
coinsurance result is due to either risk sharing or cost sharing between the parties. Also, he
finds that these results hold in the presence of several insurable losses and that only
aggregate losses matter, thus assuming that losses are substitutable. This means that one
dollar of a given loss is valued by a subject in the same manner that one dollar of another
loss. Therefore, one can aggregate the monetary value of losses into one number. The
importance of this assumption will be clear when we discuss multivariate risk aversion and
its implications to insurance.

Gould (1969) and Schlesinger (1981) studied in an EUT framework the optimal deductible
that should be taken in a given insurance contract, where the classic results state that
individuals with a higher probability of a loss, more risk aversion or lower initial wealth
will buy more insurance. Schlesinger (1985) studied the sufficient second order condition,
extensively studied in Boyle and Mao (1983), for the choice of optimal deductible in
insurance arrangements. Schlesinger (1985, p. 522) found that this sufficient condition
depends on the “growth rate of the net price of insurance coverage and a utility weight
that reflects a measure of risk aversion.”

It is a common observation that individuals have a tendency to choose a low deductible.
For example, using aggregated data from auto insurance, Pashigian et al. (1966, p. 41)
showed that there is “a sizeable group of individuals who select smaller deductibles than
would be predicted from the expected-utility theory.” They suggest this behavior can be

explained by subjective probabilities “if there is a systematic tendency to overestimate the
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objective probabilities of an accident greater than the deductible” (p. 42).

However, there are other explanations to the demand for low deductibles that are related
to the preference representations of individuals. Karni (1985) generalized the concept of
risk aversion to state-dependent utility and found that higher risk aversion induces subjects
to take lower deductibles. PT can also explain the demand for low deductibles. Schmidt
(2012) studies in some detail the effect of different reference points for insurance demand
within the PT framework and finds that wealth after buying full insurance seems to be a
realistic reference point that can accommodate empirical evidence. Regret Theory (Loomes
and Sugden, 1982; Bell, 1982; Sugden, 1993; Quiggin, 1994), which characterizes regret as
not having chosen the ex post optimal choice, can also explain the demand for very low
deductibles as shown by Braun Muermann (2004). Finally, the preference representation
introduced by Gollier and Muermann (2012) can also rationalize the demand for low
deductibles among other deviations from EUT like Allais paradoxes and the equity
premium puzzle.

Mossin (1968) and Smith (1968) showed that if a decision maker is an expected utility
maximizer and insurance is actuarially fair, in other words, that the proportional insurance
loading is equal to zero, then full insurance is optimal. Since the loading is normally
positive in practice, this means that partial coverage should be observed in practice.
Mossin (1968, p. 558) was aware that people choose full coverage quite often. In fact he
offered several explanations for this behavior, namely: (1) people behave irrationally and
do not bother to calculate the optimal coverage; (2) there can be uncertainty around the

value of the insured asset; and (3) people might overestimate the probability of the loss.
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Additionally, Mossin’s and Smith’s result may or may not hold depending on the subjects’
preference representation. For instance, Razin (1976) analyzed insurance purchasing using
the minimazx regret criterion suggested by Savage (1951). Razin showed that if a subject
follows this criterion, it is optimal to buy full coverage even if the insurance contract is not
actuarially fair. Also,

Briys and Loubergé (1985) demonstrated that if an individual follows the Hurwicz (1951a)
criterion, then the individual does not insure at all or buys full insurance even if the
insurance loading is positive; however Lee and Pinches (1988) showed that by introducing
risk aversion to the Hurwiczs criterion, partial insurance can also be optimal. Lee and
Pinches (1988, p. 149) have a useful revision of the conditions for no insurance, partial or
full insurance for the EUT model, Savage regret criterion, Hurwiczs criterion with risk
neutrality and risk aversion, the minimax and the maximax rules. Machina (2000, p. 56)
showed that Mossin’s full coverage result does hold in a very general non-EU framework
that assumes probabilistic sophistication. Machina (2000, p. 56 fn) recognizes that the
robustness of the Mossin-Smith result under his generalized non-EU framework depends
heavily on the insured’s subjective probability of a loss coinciding with the probabilities of
the market, that is, the probabilities used to price the insurance in actuarially-fair terms.
Mossin (1968) also demonstrated that insurance is an inferior good if the decision maker
exhibits decreasing absolute risk aversion (DARA). The latter result motivated interest in
research to find conditions under which insurance is a Giffen good (Hoy and Robson, 1981;
Briys et al., 1989). The interest in insurance contracts as inferior goods remained limited,

probably, because following Arrow (1970), it was quickly recognize among economist that
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insurance is a financial claim... [t]hus it does not seem really appropriate to apply to
insurance concepts which were derived to categorize consumption goods (Loubergé, 2000,
p- 9). Another reason might be that, as Hoy and Robson (1981, p. 51) claim, it seems
empirically implausible for insurance to be a Giffen good since it would require unusually
high loadings with respect to the probability of the loss.

However, it is a widely held view among practitioners that the demand for life and non-life
insurance increases with wealth, which contradicts the behavioral implication of decreasing
insurance demand of the widely accepted assumption of DARA. For example, Enz (2000)
estimate the so called S-curve that documents a positive relationship across countries
between income per capita and insurance penetration, which are used as proxies of wealth
and insurance demand. A simple explanation would be that the size of the loss increases as
wealth increases. Mossin (1968) assumed that the size of the loss is independent of changes
in wealth. This assumption is arguably met in reality where increases in wealth normally
increases the amount of loss the subject is exposed to (Chesney and Loubergé, 1986). For
example, a subject that observes an increase in wealth may decide to buy a more expensive
house which implies a larger potential loss in case of earthquake.

However, Foncel and Treich (2009) find that after controlling for the level of wealth, car
insurance is a normal good and observed behavior in financial decisions is consistent with
DARA. Cummins and Mahul (2004) offer a potential explanation by showing that an
insurance contract with an upper limit on the coverage may behave as a normal good
under the DARA assumption since the wealth effect is indeterminate. Aese (2007) provides

conditions under which insurance can be a normal good if the decision problem endogenizes
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the amount invested in the insurable asset. Under certain conditions insurance behaves as
a normal good whenever the insurable asset is a normal good itself. Chen and Mahani
(2011, p. 20) offer an alternative by assuming consumption commitments which can
account for the normality of insurance at certain levels of wealth.

Another interesting explanation of insurance behaving as a normal good is the potential
effect on insurance demand of liquidity constraints, at least for very poor households. It is
relatively well-documented that poor households exhibit a low demand for insurance even
though it might seem that they should be buying it since they are often also the ones more
exposed to adverse random shocks.

Deaton (1990, 1991) argues that a model with liquidity constraints and prudent behavior,
as defined by Kimball (1990), is a reasonable way to characterize consumption and saving
behavior of poor farmers in least developed countries. If incomes are stationary and
independent and identically distributed over time, as might be the case of a poor farmer,
assets (e.g., harvested crops) play the role of a buffer stock and the decision maker adjusts
saving to smooth consumption. The more prudent the individuals are and the more
uncertainty in income, the greater the demand for precautionary saving in detriment of
insurance purchasing. In fact, Moffet (1977) found that saving and insurance are
substitutes in the absence of certainty. There is a close relationship between prudence and
liquidity constraints. Carroll and Kimball (2005) explain why the introduction of a
liquidity constraint increases the motive for precautionary saving. They argue that the
latter arises from the concavity of the consumption function that uncertainty or liquidity

constraints can induce. This relationship between prudence and liquidity constraints could
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be used to explain the low take-up of insurance among poor households and an increase in
insurance demand as the level of wealth increases. On one hand, Gollier (2001, p. 238)
shows that prudence is a necessary condition for decreasing absolute risk aversion (DARA).
On the other hand, Mossin (1968) shows that the coinsurance demand is decreasing in
initial wealth if the utility function exhibits DARA. Both results suggest that an increase
in prudence would decrease the demand for coinsurance. Because of the relationship
explained in Carroll and Kimball (2005), an equivalent result can be derived. If liquidity
constraints increase precautionary saving, then tighter liquidity constraints should decrease
the demand for insurance or even make it disappear. The intuition is that a liquidity
constraint induces individuals to save to smooth consumption and this competes with the
incentives to buy insurance. As wealth increases the liquidity constraints could be relaxed
and this should increase the insurance demand since less saving is needed to smooth
consumption. This would make insurance behave as a normal good. However, is likely that
at some point risk attitudes exhibiting DARA could overcome the augmenting effect on
insurance demand of relaxing the liquidity constraints. Nevertheless, it could be possible
that some of the explanations mentioned above that explain the normality of insurance
could be driving the increase in insurance demand at higher levels of wealth. To the best of

our knowledge there is no paper that studies such a comprehensive model.

Probabilistic Insurance: A Novel Kind of Insurance?

Kahneman and Tversky (1979), KT henceforth, constructed an example of an insurance

contract, called probabilistic insurance, which EUT predicts would be preferred to a
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traditional insurance contract that offers full insurance, but that intuition would suggest is
riskier than regular insurance with complete coverage. Kahneman and Tversky (1979,

p. 269) define probabilistic insurance in the following way:

In this program [the probabilistic insurance contract] you pay half of the
regular premium. In case of damage, there is a 50 per cent chance that you pay
the other half of the premium and the insurance company covers all the losses;
and there is a 50 per cent chance that you get back your insurance payment
and suffer all the losses. For example, if an accident occurs on an odd day of
the month, you pay the other half of the regular premium and your losses are
covered; but if the accident occurs on an even day of the month, your insurance
payment is refunded and your losses are not covered.

An EUT maximizer with a concave utility function would preferred a probabilistic
insurance over a contract that offers full insurance. A short proof of this claim is as follows.
Suppose an individual with utility function u such that «’ > 0, ©«” > 0 and initial wealth
position w. The subject is exposed to a potential loss x with probability p. The premium
of a contract that offers full insurance, m, is defined such that it makes this contract barely

worth its cost:

pu(w — ) + (1 = p)u(w) = u(w — )

where the left (right) hand side of the equality is the expected utility of the individual
without (with) insurance. Risk aversion, which is equivalent to concavity of the utility
function under EUT, implies that the individual will prefer a probabilistic insurance

contract over the full coverage contract:

pl0.5u(w — x) + 0.5u(w — 0.57 — 0.57)] + (1 — p)u(w — 0.57) > u(w — )
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where the left (right) hand side of the equality is the expected utility of the individual that
takes the probabilistic (full) insurance contract.

Contrary to the EUT prediction, KT found in their hypothetical experiments that, out of
95 individuals, 80% preferred full insurance over probabilistic insurance, which is the
opposite an EUT maximizer with concave utility function would do.

Kahneman and Tversky (1979, p. 270) claim that “[t]his is a rather puzzling consequence
of the risk aversion hypothesis of the utility theory, because all insurance is, in a sense,
probabilistic. The most avid buyer of insurance remains vulnerable to many financial and
other risks which his policies do not cover.” They are able to explain this puzzling behavior
within prospect theory by allowing the utility function to be convex in losses, or
equivalently, by claiming that individuals exhibit risk loving behavior over losses with
respect to a reference point. More recently, using real stakes, Herrero et al. (2006) found
that subjects that are indifferent between full insurance and no insurance, prefer full
insurance to probabilistic insurance and the latter to no insurance. The first finding is
incompatible with EUT and the second is incompatible with the original Prospect Theory.
Herrero et al. (2006) suggest that Regret Theory, as described in Loomes and Sugden
(1982, 1987), can accommodate both results.

Segal (1988a) shows that the reluctance towards probabilistic insurance can be explained
by his version of Quiggin’s RDU model without having to assume risk loving behavior or
convexities in the utility function. Notice that a probabilistic insurance contract is
basically a compound lottery in which an individual will pay only half the premium if no

accident occurs but will be exposed to a 50/50 risky prospect in which the premium paid is
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returned and no insurance repayment is done or the other half of the premium has to be
paid and the total loss is covered. Segal demonstrated that the rejection of probabilistic
insurance is consistent with risk aversion and a concave utility function if the individual
has a RDU preference representation and either satisfies the reduction of compound
lotteries or the compound independence axiom but not both.?

Wakker et al. (1997) generalized the particular version of probabilistic insurance shown by
Kahneman and Tversky (1979) and find survey evidence of hypothetical questions in which
people dislike their version of probabilistic insurance. Wakker et al. (1997, p. 7-8) claim
that “most insurance policies are, in fact, probabilistic. Insurance policies typically specify
some events (e.g., wars, ‘acts of god,” contributory negligence) in which the consumer is not
reimbursed for losses, whether or not the consumer was aware of these contingencies ex
ante. Furthermore, there is always a possibility however remote-that the insurer will not
pay for some other reason such a insolvency or fraud. Although such default risks are not
explicitly acknowledge, they are present in any real insurance setting.” In fact, the
unappealing nature of probabilistic insurance is also shared by Merton (1993, p. 43) who
claims that “... many real world customers would consciously agree to accept non-trivial
[default] risk on a $200,000 life insurance policy in return for a large reduction in the
annual premium, say from $400 to $300.” Doherty and Schlesinger (1990) showed that this
risk of contractual nonperformance renders invalid most of the standard results in

insurance economics. For example, if the risk of insolvency is non-negligible and the default

5Expected utility theory assumes the mixture independence axiom, which is in turn implied by the reduc-
tion of compound lotteries and the compound independence axiom. See Annex A for a detailed definition of
these axioms.
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is total, partial insurance is optimal even at actuarially fair prices, which is contrary to the
Mossin (1968) and Smith (1968) full insurance result. Also, insurance as an inferior good
when preferences exhibit DARA and more demand for insurance given higher risk aversion
no longer hold. It is worth mentioning that this type of nonperformance in insurance
contracts is conceptually related to what is called basis risk in hedging markets. For
example, Clarke (2011) shows in a EUT framework and for a risk averse individual that
zero demand for index insurance can be optimal depending on the transaction costs and
the level of basis risk. Doherty and Richter (2002) show, in a mean-variance framework and
in the presence of basis risk, that the availability of both an index-linked hedging product
and gap insurance that covers the difference in payouts between the index product and

actual losses can lead to efficiency gains.

Insurance as One Risk Management Strategy among Many and the Interaction

of Many Risks

Ehrlich and Becker (1972) is considered the first theoretical paper in risk management
which considered insurance as one tool among many to deal with hazards and their
economic costs. Ehrlich and Becker derived four important results.

First, when “market” insurance is not available, individuals engage in self-insurance (e.g.,
cash balances or savings) and self-protection (e.g., theft alarms) activities according to the
costs and benefits associated with those activities. Ehrlich and Becker define self-insurance

as an activity that is able to affect the cost associated to a potential loss, whilst
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self-protection affects the probability of the loss itself.®

Second, market insurance and self-insurance are substitutes since both risk management
strategies are able to redistribute resources from bad states of the world to good states of
the world, thus affecting the size cost of the loss and smoothing consumption across states
of nature. Third, market insurance and self-protection can be substitutes or complements.
For example, the installation of a theft alarm at home might be enough to deter robbery so
home insurance might not be necessary. On the contrary, a theft alarm might increase the
demand for insurance if this self-protection strategy reduces the probability of a loss and
the cost of insurance varies proportionally with this probability. An implication of this
relationship is that if the price of insurance to cover certain risks is independent of
expenditures on self-protection activities that reduce the probability of a loss, then the
market will tend to consider those risks as uninsurable since moral hazard is more likely to
arise. However, in contrast to the moral-hazard intuition, this relationship may also imply
that the presence of market insurance may increase the self-protection activities.

Finally, Ehrlich and Becker’s framework is able to explain the insurance-gambling puzzle.
They consider that behavior of people buying insurance and gambling at the same time can
be explained if the options available are sufficiently favorable. Therefore, Ehrlich and
Becker (1972, p. 627) consider that “inferences about attitudes towards risk cannot be
made independently of existing market opportunities: a person may appear to be ‘risk

avoider’ under one combination of prices and potential losses and a ‘risk taker’ in another.”

SEhrlich and Becker recognize that many of the risk management strategies that people have at their
disposal can potentially affect both the cost and the probability of the loss. However, for explanation
purposes, they assume that there is a separation between self-insurance and self-protection activities.
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Using the EUT framework, several authors expanded the analysis in Ehrlich and Becker
(1972) in different directions. Dionne and Eeckhoudt (1985) found that more risk aversion
increases self-insurance activities but does not necessarily increase self-protection. Briys
and Schlesinger (1990, p. 466) provided an explanation for these results: Self-insurance
unambiguously reduces risk, while self-protection does not. Consequently, it is no surprise
that an increase in risk aversion unambiguously increases the level of self-insurance, but
sometimes it may decrease the level of self-protection. However, Hiebert (1989, p. 300-301)
showed that self-insurance activities does not necessarily increase with more risk aversion if
the effectiveness on loss mitigation of these activities is uncertain. Briys et al. (1991) take
the analysis one step further and analyze the main tools of risk management when their
reliability cannot be guaranteed, in other words, that there is as chance that these tools
might not work as expected in the case of a loss, just like an insurer might default on its
clients because of solvency issues. In contrast to Ehrlich and Becker (1972), Briys et al.
(1991, p. 47) find that: (i) the “riskiness” of final wealth is not necessarily reduced by an
increase in market insurance or self-insurance when they are not fully reliable; and (ii)
market insurance and self-insurance might be complements without full reliability. Finally,
Sweeny and Beard (1992) study the comparative statics of self-protection when initial
wealth and the size of the loss changes.

From a Non-EUT perspective many of the results in Ehrlich and Becker (1972) hold. In
fact, Quiggin (1991, p. 340) showed that a wide range of comparative static results under
EUT can be extended to RDU, because this model “may be regarded as expected utility

with respect to a transformed probability distirbution.” Konrad and Skarpedas (1993),
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Machina (1995, 2000) and Courbage (2001) showed that the main results in Ehrlich and
Becker (1972) hold under RDU theory, generalized smooth Non-EU and Yaari’s Dual
Theory.

The framework in Ehrlich and Becker can be used to study how policies or activities that
change risks can affect individuals welfare. Shogren and Crocker (1991, p. 6, 9 and 11),
using the EUT model, analyze the ex ante value of reducing risk when there are
self-protection possibilities and find three important results. First, when self-protection
influences the probability and/or the severity of a loss, the ex ante valuation of a reduction
in risk is a function of risk attitudes and the marginal rate of technical substitution
between self-protection and hazard concentrations. This implies that willingness to pay for
reductions in risk cannot be studied just by looking at observable expenditures in
self-protection and exposure to risk. This also implies that one cannot simply sum the
unweighted compensating or equivalent variation to study the societal impact of a policy
that affects a risk individuals are exposed to. Second, even under very intuitive conditions
such as individuals’ pecuniary costs of hazards being convex to risk, increased exposure to
a hazard does not necessarily mean that the individual needs to be compensated. The
intuition behind this result is that a change in exposure to risk induced by self-protection
may have effects both on the probability and the severity of the loss. There are no ex ante
reasons to believe that self-protection affects both probability and severity in the same
direction. Finally, intuitive and simple conditions on the costs of risks are not sufficient to
guarantee an unambiguous response of self-protection expenditures to changes in risk. This

implies that observed expenditures in self-protection are no necessarily a lower bound on
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the subject’s ex ante value of a reduction in risk. Intuitively this may happen because
these expenditures may not be necessarily increasing in risk.

Quiggin (1992, p. 41) claims that, under certain intuitive conditions, the negative results in
Shogren and Crocker will not hold and the “standard willingness-to-pay approach to
valuing environmental hazards is valid under fairly general conditions.” These are
decreasing absolute risk aversion and a separability condition. The former is an assumption
that deserves discussion but is widely accepted by economists, however, the latter implies
that self-protection activities mitigates the individual’s exposure to risk but does not affect
the risk itself. In a subsequent response to Quiggin’s results, Shogren and Crocker (1999)
claim that the separability assumption is problematic and consider that risk is endogenous
in many situations. This implies that self-protection activities can mitigate the
consequences of risk to the individual but can also affect the general level of risk itself. If
this is in fact the case, then the analysis welfare analysis of risk reduction cannot avoid the
identification of risk attitudes. This is an important example in which experiments can
help identify risk attitudes in order to carry out welfare analysis.

A modern perspective in the analysis of financial decisions was formally introduced by
Mayers and Smith (1983), but recognized earlier by Gould (1969, p. 151), who proposed
that insurance decisions should be analyzed in the presence of traded and non-traded
assets like human capital. The introduction of a non-traded asset can significantly change
some of the standard results in insurance economics, such as a wealthier individual buying
less insurance.

A non-traded asset is closely related to the concept of uninsurable background risk, which
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is of great relevance to the analysis of decisions under risk. As pointed out by Schlesinger
and Doherty (1985), incomplete markets induce the presence of uninsurable background
risks that can affect the standard results in the analysis in insurance decisions. Doherty
and Schlesinger (1983) studied the robustness of the standard results to the presence of
uninsurable background risk that is independent to the insurable loss. They found that
under certain restrictive conditions the Mossin-Smith theorem holds and more risk averse
people will choose a lower deductible. Turnbull (1983, p. 217) also showed that in the
presence of many risks, the Arrow-Pratt measure of risk aversion is not a sufficient statistic
to describe individuals’ behavior in insurance purchasing. Doherty (1984, p. 209) showed in
an EUT framework that the Mossin-Smith theorem only holds if the covariance between
the non-traded asset and the insurable loss is negative. The intuition is that even if the
insurance premium is fair, the DM might still not be willing to fully insure if she can
compensate high losses with high realizations of her human capital. However, if the
covariance is negative, the individual might want to fully insure if a health shock affects
negatively her productivity, which would undermine her human capital. Moreover, in the
presence of a non-traded asset circumstances may arise where a risk averse individual
prefers a coinsurance arrangement to an actuarially equivalent insurance contract with
straight deductible.

Many of the later studies in background risks focused on finding conditions under which
unambiguous comparative statics can be obtained. For example, Eeckhoudt and Kimball
(1992) derived a sufficient condition on utility functions called standard risk aversion which

guarantees that under less restrictive condition, the presence of background risk
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(independent or not) will induce a higher demand for insurance. Standard risk aversion is
satisfied if both absolute risk aversion and absolute prudence are decreasing in wealth.
Gollier and Pratt (1996, p. 1109) derived a restriction on utility functions called risk
vulnerability which is equivalent to “the condition that an undesirable risk can never be

made desirable by the presence of an independent, unfair risk.”

General Characterizations of Risk aversion, Changes in Risks and Insurance

Decisions

There is an important line of research that analyzes decisions under risk and uncertainty
by studying very general definitions of risk aversion and the stochastic orders that the
individual’s preference representation satisfies.

This approach demonstrate that several of the results derived under EUT apply to
preference representations that satisfy risk aversion in the sense of the mean-preserving
contraction property (MPC). Gollier (2000) has a rigorous analysis of the following stated
results. First, if transaction costs are linear in the actuarial value of the potential loss, the
insurance loading is zero and the preference representation exhibits risk aversion in the
MPC sense, then it is always optimal to fully insure. This is the main result in Mossin
(1968). Second, the optimality of an insurance contract with a deductible derived by Arrow
(1963) is maintained if there is linearity in costs and the subject exhibits risk aversion in
the sense of MPC. Third, also under linear costs and risk aversion in the MPC sense, the
optimality of an umbrella policy that covers aggregate losses in the presence of many risks

is maintained, a result derived by Gollier and Schlesinger (1995) under EUT. There is an



35

important strand of literature that studies the comparative statics of insurance demand
when there is a change in the distribution of the loss, a problem that was originally studied
by Rothschild and Stiglitz (1970, 1971). The most general result was obtained by Gollier
(1995, 1997) who demonstrated under the EUT model that an increase in risk in the sense
of “greater central riskiness” (CR) is a necessary and sufficient condition for all risk averse
individuals to decrease their exposure to the source of risk, thus raising the demand for
insurance. Interestingly, other characterizations of increased riskiness that has been studied
in the literature, like one proposed by Rothschild and Stiglitz (1971), are especial cases of
CR. Eeckhoudt and Gollier (2000) have a very comprehensive exposition of different
definitions of an increase in risk and its consequences.

The advantage of these approaches are evident, they allow to derive very general results
under very few restrictions. Although this approach might be very useful for objective
probabilities, they have both theoretical and practical limitations when dealing with
subjective probabilities. First, from a theoretical perspective, this approach requires that
individuals are probabilistically sophisticated as defined by Machina and Schmeidler
(1992). Second, from an applied perspective, in order to make any comparative static a
researcher would have to know the subjective probabilities that an individual has in mind
when making decisions. There are ways to elicit subjective probabilities in the laboratory,
which we review in the next section, but most of these methods require the specification of
the preference representation. Thus, from an operational point of view, the advantages of

this approach are limited.
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1.3.2 Uncertainty and Ambiguity

One new program of research is studying insurance decisions under uncertainty, which
Ellsberg (1961) originally referred to as ambiguity. The latter corresponds to a situation in
which an individual is not sure about the true distribution of the states of nature and a
decision maker is usually assumed to be averse to this situation. We first offer a statement
of the differences between risk, uncertainty and ambiguity, which stresses the role of the

4

ROCL axiom. There are many studies that use the expression “uncertainty” for what we
would call subjective risk, or use the expression “ambiguity” for what we would call it
uncertainty. This actually matters less than the formal characterization that is being
referred to, and often the context makes that characterization clear. But many researchers

in insurance do not seem to know the formal differences, and the literature is peppered

with instances of polysemy, where one word is used to mean many things.

Defining Risk, Uncertainty and Ambiguity

The evaluation of insurance involves more than just the evaluation of objective risk. Even
when actuaries are called in to offer probabilities of alternative outcomes, there is a
significant element of subjectivity. Does anything change when we allow for subjective
beliefs?

Unfortunately, yes and no. Nothing changes if we assume, following Savage (1971), that
decisions are made as if one obeys the ROCL axiom. But things change radically if one
does not make that assumption. This seemingly technical issue is actually of great

significance for the evaluation of insurance, and is worth explaining carefully.
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Figure 1.1 illustrates the situation. Assume that the subjective beliefs are symmetric, with
mean one-half as shown by the solid, vertical line. But they vary in terms of the underlying
distribution, as shown in the four panels of Figure 1.1. Some are just more or less precise
than others, and one is bimodal. Under ROCL, all would generate decisions with the same
outcome, since all have the same (weighted) average. Something nags at us to say that

behavior ought to be different under these different sets of beliefs, but ROCL begs to differ.

Figure 1.1: Symmetric Subjective Probability Distributions
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Figure 1.2 raises the stakes by considering asymmetric distributions. Again, ROCL is a
strong, identifying assumption. Together, Figures 1.1 and 1.2 remind us that Savage (1971)
did not assume that people had degenerate subjective probabilities that they held with
certainty, he only assumed that under ROCL they behaved as if they did. We often forget
that linguistic methodological sidestep, and confuse the “as if” behavior for what was

actually assumed. In some cases the difference does not matter, but here it does. The
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reason is that when we have to worry about the underlying nondegenerate distribution,
when ROCL is not assumed, then we have moved from the realm of (subjective) risk to

uncertainty. And when the individual does not even have enough information to form any

subjective belief distribution, degenerate or non-degenerate, we are in the realm of

ambiguity.
Figure 1.2: Asymmetric Subjective Probability Distributions
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Figure 1.3 allows a simple illustration of how ROCL allows one to collapse these disparate,
non-degenerate distributions into one degenerate weighted average. Figure 1.3 displays a
three-point discrete, non-degenerate, subjective distribution over a binary event in which
the individual holds subjective probability m = 0.6 with “prior” probability 0.1, 7 = 0.7
with “prior” probability 0.6, and 7 = 0.8 with “prior” probability 0.3, for a weighted

average m = 0.72. Now consider a lottery in which one gets $X if the event occurs, and $x
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otherwise. Then the subjective expected utility (SEU) is

0.1x06xUX)+01x04xU(x)+0.6x0.7xU(X)+

0.6 x03xU(z)+03x08xU(X)+0.3x02xU(x)

Figure 1.3: ROCL at Work
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which collapses to

(0.1 X 0.6+ 0.6 x 0.7+ 0.3 x 0.8) X U(X) + (0.1 x 0.4+ 0.6 x 0.3+ 0.3 x 0.2) x U(x)

and hence to

0.72 x U(X)+0.28 x U(x)

under ROCL. So the non-degenerate distribution in Figure 1.3 can be boiled down to a

degenerate subjective probability of 0.72 under ROCL: an impressive identifying restriction.
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How we relax ROCL is a matter for important, foundational research. Although it has
taken half a century for the implications of Ellsberg (1961) to be formalized in tractable
ways, we are much closer to doing so. One popular approach is the smooth ambiguity
model of Klibanoff et al. (2005), KMM henceforth, with important parallels in Davis and
Paté-Cornell (1994), Ergin and Gul (2009), Nau (2006) and Nielsen (2010). Another
popular approach is the a-MEU model due to Ghirardato et al. (2004), generalizing the
Maxmim Expected Utility model of Gilboa and Schmeidler (1989) and the Bayes-Minimax
criterion of Hurwicz (1951a,b).

To provide a concrete example, we can illustrate the smooth ambiguity model with some
simple numbers. Let C'E(m = 0.6) be the certainty equivalent of the lottery

0.6 x U(X)+ 0.4 x U(x), CE(m = 0.7) be the certainty equivalent of the lottery

0.7x U(X)+ 0.3 x U(x), and CE(m = 0.8) be the certainty equivalent of the lottery

0.8 x U(X) + 0.2 x U(z). Then the evaluation of the lottery can be written

0.1 x $(U(CE(r = 0.6))) + 0.6 x ¢(U(CE(r = 0.7))) + 0.3 x ¢(U(CE(r = 0.8))),

where ¢ is a function defined over the domain of U(.). Akin to the properties of U(.)
defining risk attitudes under EUT or SEU, the properties of ¢(.) define attitudes towards
the uncertainty over the particular subjective probability value.” If ¢ is concave, then the

decision-maker is uncertainty averse; if ¢ is convex, then the decision-maker is uncertainty

"In the original specifications ¢ is said to characterize attitudes towards ambiguity, but the earlier defi-
nition of risk, uncertainty and ambiguity makes it apparent why one would not want to casually confound
the two. One would only be dealing with ambiguity in the absence of well-defined prior probabilities over
the three subjective probability values 0.6, 0.7 and 0.8.
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loving; and if ¢ is linear, then the decision-maker is uncertainty neutral. The familiar SEU
specification emerges if ¢ is linear, since then ROCL applies after some irrelevant
normalization. The overall evaluation of the lottery depends on risk attitudes and
uncertainty attitudes, and there is no reason for the decision-maker to be averse to both at
the same time. An important econometric corollary is that one cannot infer attitudes
toward uncertainty from observed choice until attitudes toward risk are characterized.

One final point is that in the analysis of attitudes towards uncertainty, aversion towards it
is normally assumed, much like in the analysis of risk aversion is assumed. The latter
approach is a normative view of how to make decisions under risk that started with
Bernoulli (1738) and became the norm after Pratt (1964). However, there is nothing in the
axiomatic derivation of EUT of von Neumann and Morgenstern (1953) that restricts
individuals to be risk averse since the utility function need not be concave as was argued
by Friedman and Savage (1948). A similar claim can be made about attitudes towards
uncertainty: people can behave as if they were uncertainty averse, neutral or loving.
Ellsberg (1961) is normally interpreted as suggesting that uncertainty aversion is a
reasonable response to uncertainty; however he also suggested (Ellsberg, 2001, p. 199-209)
that there are situations where subjects might consider it favorable to behave as if they
were uncertainty lovers. More recently, Machina (2011, p. 2) has emphasized the same
issue and provide thought experiments that can be implemented in a laboratory in which
uncertainty loving is a “reasonable” heuristic to deal with the situation. There is some
evidence from a field experiment by Wakker et al. (2007, p. 1779) in which uncertainty

seeking was found in the losses domain. The main point is that researchers should
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approach the analysis of decisions under uncertainty from an agnostic point of view and let

attitudes towards uncertainty vary across all domains.

Implications for Insurance Demand

One important research challenge that lies ahead is that different models may produce
different predictions of insurance behavior, because of the different behavioral assumptions
of the models. This is inevitable given the myriad ways that ROCL can be relaxed.

For example, Cherbonnier and Gollier (2011) found that decreasing concavity of the utility
function is necessary and sufficient in the a-MEU model to guarantee decreasing aversion.
This would imply that higher wealth would decrease the demand for insurance. However,
they also show that in the KMM model one has to impose restrictions on both risk and
uncertainty attitudes, as well as on the uncertainty structure, to guarantee that an increase
in wealth will increase the demand of an ambiguous asset. The Borch rule is another classic
result that is robust depending on the framework that one uses to model decisions under
uncertainty. Martinez-Correa (2012) showed that a modified Borch rule characterizes the
optimal contract under uncertainty when one allows for bilateral risk and uncertainty
aversion and differences in beliefs. However, Wener (2011) shows that the multiple-priors
MEU model by Gilboa and Schmeidler (1989) implies that uncertainty averse individuals
might not participate in risk sharing agreements.

Another important line of research that is underdeveloped is the robustness of standard
results to the introduction of uncertainty and non-traded assets/background risks. For

example, using the KMM framework, Alary et al. (2010) found that uncertainty aversion
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always raises the demand for self-insurance but may decrease the demand for
self-protection, that it also increases the optimal insurance coverage, and show a case in
which the optimal insurance contract is one with a straight deductible, the one originally
derived by Arrow (1963). However, Martinez-Correa (2012), also using the KMM model,
showed that an insurance contract with a straight deductible may be dominated by an
equivalent coinsurance contract if the decision maker owns a non-traded asset. An
important related line of research that is basically undeveloped is analyzing the original
framework in Mayers and Smith (1983) in the present of ambiguous traded and non-traded
assets, insurable and uninsurable uncertainties.

Since any insurance problem can be written as a portfolio choice problem, an important
result in Martinez-Correa (2012) is that, in the presence of uncertainty, the optimal risk
return allocation will not always be located in the efficient part of the classical
mean-variance frontier. The reason is that high incentives to self-hedge create a trade-off
between the variance and uncertainty of wealth that a decision maker must solve. Thus, an
individual could appear to be “inefficient” from the perspective of classical portfolio
analysis that assumes (subjective) expected utility maximization, although such action is

optimal in the presence of uncertainty.

1.4 Experimental Evidence

Experiments can help inform the evaluation of insurance in two ways. The first is by

providing some guidance as to latent structural parameters needed to understand observed
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behavior and to complete a welfare evaluation. The second is by bypassing the need for all
of this structure, in an agnostic manner, and “letting the data speak for itself” with
minimal theoretical assumptions.

It is worth identifying the various types of experiments in wide use. Harrison and List
(2004) propose a taxonomy to help structure thinking about the many ways in which
experiments differ. At one end of the spectrum are thought experiments, which can be
viewed as the same as any other experiment but without the benefit of execution (Sorenson,
1992). Then there are conventional laboratory experiments, typically conducted with a
convenience sample of college students and using abstract referents. Then there are three
types of field experiments. Artefactual field experiments are much like lab experiments, but
conducted with subjects that are more representative of a field environment. Framed field
experiments extend the design to include some field referent, in terms of the commodity,
task, or context. Natural field experiments occur without the subject knowing that they
have been in an experiment. Then we have social experiments, where a government agency
deliberately sets out to randomize some treatment. Finally, there are natural experiments,
where some randomization occurs without it being planned as such: serendipity observed.
Randomization can be used in every one of these types, and is more a method of
conducting experiments rather than a defining characteristic of any one type of experiment
in the field, as some have suggested. Nor are these categories intended to be hard and fast:
one can easily imagine intermediate categories, such as the wvirtual experiments of Fiore et

al. (2009), with the potential of generating both the internal validity of lab experiments
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and the external validity of field experiments.®

1.4.1 Estimating Preferences and Beliefs

There are three fundamental, behavioral “moving parts” in almost any decision of
importance concerning insurance: risk attitudes, time preferences, and subjective beliefs.
Experimental economists now have a robust set of tools to elicit each of these, although
controversies remain, as expected in foundational concepts such as these.

Risk attitudes refer to the risk premium that individuals place on lotteries. The familiar
diminishing marginal utility explanation of EUT provides one characterization of the risk
premium, and allows a wide range of flexible utility functions to be estimated. But it is a
simple matter to also allow for probability weighting to explain the risk premium:
“pessimistic” attitudes towards probabilities can just as easily account for risk aversion.’
Similarly, it is possible to extend the estimation to allow for sign-dependent preferences,

whereby losses are evaluated differently than “gains.” We add quotation marks for losses

and gains because the Achilles Heal of sign-dependent models is the specification of the

8 A virtual experiment (VX) is an experiment set in a controlled lab-like environment, using either typical
lab or field participants, that generates synthetic field cues using Virtual Reality (VR) technology. The
experiment can be taken to typical field samples, such as experts in some decision domain, or to typical lab
samples, such as student participants. The VX environment can generate internal validity since it is able to
closely mimic explicit and implicit assumptions of theoretical models, and thus provide tight tests of theory;
it is also able to replicate conditions in past experiments for robustness tests of auxiliary assumptions or
empirically generated hypotheses. The VX environment can generate external validity because observations
can be made in an environment with cues mimicking those occurring in the field. In addition, any dynamic
scenarios can be presented in a realistic and physically consistent manner, making the interaction seem
natural for the participant. Thus the VX builds a bridge between the lab and the field, allowing the
researcher to smoothly go from one to the other and see what features of each change behavior.

9The logic is easy to see. Assume lotteries defined solely over gains, and a linear utility function just to
remove the effect of diminishing marginal utility. Then if the weighted probability is always equal to or less
than the actual (objective or subjective) probability, the EU based on these weighted probabilities will be
less than the EV based on the actual probabilities, hence there is a risk premium.
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reference point, and this is the subject of considerable debate. All of these approaches
simply decompose and explain the risk premium in different ways, and build on the
approach before it. Experimental and econometric methods for the estimation of risk
attitudes using all of these approaches are relatively well-developed: see Harrison and
Rutstrém (2008) for an extensive survey.

There is also considerable evidence that behavior towards risky lotteries is not
characterized by just one model of decision making under risk. Mixture specifications in
rich and poor countries, in the lab and the field, show a remarkable combination, close to
50:50, of both EUT and non-EUT characterizations (Harrison and Rutstrém, 2009;
Harrison et al., 2010). This finding is likely to vary from domain to domain, and
population to population, but offers a much richer characterization of behavior than the
usual approach favored by economists.!®

Most of the effort to go into estimating “risk attitudes” is actually directed at estimating
utility functions. So a trivial byproduct of that effort is to be able to generate estimates of
higher-order concepts such as “prudence” and “temperance”. Although it is possible to
generate lotteries that identify preferences driven solely by prudence or temperance (e.g.,
Ebert and Wiesen, 2011), these design typically require that subjects satisfy ROCL, which
is a strong assumption and appears to limit the generalization to non-EUT models such as
RDU.

Recent extensions include attention to the problem of the presence “background risk”

10Tp effect, the usual methodological approach is akin to running a horse race, declaring a winner, maybe
by a nose, and shooting all of the losing horses. The fact that one of these losers might have done better on
a different, wetter track is ignored.
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affecting decisions over foreground risk (e.g., Harrison et al., 2007). For example, it makes
little sense to evaluate the value of a statistical life without worrying about the confound of
compensating differentials for non-fatal injuries: what does not kill often injures. A further
extension to multi-variate, or multi-attribute, risks promises greater insight into risk
management over traded and non-traded assets in the individual’s portfolio (e.g., Andersen
et al., 2011b).

Time preferences are also now relatively well understood. The first generation of
experiments used loose procedures by modern standards, often relying on the elicitation of
present values using Fill-In-The-Blank (FIB) methods that have notoriously poor
behavioral properties. This literature is characterized by the need to use scientific notation
to summarize estimated astronomic discount rates, a sure sign that something was wrong
with behavior, experimental design, or inferential methods. Frederick et al. (2002)
summarize the literature up to this point. The second generation of experiments moved
towards binary choice tasks to ensure incentive compatibility, albeit at the loss of
information precision (if the FIB methods behaved the way theorists advertized them,
which was not the case), and stakes that were more substantial. Inferred discount rates
were now at the level of consumer credit cards: high, but believable (e.g., Coller and
Williams, 1999; Harrison et al., 2002). The third generation of experiments recognized that
discount factors equalize time-dated utility, and not time-dated money, so one needed to
account, for diminishing marginal utility when inferring discount factors. This is a simple
matter of theory, from the conceptual definition of a discount factor. Jensen’s Inequality

does the rest theoretically: inferred discount rates must be lower if one has a concave
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utility function than if one assumes a linear utility function. Appropriate experimental
designs and econometric inferences then simply quantify this insight from theory, with a
dramatic reduction in estimated discount rates down to 10% or even lower (e.g., Andersen
et al., 2008).

Quite apart from the level of discount rates, there appears to be no support for
“hyperbolicky” specifications of the discounting function in field data (e.g., Andersen et al.,
2011a). This does not mean that exponential specifications are appropriate for all
populations, just that the monolithic presumption in favor of non-exponential
specifications is not supported by the data.

Subjective beliefs can be elicited using scoring rule procedures that have a venerable
tradition, such as Savage [1971]. These procedures do require that one correct for risk
attitudes, and only directly elicit true subjective beliefs under the assumption of risk
neutrality. But it is a relatively simple matter to condition inferences about beliefs on the
estimated risk attitudes of individuals, by combining experimental tasks that allow one to
identify the risk attitudes independently of the task that elicits subjective beliefs (e.g.,
Andersen et al., 2010, 2012).' One can also use generalizations of these scoring rules to
elicit whole subjective probability distributions, rather than just one subjective probability
(e.g., Mathieson and Winkler (1976) for the theory). This area is the least developed of the
three, but the experimental tools are in place for rigorous elicitation, and are being widely

applied.

' This joint estimation approach does require the maintained, identifying assumption that risk attitudes
over objective probabilities are the same as risk attitudes over subjective probabilities. Although consistent
with subjective expected utility, this assumption is considered controversial by some, such as Abdellaoui et
al. (2011).
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It should be stressed that there are also many loose claims about how one can elicit risk
attitudes, time preferences, and subjective beliefs “on the cheap” with simpler methods. In
some cases these are hypothetical survey methods, with no theoretical claim to be eliciting
anything of interest. In other cases these are experimental methods that rely, as noted, on
tasks that are simply not incentive compatible: subjects could exploit the experimenter, for
gain, by deliberately misrepresentring their true preferences. Or experimenters use FIB
elicitation methods that have known behavioral biases, as noted above. The fact that
experimenters assert that these problems did not arise says nothing about whether they do.
The existence of relatively transparent, incentive compatible methods leads one to wonder
why one would risk using other methods.

It is appropriate that all of these methods were first developed in laboratory environments,
and that the econometric procedures for estimation of preferences and beliefs first refined
in that setting. Lab experiments give us control, if designed and executed correctly. If we
cannot identify the conceptually correct measure in that setting, we cannot hope to do so
in more complicated field settings. But there is a relatively easy bridge between the lab
and the field, as stressed by Harrison and List (2004), so that both are complementary

ways to make inferences (Harrison et al., 2012).

1.4.2 Letting the Data Speak for Itself

Randomized evaluations, inspired by the Randomized Control Trials (RCT) literature in
health, have become popular in economics. They involve the deliberate use of a

randomizing device to assign subjects to treatment, or the exploitation of naturally
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occurring randomizing devices. Good reviews of the methodology are contained in Duflo
(2006), Duflo and Kremer (2005), Duflo et al. (2007), and Benarjee and Duflo (2009).
Complementary econometric strategies are well described in Angrist and Pischke (2009).
One of the claimed advantages of randomization is that the evaluation of policies can be
“hands off,” in the sense that there is less need for maintained structural assumptions from
economic theory or econometrics. In many respects this is true, and randomization does
indeed deliver, on a good, asymptotic randomizing day, orthogonal instruments to measure
the effect of treatment. This has been well known for a long time in statistics, and of
course in the economics experiments conducted in laboratories for decades. But it is
apparent that the case for randomization has been dramatically oversold: even if the
original statements of the case have the right nuances, the second generation of
practitioners seem to gloss those. Words such as “evidence based” or “assumption free” are
just marketing slogans, and should be discarded as such. Excellent critiques by Rosenzweig
and Wolpin (2000), Keane (2010), Heckman (2010), Deaton (2010), and spirited defenses

by Imbens (2010), cover most of the ground in terms of the statistical issues.

1.4.3 General Methodological Issues for Experiments in
Insurance Contexts

There is an issue of framing that must be carefully dealt with when conducting
experiments in the context of insurance. Tversky and Kahneman (1986, p. S253)
emphasized the importance of violations of the principle of invariance which implies that

“different representations of the same choice problem should yield the same preference.”
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There is experimental evidence that framing an insurance task as an abstract gamble or as
a loss makes a difference to subjects. Hershey and Schoemaker (1980), using hypothetical
questions, found that their subjects exhibited more risk aversion in choices that were
presented in an insurance context than in mathematical equivalent choices presented as
standard gambles. Moore and Eckle (2003, p. 11) elicited, using real stakes, certainty
equivalents of prospects using two frames, “describing gambles as abstract ‘lotteries’ or as
‘investment /insurance’ decisions.” Moore and Eckle (2003, p. 21) found that there is no
significant “difference between gambles framed as lotteries for possible losses versus
insurance decisions” but found a preference for prospects framed as investment decisions as
opposed to abstract lotteries (p. 19). The logical conclusion is that, at least in the pool of
subjects of Moore and Eckel, the framing of a prospect matters for individuals. Similarly,
Laury et al. (2009, p. 18) find that subjects are more likely to buy insurance when their
task is framed in a “less abstract context and express losses in dollar terms.”

An important body of experimental literature studies insurance choices by eliciting
valuations with different market institutions such as auctions. For example, Shogren (1990)
studies the difference in subjects’ valuations of different risk-reduction mechanisms by
using Vickery sealed-bid second-price auctions and found that subjects tend to value more
self-protection to self-insurance and private mechanisms were valued more that collective
mechanisms. Shogren (1990) also found that subjects tend to overweight-low probability
insurable events as implied by the higher valuation with respect to events with higher
probability and values of risk-reduction mechanisms change rapidly with repeated exposure

to the market. McClelland et al. (1993) and Di Mauro and Maffioletti (1996) study,
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respectively, low-probability events and risk-reduction strategies by eliciting valuations in
auction environments. Sarin and Weber (1993) studies the effect of uncertainty in
insurance markets. Using the sealed bid auction and the double oral auction, they found
that aversion to uncertainty around probabilities does not vanish in market settings and
claim that this result might be relevant to specialized markets like insurance where
uncertainty might be acute.

Although market institutions are valid and important ways to elicit responses from
individuals about many insurance situations, they might not be environments in which
many other insurance decisions are taken. Reinsurance contracts or corporate insurance
might be situations in which clients might compete and bargain to get coverage from
insurers. In contrast, most of real individual insurance choices are of the take-it-or-leave-it
type without little bargaining process with the insurer, although menus might be provided
and pressure on the insurance provider might come from the possibility of getting similar
coverage from another competing insurer. Therefore, methods of elicitation that resemble
this take-it-or-leave-it nature might be important for the study of insurance choices and
comparisons with other methods of elicitation might uncover behavioral differences
between methods and potential confounds. For instance, using data from binary choices,
Ganderton et al. (2000) found no evidence of the bimodal distributions of willingness to
pay for low-probability insurance McClelland et al. (1993) elicited using auctions.
Ganderton et al. (2000) used dichotomous choices to estimate the willingness to pay for
insurance in a logit regression that models the probability of buying insurance using the

methods developed by Cameron (1988).
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The Random Incentive Lottery Mechanism (RLIM) is probably the payoff mechanism most
widely used in experiments of individual choice under risk and uncertainty. Many
experiments that study insurance decisions also use the RLIM, except for a few cases as
Deck (2001) who provided subjects with only one choice to make. In an experiment where
the subjects have to complete several tasks, this mechanism dictates that at the end of the
experiment one task is chosen at random to be play out for real, while the other tasks are
not. By using the RLIM, an experimenter hopes to avoid portfolio effects, which arise
when all tasks are played at the end of the experiment. Also, wealth effects can be avoided
by not having to pay all tasks sequentially. A by-product of this procedure is that higher
stakes can be considered.

The universal validity of the RLIM as an incentive compatible payoff mechanism has been
put into question recently. Cox et al. (2011) and Harrison and Swarthout (2012) found
evidence that payment protocols affect observed behavior and can create confounds. For
instance, the RLIM could make an individual behave as if she was more or less risk averse
than she would normally behave. Harrison and Swarthout (2012) propose to use
experimental designs that provide subjects with one and only one choice and control for
heterogeneity at the econometric analysis stage. This issue imposes important challenges
for the study of insurance choices in the laboratory given that many interesting questions
include intertemporal dimensions; and unless one is willing to make intertemporal
comparisons across subjects, an experimenter would have to elicit several choices from the
same individual.

We have discussed the relevance of the distinction between risk, uncertainty and ambiguity
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for the study of insurance decisions. This is a interesting and promising line of research but
the empirical validation of these models is not trivial because one has to identify,
depending on the model, many factors: subjective beliefs, attitudes towards risk and
uncertainty and, potentially, intertemporal preferences. There has been a few attempts to
directly estimate attitudes towards uncertainty in experimental environments. Becker and
Browson (1964) is probably the first attempt to estimate a preference functional that takes
into account uncertainty attitudes. They estimate the preference functional under
uncertainty proposed by Ellsberg (1961, p. 664). More recently, Ahn et al. (2011) and Hey
et al. (2010) attempt to make a systematic comparison of many of the models available
that deal with uncertainty. One problem with this approach is that the researcher has to
make identifying assumptions over the behavioral moving parts, such as the set of
probabilities that an uncertainty non-neutral individual perceived as reasonably possible,
which might affect the results. For instance, even if the experimenter tells the subject that
the probability of a certain event happening is guaranteed to be within certain range, it is
still very possible that the subject distrusts the experimenter and make an adjustment to
the stated probability interval to account, from her perspective, for the possibility that the
experimenter is trying to rig the experiment to minimize its actual cost. In fact, this is an
issue that was originally acknowledge by Ellsberg (1961, p. 658) and Ellsberg (2001,

p. 131), and also by others: Brewer (1963, p. 161), Brewer and Fellner (1965, p. 661),
Schneeweiss (1973) and Kadane (1992), that can create serious confounds in experiments
since a subject distrusting the experimenter cannot be distinguished from one that is

uncertainty averse. This is particularly relevant if one wants to study insurance decisions in
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the presence of a background risk or uncertainty, because distrust in the experiment can be
confounded with the latter. Also, distrust in the experimenter might induce subjects to
predominantly choose a coinsurance contract over a contract with a deductible if they
think that the experimenter is going to rig the experiment such that the amount of the loss

is never going to be above the deductible.

1.5 Further Topics

1.5.1 Intertemporal Insurance: the Annuity Puzzle

One of the most studied insurance issues in economics is what is usually referred to as the
annuity puzzle. Modigliani (1986, p. 307) drew attention to this issue in his Nobel Prize
acceptance speech: “... it is a well-known fact that annuity contracts, other than in the
form of group insurance through pension systems, are extremely rare. Why this should be
so is a subject of considerable current interest. It is still ill-understood.”

The “puzzling” nature of the topic arises from the discrepancies between reality, where low
take-up of annuities is observed in many contexts, and classic theory (Yaari, 1965a), which
predicts that under certain restrictive assumptions full annuitization of wealth is the
optimal asset allocation for retirement savings. To be explicit, the set of assumptions in
Yaari (1965a) are: (1) individuals are EU maximizers with inter-temporally separable and
additive utility, (2) the only source of uncertainty is the time of death, (3) individuals have
no bequest motive, (4) life annuities are available at actuarially fair prices.

However, it must be recognized that the low take-up of annuities is not a generalized
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phenomenon. For instance, in Chile about two-thirds of retirees buy annuities (Mitchell
and Ruiz, 2009, p. 19). For the United States, Benartzi et al. (2011, p. 151) found that as
much as 88% of retirees of certain retirement plans choose to buy annuities when given the
choice.

Explanations of the Annuity Puzzle within Classical Frameworks There is a large literature
that attempts to explain the puzzle within the classical framework (for reviews see Brown,
2007; Benartzi et al., 2011). Babbel and Merril (2006, p. 3) summarizes some of the
possible explanations: (1) a bequest motive; (2) health shocks; (3) self-insurance through
family or other networks; (4) Social Security crowding out private annuitization; (5)
premiums above actuarially fair prices; (6) adverse selection; (7) regulatory barriers for
retirement plan sponsors; (8) high-profile failures of insurance companies; (9) irrevocability
and illiquidity; (10) imperfect information; and (11) erosion of purchasing power due to
inflation.

Several studies have relaxed some of the original assumptions of Yaari (1965a) and found
that full annuitization of retirement wealth is still optimal, which has strengthened the
perceived “puzzling” nature of the phenomenon. For instance, Davidoff et al. (2005,

p. 1578) found that

...with complete markets, the result of full annuitization extends to many
periods, the presence of aggregate uncertainty, actuarially unfair but positive
annuity premiums, and intertemporally dependent utility that need not satisfy
the expected utility axioms. This generalization of Yaari holds, so long as
markets are complete. Thus, if the puzzle of why so few individuals voluntarily
annuitize is to be solved within a rational, life-cycle framework, we have shown
that the answer does not lie in the specification of the utility function, per se,
(beyond the issue of a bequest motive)... The results do demonstrate, however,
the importance of market completeness...
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We return to the role of additivity of the intertemporal utility function below.

We have emphasized throughout the importance of incomplete markets for insurance
decisions. Schlesinger and Doherty (1985, p. 402) claim that with market incompleteness,
uninsurable background risks might invalidate many theoretical results when complete
markets are assumed. Babbel and Merril (2006, p. 1) examine the possibility of insurer
default, and find that even a small default risk, which can be thought of as background
risk, can have important implications for annuity purchase decisions.!? Peijnenburg et al.
(2010) modeled explicitly market incompleteness and the presence of background risk in a
comprehensive model of optimal decumulation of retirement wealth. They find that neither
“incomplete annuity markets nor background risk lead to a sizeable reduction of optimal
annuitization levels,” if individuals are able to save part of their annuity income to insure
against shocks.

This line of research could benefit from the accumulated knowledge about insurance
decisions in the presence of background risk, but will have to face several challenges such as
choosing an appropriate measure of statistical dependence between different sources of risk.
It has long been recognized in the insurance literature (Schlesinger and Doherty, 1985,

p. 420) that correlation as a measure of association is only of limited used.

12Parallels can be made to the explanations of the Ellsberg Paradox offered by Kadane (1992) and
Schneeweiss (1973): just add a small chance that the experimenter is playing a strategic game with the
subject, and picking realizations from the ambiguous urn to reduce his expected payout. Then no subject
would rationally select to bet on realizations from the ambiguous urn.
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Behavioral Explanations of the Annuity Puzzle

There is a growing body of literature that uses deviations from the behavioral assumptions
of the standard theory to explain the low take-up of annuities. A non-exhaustive list of the
most salient behavioral explanations to the phenomenon are ( for a review see Brown,
2007; Mitchell and Utkus, 2004): (1) complexity of products and financial literacy; (2)
misleading heuristics: Insurance is for bad situations; (3) regret aversion; (4) the illusion of
control; (5) uncertainty aversion; (6) self-control, hyperbolic discounting and their
implication to retirement saving; (7) framing, inertia and default choices; (8) mental
accounting and loss aversion: annuities are a gamble; and (9) Cumulative Prospect theory,
probability weighting and loss aversion.

One important shortcoming of Non-EUT models (e.g., uncertainty aversion models,
Cumulative Prospect Theory, the Rank-Dependent Utility) that is usually not recognized is
that these frameworks are not naturally endowed with tools to deal with inter-temporal
problems such as the decision to annuitize or not one’s wealth at the moment of retirement.
Hu and Scott (2007) is an exception who model the inter-temporal nature of annuities
within a Prospect Theory type. Hu and Scott (2007, p. 9-11) use this approach to make a
CPT evaluation of an annuity as a one stage prospect where the probabilities are the odds
of survival at each age and the outcomes are the discounted value of the payout flows.
There are at least three related theoretical approaches to solve this deficiency.

The first approach is to think of annuities as complex compound lotteries and model the
reluctance to take up these products as violations of the Reduction of Compound Lotteries

axiom. The latter is one of the key postulates both of EUT as axiomatized by von
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Neumann and Morgenstern (1953) and the Subjective Expected Utility theory as
formalized by Savage (1972). Before we explain this approach, following Segal (1988b,
1990, 1992), we distinguish between three axioms: Reduction of Compound Lotteries
(ROCL) axiom, Compound Independence Axiom and Mixture Independence Axiom. The
usefulness of these distinctions will become evident soon. ROCL states that a
decision-maker is indifferent between a compound lottery and the actuarially-equivalent
simple lottery in which the probabilities of the two stages (or more) of the compound
lottery have been multiplied out. To use the language of Samuelson (1952, p. 671), the
former generates a compound income-probability-situation, and the latter defines an
associated income-probability-situation, and that “...only algebra, not human behavior, is
involved in this definition.” The reason these three axioms are important is that the failure
of MIA, a key axiom in EUT, does not imply the failure of CIA and ROCL. It does imply
the failure of one or the other, but it is far from obvious which one. Indeed, one could
imagine some individuals or task domains where only CIA might fail, only ROCL might
fail, or both might fail. Moreover, specific types of failures of ROCL lie at the heart of
many important models of decision-making under uncertainty and ambiguity. Appendix A
provides a more formal statement of these axioms.

Therefore, a natural candidate to model the reluctance for annuities as violations of ROCL
is the family of models that deal with uncertainty and ambiguity, for example, Hurwicz
(1951a,b) and Ghirardato et al. (2004), Gilboa and Schmeidler (1989), Schmeidler (1989)
and Klibanoff et al. (2005). From a behavioral perspective, Harrison et al. (2012b) study

ROCL with objective but this axiom remains to be studied in the subjective probability
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domain in which uncertainty and ambiguity play a key role, as emphasized in Ellsberg
(1961). He showed in his thought experiments that the observed hypothetical choices
contradict the Sure-thing principle in Savage (1972), which has its equivalent in MIA of
EUT. Since the latter is implied by ROCL and CIA, aversion towards uncertainty may well
be due to violations of ROCL. Camerer and Weber (1992) and Halevy (2007) offer further
empirical evidence in line with Ellsberg’s findings.

The relevance of uncertainty perception, and attitudes towards it, can be seen in the
particular case of an individual that prefers a lump-sum over an annuity product (Hu and
Scott, 2007; Brown, 2007, p. 21). This behavior can be rationalized by an individual that
perceives a life annuity as an ambiguous prospect for various reasons. For instance, the
individual might have the subjective belief that the annuity provider may default but he is
unsure about the true distribution of such event. Similarly, the individual might be
uncertain about his probability of death. Therefore, an individual might prefer a lump-sum
amount to a life annuity if the perceived uncertainty around this product and his attitudes
towards uncertainty are such that the certainty equivalent of the ambiguous annuity is
smaller than the lump-sum amount. To the best of our knowledge only d’Albis and
Thibault (2009) attempt to explain the low take-up of annuities through aversion towards
mortality uncertainty. However, as they recognize, the problem must be studied in an
inter-temporal context that allows for uncertainty. This is a relatively new avenue of
research, but there have been advances on this front such as Epstein and Schneider (2003)
and Klibanoff et al. (2009), who axiomatized the inter-temporal versions of the

multiple-priors Maximin Expected Utility and the smooth ambiguity aversion model,
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respectively. Further refinements can include other traded and non-traded assets that can
be ambiguous or not, as well as non-insurable background risks. It is worth noting that
uncertainty and attitudes towards uncertainty can be used to formally model the intuition
in the behavioral literature that people perceive annuities as a bad deal (Benartzi et al.,
2011, p.156).

A second approach is to use axiomatic foundations that allow non-EUT models to evaluate
prospects that are inter-temporal in nature. Sarin and Wakker (1998, p. 88) provided an
axiomatic approach that identifies conditions under which non-EU models can be used in
problems of dynamic choice under uncertainty and which is summarized in the following

excerpt:

For the evaluation of decision trees, we propose a new condition, sequential
consistency. It is a meta-principle for the folding back procedure. Suppose the
decision maker commits himself to using a family of models M, say the
rank-dependent family. Thus he uses the family M to evaluate certainty
equivalents in the folding back procedure. The meta-principle requires that he
uses this family M to evaluate decision strategies in the single-stage tree as well.
In other words, it requires that the evaluation of a strategy obtained by using a
family M through the folding back procedure should coincide (in the sense of
giving the same certainty equivalents) with a direct evaluation of the same
strategy in the single-stage tree using the same family M.

An important caveat in Sarin and Wakker (1998, p. 96) is that not all families of models
can apply the same preference representation in each stage of the tree. For instance, they
derived a corollary which shows that the rank-dependent model can only be used in the
second stage of a decision tree but must maximize EU in the first stage. An alternative
approach that does not suffer from this issue is the one developed by Segal (1988b). He

derived a version of the Rank-Dependent utility model by Quiggin (1982) that can deal
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with compound lotteries. Segal drops ROCL but keeps CIA which allows the RDU model
to be able to evaluate compound lotteries in a folding back procedure. The latter consists of
estimating certainty equivalents within stages and applying RDU preferences on them to do
the folding back. In contrast with the collorary in Sarin and Wakker (1998), this approach
allows to consistently apply one type of preferences in each stage of the compound lottery.
Finally, another approach claims that people dislike uncertainty, just like in Ellsberg
(1961), and behave in a similar manner when presented with a compound lottery. Smith

(1969, p. 329) conjectured this relationship:

I would conjecture that the kind of choice behavior revealed by the Ellsberg
counterexample is not just characteristic of ‘known’ versus ‘unknown’
probability situations. I suspect that the preference for Urn II [the one with
known composition| gambles over Urn I [the one with unknown composition]
gambles would be little changed for many, if not most, subjects, if they were
guaranteed that the number of red balls in Urn I had been determined by a
random draw from the integers 0-100. Urn I is then a 50-50 gamble except that
it is a compound gamble, rather than a simple gamble as in Urn II.

Halevy (2007, p. 531) found evidence of this claim. He found a tight association between
violations of ROCL and uncertainty aversion. To model his conjecture, Smith (1969, p.
328-329) proposed a preference representation that keeps the SEU structure but allows the
utility function to vary across prospects. This could explain why people may prefer risky
over ambiguous gambles as in Ellsberg’s thought experiments. The argument relies on the
assumption that subjects potentially view or experience differently each random processes
that they might face, which is why this line of research is known as source dependence
models. A different brand of source dependent models was recently developed by

Abdellaoui et al. (2011). Building upon Tversky and Kahneman (1992) and Tversky and
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Fox (1995), they emphasized the importance of sources of uncertainty as an explanation of
behavior under uncertainty in a non-SEU framework. The key component in their model is
the probability weighting function, which they allow to vary across sources of uncertainty.
They claim that this preference representation is completely characterized by a subjective
probability distribution, the von-Neumann-Morgenstern utility function and the source
dependent weighting function. Abdellaoui et al. (2011) argue that the importance of the
concept of decision weights is fundamental to explain several behavioral patterns in
decisions under uncertainty. Source dependent models should be explored since they
predict that different financial products as annuities or stocks can be perceived as different
sources and treated differently which has the potential to explain puzzles in decisions under

risk and uncertainty.

1.5.2 Information Problems

The presence of informational problems in insurance contracts certainly has an important
impact on the analysis of insurance demand and provision. A full assessment of this
literature is beyond the scope of the present survey. However, we make some comments of
immediate relevance for the topics surveyed in this document.

First, there is a huge body of literature analyzing moral hazard and adverse selection
problems in insurance markets that mostly assumes EUT. However, the analysis of these
problems assuming different preference representations like PT or RDU and preferences
sensitive to uncertainty and ambiguity remains underdeveloped. The analysis of these

problems, which started with Arrow (1963), Akerlof (1970) and Rothschild and Stiglitz
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(1976), has been masterfully surveyed by Dionne and Doherty (1992), Winter (2000) and
Dionne et al. (2000). A perfect example of this research is Huang et al. (2007) who study
the market implications of individuals with preference representations sensitive to regret.
Second, some informational problems might be difficult to study in the laboratory. In
particular, fraud in insurance contexts is an issue difficult to study because the
experimenter has to be careful not to nudge fraudulent behavior and lose control of the
experiment. Experimenters interested in this topics can benefit from the experimental

literature on public goods and the elicitation mechanisms develop in this literature.

1.5.3 Asset Integration

A common assumption in many models of insurance, even those that consider portfolios
and related risk management strategies, is perfect asset integration within a given time
period. This amounts to the assumption that there exist perfect markets that allow all
assets to be traded, and aggregated into one scalar value of wealth. This scalar wealth is
then used as the sole argument of some utility function. The same issue arises in an
intertemporal context. When imperfect capital markets exist, it is no longer possible for
the individual to aggregate time-dated wealth or consumption into one aggregate.

When imperfect markets are assumed, things change fundamentally. Pye (1966) considered
the implications for the optimal investment rule of a company, and demonstrated that
imperfect capital markets implied that there no longer existed a “utility free” investment
rule, such as implied by the Fisher Separation Theorem. That utility free rule held that

production and consumption decisions could be separated, and that one does not need to
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know the utility function of the agent in order to identify optimal investment and
production. Pye (1966) and Hirshleifer (1970, ch. 7) showed that when capital markets
were imperfect, in general one could not define the intertemporal budget constraint
without knowing the utility function of the individual.

More generally, imperfect markets force one to consider multivariate risk aversion when
evaluating insurance demand. Since it is then no longer possible to aggregate to a scalar
wealth measure, one must pay attention to the utility evaluation of two or more
components of wealth with tools of multivariate risk aversion. Generalizations of the
one-dimensional Arrow-Pratt measure of risk aversion have been proposed by Kihlstrom
and Mirman (1974), Duncan (1977) and Karni (1979). Kihlstrom and Mirman (1974)
posed the issue of multivariate risk aversion under the restrictive assumption that the
ordinal preferences underlying two expected utility functions exhibit the same preferences
over non-stochastic outcomes. In this case they propose a scalar measure of total risk
aversion that allows one to make statements about whether one person is more risk averse
than another in several dimensions, or if the same person is more risk averse after some
event than before.

If one relaxes this assumption, which is not an attractive one in most applications, Duncan
(1977) shows that the Kihlstrom and Mirman (1974) multivariate measure of risk aversion
naturally becomes matrix-valued. Hence one has vector-valued risk premia, and this vector
is not “direction dependent” in terms of evaluation. Karni (1979) shows that one can
define the risk premia in terms of the expenditure function, rather than the direct utility

function, and then evaluate it “uniquely” by further specifying an interesting statistic of
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the stochastic process. For example, if one is considering risk attitudes towards a vector of

stochastic price shocks, then one could use the mean of those shocks.

1.5.4 Correlation Aversion

A closely related literature defines multi-attribute risk aversion where the utility function is
defined over more than one attribute. In this context, Keeney (1973) first defined the
concept of conditional risk aversion, Richard (1975) defined the same concept as bivariate
risk aversion, and Epstein and Tanny (1980) defined it as correlation aversion.!® There are
several ways to extend these pairwise concepts of risk aversion over two attributes to more
than two attributes, as reviewed by Dorfleitner and Krapp (2007).

One attraction of the concept of multiattribute risk aversion is that it allows a relatively
simple characterization of the functional forms for utility that rule out multiattribute risk
attitudes: additivity. To see the significance of this for insurance demand, consider
time-dating as the attribute in question. If one assumes the popular additive intertemporal
utility function, one rules out correlation aversion. In this case, as is well know, a-temporal
risk preferences and the intertemporal elasticity of substitution cannot be estimated or
calibrated independently: one is the inverse of the other. But with non-additive
intertemporal utility functions, one can immediately separate “risk preferences” and “time
preferences.” And one can then talk about individuals having preferences for how risk is
resolved over time, the essence of any insurance contract. That is, preferences for how risk

is resolved over time can be distinct from preferences for how risk is resolved at any given

13Several studies note that the core concept appeared as early as de Finetti (1952), but this was written
in Italian and we cannot verify that claim.
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point of time, and hence be a separate behavioral determinant of the demand for insurance.
Controlled experiments provide a way to identify and estimate the degree of correlation
aversion, and Andersen et al. (2011c) present evidence that it exists and is significant for

the Danish population.

1.5.5 Conclusions

Behavioral economics has generated a rich set of alternative models of decision-making.
Not all of them are valid, and not all of the anomalies that one hears about have rigorous
support. It is critical that the emerging field of behavioral insurance trade carefully among
the theories, experimental designs, and econometrics that behavioral economics provides.
The “behavioral moving parts” of the demand for insurance demand a careful, structural
evaluation of the way in which decisions are made. This conclusion holds obviously for the
descriptive evaluation of why people demand insurance in some settings and not others.
But is assumes a critical role when we move beyond descriptive analysis to evaluate the
welfare effects of alternative insurance products and insurance policies. Our survey points
to the importance of theorists being listened to by experimenters and econometricians
interested in insurance behavior. It also generates a derived demand for theorists to be

more directly involved in the study of behavior.

1.5.6 Appendix A: Basic Axioms

Following Segal (1988b, 1990, 1992), we distinguish between three axioms. In words, the
Reduction of Compound Lotteries (ROCL) axiom states, using the notation to be
used to state all axioms, let X, Y and Z denote simple lotteries, A and B denote compound
lotteries, = express strict preference, and ~ express indifference. Then the ROCL axiom
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says that A ~ X if the probabilities and prizes in X are the actuarially-equivalent
probabilities and prizes from A. Thus if A is the compound lottery that pays “double or
nothing” from the outcome of the lottery that pays $10 if a coin flip is a head and $2 if the
coin flip is a tail, then X would be the lottery that pays $20 with probability

0.5 x 0.5 = 0.25, $4 with probability 0.5 x 0.5 = 0.25, and nothing with probability 0.5.
From an observational perspective, one would have to see choices between compound
lotteries and the actuarially-equivalent simple lottery to test ROCL.

The Compound Independence Axiom (CIA) states that a compound lottery formed
from two simple lotteries by adding a positive common lottery with the same probability to
each of the simple lotteries will exhibit the same preference ordering as the simple lotteries.
So this is a statement that the ordering of the two constructed compound lotteries will be
the same as the ordering of the different simple lotteries that distinguish the compound
lotteries, provided that the common prize in the compound lotteries is the same and has
the same (compound lottery) probability. It says nothing about how the compound
lotteries are to be evaluated, and in particular it does not assume ROCL. It only restricts
the preference ordering of the two constructed compound lotteries to match the preference
ordering of the original simple lotteries.

The CIA says that if A is the compound lottery giving the simple lottery X with
probability « and the simple lottery Z with probability (1 — «), and B is the compound
lottery giving the simple lottery Y with probability a and the simple lottery Z with
probability (1 — «), then A > B iff X > Y Va € (0,1). So the construction of the two
compound lotteries A and B has the “independence axiom” cadence of the common prize Z
with a common probability (1 — «), but the implication is only that the ordering of the
compound and constituent simple lotteries are the same.*

Finally, the Mixture Independence Axiom (MIA) says that the preference ordering of
two simple lotteries must be the same as the actuarially-equivalent simple lottery formed
by adding a common outcome in a compound lottery of each of the simple lotteries, where
the common outcome has the same value and the same (compound lottery) probability. So
stated, it is clear that the MIA strengthens the CIA by making a definite statement that
the constructed compound lotteries are to be evaluated in a way that is ROCL-consistent.
Construction of the compound lottery in the MIA is actually implicit: the axiom only
makes observable statements about two pairs of simple lotteries. To restate Samuelsons
point about the definition of ROCL, the experimenter testing the MIA could have
constructed the associated income-probability-situation without knowing the risk
preferences of the individual (although the experimenter would need to know how to
multiply).

4 For example, Segal (1992, p. 170) defines the CIA by assuming that the second-stage lotteries are replaced
by their certainty-equivalent, “throwing away” information about the second-stage probabilities before one
examines the first-stage probabilities at all. Hence one cannot then define the actuarially-equivalent simple
lottery, by construction, since the informational bridge to that calculation has been burnt.
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Chapter 2

Insurance Decisions Under Ambiguity

by Jimmy Martinez-Correa

Abstract

I study the impact of ambiguity on insurance decisions and the optimality of
insurance contracts. My tractable approach allows me to study the interaction
between risk and ambiguity attitudes. When insurance decisions are made
independently of other assets, for a given increase in wealth, both risk and ambiguity
attitudes interact in nontrivial ways to determine the change of coinsurance demand.
I derive sufficient conditions to guarantee that the optimal coinsurance demand is
decreasing in wealth. When a non-traded asset is introduced, my model predicts
behavior that is inconsistent with the classical portfolio theory that assumes
Subjective Expected Utility theory; however, it provides hints to a possible solution of
the under-diversification puzzle of households. I also identify conditions under which
more risk or ambiguity aversion decreases the demand for coinsurance. Additionally, I
show a counterexample to a classical result in insurance economics where an
insurance contract with straight deductible is dominated by a coinsurance contract.
Finally, I find that a modified Borch rule characterizes the optimal insurance contract
with bilateral risk and ambiguity attitudes and heterogeneity in beliefs.
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2.1 Introduction

Ellsberg (1961) studied the distinction between risk and ambiguity and its relevance for
decision-making theory. He used a thought experiment to show that under certain
situations many reasonable people tend, even after reflection, not to comply with the
Savage (1972) postulates for subjective expected utility (SEU) theory.

Through his thought experiment, Ellsberg (1961) highlighted the importance of ambiguity
and attitudes towards it. Camerer and Weber (1992) and Halevy (2007) are examples of
studies that provide empirical evidence consistent with Ellsberg’s findings.

I answer the following questions: What is the impact of ambiguity on the optimal
coinsurance demand? Does this analysis change if the individual owns a non-tradable asset
(e.g., Human capital)? What is the optimal insurance contract in the presence of
ambiguity when both the insurer and insured might be ambiguity averse? Does this
analysis have implications for portfolio theory?

A particular advantage of my approach is its tractability, which allows us to analyze the
interaction between risk and ambiguity attitudes. However, this comes at the cost of
generality because the approximation used to solve the problem is constructed to perform
well in the small. Since Pratt (1964) the notion of small risks is relatively well understood.
However, the concept of small ambiguity (or uncertainty)! is less straightforward? and is
characterized by the convergence of the reminder in the approximation used here. My

approach might be of special interest for experimental economics since the stakes and

T use ambiguity and uncertainty as equivalent terms. However, there are important subtle differences
between the two concepts but it is not the purpose of this study to describe the distinction between them.
I follow the customary approach in the recent literature and use the term ambiguity (e.g., Gollier, 2009.)

2For a discussion on uncertainty in the small please see Maccheroni et al. (2011b).
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conditions in the laboratory are appropriate to generate small risks and/or uncertainties.
A clear prediction of my model is that, for a given increase in risk aversion, ambiguity
averse individuals will increase their coinsurance demand less rapidly than ambiguity
neutral agents. The intuition is that higher ambiguity aversion makes a marginal increase
in insurance more valuable. Therefore, when risk aversion increases and more insurance is
required to reduce variance, a smaller increase in insurance is needed because the
additional coverage provides the double benefit of reducing risk and ambiguity.

Moreover, the response of the optimal coinsurance demand to changes in initial wealth will
depend on the attitudes towards risk and ambiguity. For instance, given an increase in
wealth, a subject with constant absolute risk aversion could still decrease her insurance
demand if she exhibits decreasing absolute ambiguity aversion. I derive sufficient
conditions to guarantee that the optimal coinsurance demand is decreasing in wealth.

A topic that is often overlooked in the analysis of insurance and portfolio choice is the

presence of non-traded assets, such as Human capital. Cochrane (2007, p. 78) claims that:

I have emphasized outside income [e.g., the return of human capital]..., even
though it is rarely discussed in the modern portfolio theory literature. I think
it’s the most important and most overlooked component of portfolio theory, and
that paying attention to it could change academic theory and the practice of
the money management industry in important ways.

Mayers and Smith (1983) were the first to emphasize the importance of studying insurance
decisions in the presence of traded and non-traded assets. Doherty and Schlesinger (1983)
and Doherty (1984) studied a similar problem where the insurance demand can be affected
by a background risk that is not insurable.

A non-traded asset introduces a new dimension to the insurance analysis under ambiguity.



72

An individual is able to “self-hedge” if she can compensate high losses with high
realizations of her non-traded human capital.

When ambiguity matters to a decision-maker and there exists a non-traded asset, an
increase in risk aversion may or may not increase the demand for insurance depending on
the incentives to “self hedge.” This result is a counterexample to the Pratt-Arrow result
which claims that higher risk aversion decreases the demand for the risky asset. This might
happen when a marginal increase in insurance also increases the variance of wealth. Hence,
an increment in risk aversion induces a reduction in the insurance demand. However, since
an insurance decision problem can be interpreted as a portfolio problem, there is a much
deeper result that has implications for portfolio theory and that drives this counterintuitive
comparative static for risk aversion.

An important result is that, in the presence of ambiguity, the optimal risk-return allocation
will not always be located in the efficient part of the classical mean-variance frontier. The
reason is that high incentives to self-hedge create a trade-off between the risk and
ambiguity dimensions of wealth that a decision maker must solve. Thus, an individual
could appear to be “inefficient” from the perspective of classical portfolio analysis that
assumes SEU utility maximization, although such action is optimal in the presence of
ambiguity. I show that the counterintuitive comparative static for risk aversion that I
described above can only arise when the optimal choice of an ambiguity averse individual
lies in the “inefficient” part of the frontier.

A generalization of my model that includes traded assets, non-traded assets and insurance

can be an alternative explanation for the under-diversification puzzle of households. The
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interaction of traded assets, non-traded assets and insurable assets, that can be each
ambiguous or not, can result in observed behavior that is “under-diversified” from a
classical perspective but optimal from a broader perspective. The main message is that
deviations from traditional portfolio theory can be explained by expanding the concept of
portfolio to include non-traded assets, to allow for preference representations that can
explain attitudes towards ambiguity.

A simple extension of my framework that includes a risky asset, an ambiguous asset and
risky income can rationalize “seemingly” irrational behavior. Massa and Simonov (2006)
found that swedish investors tend to hold stocks that are positively correlated with their
labor income, probably because these stocks are familiar to them, while wealthy individuals
have a greater tendency to pick stocks that can help hedging their labor income risk.
Standard explanations consider that wealthy investors are more sophisticated, while the
observed positively correlated portfolios are usually explained by “behavioral biases” such
as overconfidence, ignorance and familiarity. However, the simple model I propose suggests
an alternative explanation. First, people exhibit ambiguity aversion towards less familiar
stocks, which give them incentives to tilt their financial portfolio towards more familiar
stocks, even if that sometimes means that the chosen portfolio is positively correlated with
labor income. Second, an individual with sufficiently high initial wealth can overcome
aversion towards ambiguity, just like a risk averter might diminish her aversion towards
risk when wealth increases, and change his choices from portfolios tilted towards the risky
asset to allocations that put more weight on the ambiguous asset.

In the last section I study the optimality of insurance contracts. First, I show that, in
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contrast to the traditional result in Arrow (1971), an insurance contract with a straight
deductible may be dominated by an equivalent coinsurance contract if the decision-maker
owns a non-traded asset. Second, a modified Borch rule characterizes the optimal contract
when I allow for bilateral risk and ambiguity aversion and differences in beliefs. In
particular, I provide conditions under which the coinsurance schedule with bilateral risk
and ambiguity aversion is higher (or lower) than with bilateral ambiguity neutrality. When
there is heterogeneity in beliefs no sharp predictions can be made.

To model individual preferences under ambiguity, I use the smooth ambiguity aversion
model axiomatized by Klibanoff, Marinacci and Mukerji (2005), KMM henceforth. They
derive a preference representation that allows for a separation of the perception of
ambiguity and attitudes towards it. Additionally, I adopt the quadratic approximation of
the certainty equivalent of the KMM representation derived by Maccheroni et al. (2011a).
This is an extension to the ambiguity domain of the Arrow-Pratt approximation, which
allows for the model tractability I mentioned above. However, this may come at the cost of
generality, since what is necessary and sufficient in the “small” may only be necessary in a
more general setting (e.g., Eeckhoudt and Gollier, 2000, p. 126).

Some recent studies have examined the effect of ambiguity in insurance decisions and
portfolio choices. Ju and Miao (2012) and Collard et al. (2009) study a dynamic
infinite-horizon portfolio problem that allows for time-varying ambiguity and aversion
towards it. They find, numerically, that ambiguity aversion increases the equity premium.
However, Gollier (2009) found, in a static portfolio choice problem, that these numerical

results rely on the particular calibration of the models. He identifies sufficient conditions
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under which more ambiguity aversion increases the demand for the ambiguous asset.
Cherbonnier and Gollier (2011) demonstrate that, in the KMM model, restrictions on risk
and ambiguity attitudes are sufficient to guarantee that any uncertain situation that is
undesirable at one wealth level is also undesirable at a lower wealth level. Nevertheless,
they also show that one has to impose restrictions on both risk and ambiguity attitudes, as
well as on the ambiguity structure, to guarantee that an increase in wealth will increase the
demand of an ambiguous asset. Finally, Alary et al. (2010) and Snow (2011) study the
effect of ambiguity on insurance decisions when they are made in isolation.

My tractable approach allows me to study in more depth the interactions between risk and
ambiguity attitudes and to provide sharp predictions. Also, I consider a more general
framework that models insurance decisions in the presence of other traded and non-traded
assets, as well as preference representations that are sensitive both to risk and ambiguity.
Sections 2.2 and 2.2 present my approach to model decisions under ambiguity and analyzes
the impact of ambiguity and attitudes towards it on the optimal coinsurance demand with
and without a non-traded asset. Section 2.4 studies the optimality of an insurance contract
with a straight deductible and the Borch rule when ambiguity matters to individuals. The
final section concludes. Appendices show proofs of results and well-stablished results in the

insurance literature when SEU is assumed.
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2.2 Modeling Ambiguity and Attitudes towards
Ambiguity

Consider a decision maker (DM) with initial wealth W, and random end-of-period wealth
W. Suppose the agent exhibits aversion towards risk, which is captured by a utility
function u(.), with «’(.) > 0 and u”(.) < 0.

The DM perceives W as ambiguous. This implies that, instead of having a unique
probability distribution for W, the subject behaves as if there is a bounded set of
probability distributions, A, that are reasonably possible to her. Therefore, the DM is not
able to commit to only use a particular distribution in this set. On the contrary, for a SEU
maximizer, the set A will be a singleton.

Following KMM, the individual has a subjective probability measure p over A that
captures the ambiguity perceived by her. According to KMM, the preferences of an

individual that perceives wealth as ambiguous will have the following preference

/Agb </s u(W)dQ) du, (2.1)

where S' is the state space of W, (Q € A is a probability measure over S, and ¢ is a map

representation:

from reals to reals that captures attitudes towards ambiguity. If the subject perceives her

future wealth as ambiguous, and is averse to this situation, ¢ will be concave in the same

fashion that the preferences of a risk averse individual are represented by a concave utility
function u(.). An ambiguity loving (neutral) individual will have a convex (linear) ¢,

exactly parallel to the formal characterization of risk attitudes. I focus on the case of
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ambiguity aversion and risk aversion.

In the KMM framework, an increase in ambiguity can be characterized as an increase in
the (subjective) variance of expected utility [¢u(W)dQ, which is a random variable with
subjective probability distribution p. We can define a reduced compound probability
distribution according to @ = [, Qdu(Q). An individual that is ambiguity neutral, which
is equivalent to behaving according to the postulates in Savage (1972), will maximize the
SEU derived from u(.) and Q.

To make the models tractable, I use the second-order approximation of the CE of the
KMM representation developed by Maccheroni et al. (2011a), MMR hereafter. This is an
extension to the ambiguity domain of the Arrow-Pratt approximation, where the risk and
ambiguity premiums are characterized by the KMM preference representation. This CE is

defined by the following equation:

¢w@@»:A¢(Amwwqyw 22)

Define W = Wy + h, where h represents the variable component of the end-of-period
wealth. MMR approximate CFE with the following quadratic smooth ambiguity functional

that maps square integrable random variables to the reals:

CE = Wy + Eglh) — So(h) — 2o2(E[h]) + Ro(h) 23)
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where

lim Ro(th)

t—0 t2

~0. (2.4)

The first two terms correspond to the Arrow-Pratt approximation of the CE of an

individual that makes decisions according to the SEU defined by the compound probability

distribution @ and utility function u(.). The term 6 = ((W 5 > 0 is the local measure of
absolute risk aversion. This reflects the risk aversion of an ambiguity neutral individual
that behaves consistently with the SEU theory.

The new, third term is an ambiguity premium. The term v = «'(Wp){— ﬁ:,/(u ) )1 >0
captures the degree of ambiguity aversion (Maccheroni et al., 2011a, p. 6). The term

o (E[h]) is the measure of ambiguity around the variable component of wealth perceived
by the individual. In other words, it is the (subjective) variance of the expected value of h
under probability measure p. This expected value varies because the individual allows each
probability distribution ) in A to be a possible candidate to estimate the expected value of
h. Thus, in the finite case, there are n possible values that E[h] can take, one for each
probability distribution @Q; € A, Vi : 1,...,n. Finally, Maccheroni et al. (2011a) interpret

o2(E[h]) as “model uncertainty” because it represents the possible deviations perceived by

.
agents from a reference individual that maximizes SEU according to distribution @ and
utility u(.).

The convergence notion of the reminder of the approximation, as described in equation (4),

defines the notion of “small” used here. The intuition is that the random component of

wealth must be small enough such that the end-of-period wealth is not very different from
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initial wealth.
Maccheroni et al. (2011a, p. 9) decompose ambiguous random variables into three
orthogonal components. They claim that for each h € L?, there exist unique h € R,

h* € M, with Eg[h*] = 0 and h* € M*, such that h = h + h* + h', where
M = {h € L*: o>.(E[h]) = 0}.

Define aé(h) = O'%(h*) + aé(hl) and o(E[h]) = o2 (E[h*]). Further, h is the risk-free
component of random variable h, h* is a fair risky gamble (i.e., a gamble with zero
expected payoff) and h™ is its residual ambiguous component. Maccheroni et al. (2011a)
show three possible configurations of a random variable. First, a gamble represented by
random variable h is risk-free if and only if h* = h*+ = 0. Second, it is risky and
unambiguous if and only if h = h + h*, because O'%(h) = aé(h*) and o2 (E[h*']) = 0.
Finally, the gamble is ambiguous if and only if 2* and h* different from zero.

There are several advantages of the approach to modelling ambiguity aversion used here.
Klibanoff et al. (2005, p. 1868) claim that their representation allows for a separation of
ambiguity and attitudes towards it, which provides a theoretical basis for undertaking
comparative statics of ambiguity. Additionally, by adopting the MMR approximation, the
KMM model becomes tractable and comparable to previous literature using the de

Arrow-Pratt approximation, of course at the cost of generality that any approximation is

exposed to.
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2.3 Insurance Choices under Ambiguity

In this section I develop a model of coinsurance demand when the DM perceives the
potential loss as ambiguous with and without a non-traded asset. I evaluate the robustness

of some standard results in the insurance literature that assumes SEU, namely:3

1. Full coverage is optimal if coinsurance is available at a fair price. This is the
Mossin Theorem developed in Mossin (1968). Smith (1968) found similar results,

thus I refer to this result as the Mossin-Smith Theorem.

2. An increase in the degree of risk aversion will lead to an increase in the optimal
demand for insurance at all levels of wealth. This result is a direct consequence of a
standard result independently derived by Pratt (1964, p. 136) and Arrow (1963),
thus I refer to it as the Pratt-Arrow result. They showed that an increase in
absolute risk aversion decreases the demand for a risky asset. This would imply
that a risk averse agent will demand more insurance to cover the loss than another

individual that is less risk averse.*

3. If a subject exhibits decreasing absolute risk aversion (DARA), the optimal
coinsurance demand decreases when initial wealth increases because her risk
tolerance increases. Similar intuitive arguments can be made about CARA and
TARA. However, Schlesinger (2000, p. 136) warns that “each of these conditions

[DARA, CARA and IARA] is shown to be sufficient for the comparative-static

3See Appendices B and C at the end of this chapter for the detailed derivation of the following results.
4In the context of insurance, the risky asset would be the retained loss. Thus, more insurance would
translate into a lower exposure to the risky asset.
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effects|...], though not necessary.”

4. The introduction of a non-traded asset, such as human capital, can significantly
change some of the standard results. Mayers and Smith (1983) were the first to
emphasize the importance of studying insurance decisions in the presence of traded
and non-traded assets. Doherty (1984, p. 209) showed that the Mossin-Smith
theorem only holds if the covariance between the non-traded asset and the
insurable loss is negative. Following the terminology in Mayers and Smith (1983,
p. 308), this covariance represents the individual’s incentives to “self-insure”. The
sign of this covariance makes the insurance demand lower, equal or higher than in
the absence of the non-traded asset. However, I prefer to use the term
“self-hedging” to avoid confusion with the usage of “self-insurance” in the
literature.® The intuition is that even if the insurance premium is fair, the DM
might still not be willing to fully insure if she can compensate high losses with high
realizations of her human capital. However, if the covariance is negative, the
individual might want to fully insure if a health shock negatively affects her
productivity, which would undermine her human capital. Finally, the introduction

of a risky non-traded asset does not affect the Arrow-Pratt result.

I now turn to check the robustness of these results when ambiguity matters to individuals.

®Schlesinger (2000, p. 139) defines self-insurance as a mechanism that “lowers the financial severity of
any loss that occurs”.
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2.3.1 DModel for Coinsurance Demand under Ambiguity

Consider a DM with initial wealth W, and exposed to a potential loss i that she perceives
as ambiguous. Assume she is ambiguity averse. Thus, she behaves as if there is a bounded
set A of possible probability distributions of h, with probability measure p over that set. If
the DM was ambiguity neutral, the compound probability distribution @ would be the only
element in A. This is the case of a subject that complies with the postulates in Savage
(1972) and behaves as if she maximizes the SEU defined by probability distribution Q and
utility function u(.). MMR'’s orthogonal decomposition of ambiguous acts implies that

h = Eglh| + h* + h*, with h* € M and bt € M*.

There is a risk neutral and ambiguity neutral insurer that is willing to offer the DM a
coinsurance contract® that covers a fraction « € (0, 1] of losses and in exchange for a
premium 7 per unit of insurance. I assume that the insurer shares with the DM the same
(compound) probability distribution @ of h and calculates the premium per unit of
insurance according to 7 = (1 4+ m)Eg[h], where m > 0 is the insurance loading that does
not include any ambiguity charge. It is restrictive to assume that the insurer is both risk
and ambiguity neutral and shares with the DM the compound distribution ). However,
the final section studies deviations from these restrictive assumptions.

If the DM buys insurance, her ambiguous end-of-period wealth is W = Wy — h — an + ah.
I assume that the DM’s preferences have a KMM representation with concave functions

u(.) and ¢(.) which, respectively, represent her aversion towards risk and ambiguity.

6T focus in this section only on coinsurance contracts and deal later with the optimality of this type of
contract and aversion towards ambiguity of the insurer.
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Consequently, her maximization problem is:

max /A é ( /s u(W)dQ) dy (2.5)

subject to: W =Wy —h —arm + ah

Using the MMR quadratic approximation, this problem can be approximated by:

max EgW] — =05(W) — o (E[W]) (2.6)

subject to: W =Wy —h —anm + ah

where 0 and v capture the degree of aversion towards risk and ambiguity, respectively. The
definition of the end-of-period wealth, the insurance premium and the tripartite

decomposition of h imply the following:

EQ[W] =Wy — EQ[h] —a(l+ m)EQ[h] + O&E@[h] =Wy—(1+ am)EQ[h]

o2(W) = (1 —a)20%(h) = (1 — )03 (k") + o4 (h")], and
oy (EW]) = (1 - a)?cd (E[h])

Substituting the restriction into the objective function and differentiating with respect to
«, the first order condition is:

0 2 * 2 1
] - = mEg[h] — S{2(1 — a)(=1)[og(h") + o5 (h* )]} 2

m

-2 {201 - a) (V)X (BlR])} = 0
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The optimal demand for coinsurance is:’

Mlx _ g _ mEg|[h]

b =5 Go3 () + o3 (hh)] + o2 (EIRT])

a (2.8)

To facilitate comparison, I assume that a DM that faces only risk (i.e., o2 (E[h']) = 0),
uses an objective distribution that is equal to the compound distribution @ to make

choices. Under these conditions, the optimal insurance demand is defined by:

Alternatively, we can also interpret equation (9) in the light of a risk averse but ambiguity
neutral individual. In the KMM framework, this agent is equivalent to a DM with the SEU

preference representation given by utility u(.) and reduced compound distribution Q.

Comparative Statics of Risk and Ambiguity Attitudes

The Mossin-Smith theorem is robust to the introduction of ambiguity, because oM =1 if

and only if m = 0. This can easily be seen from the definition of oL, Alary et al. (2010,

amb *
p. 9) found a similar result.
Moreover, in the presence of ambiguity and ambiguity aversion, the direction of the
Pratt-Arrow result is not affected, so an increase in risk aversion increases the insurance

demand. Nevertheless, as we will see in the next section, this result may not hold in the

M1x

presence of a non-traded asset. Assuming m > 0 such that «,,.* € (0,1), the following

"The second order condition is satisfied.
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derivative proves this statement:

8aM1* . mEQ [h]

amb

00 {00%(h) + o2 (E[R])}?

[0 (h)] >0 (2.10)

with o2 (h) = o2 (h*) + ag(hh).

However, there is a second order difference with respect to the baseline model with only
risk. The response of the insurance demand of an ambiguity averse agent to marginal
increases in risk aversion is lower than that of an ambiguity neutral agent (i.e.,

oML daM1lx . . . . .
0< agglb < O‘éés’“ ), ceteris paribus. More generally, higher ambiguity aversion decreases

2 M1x

. . . I .
the response of the insurance demand to higher risk aversion, i.e. 833’;” < 0. This implies

that ambiguity averse individuals will increase insurance when risk aversion is higher, but
at a slower rate than less ambiguity averse agents.

The intuition of this counterintuitive result is as follows. In the first order condition of the
DM’s maximization problem, the first term is the marginal cost of increasing insurance

demand and the other two are the marginal benefits of reducing risk and ambiguity:

:mEQ[hl +0{(1 — oz)[a%(h*) + Oé(hL)]}/—l— U {(1 — a)ai(E[hL])?E =0
Marg?rlra,l cost Risk reduction:rnarginal benefit Ambiguity reduct;(:n marginal benefit

Higher ambiguity aversion makes a marginal increase in insurance more valuable.
Therefore, when risk aversion increases and more insurance is required to reduce variance,

a smaller increase in insurance is needed when ambiguity aversion is higher because the

additional coverage provides the double benefit of reducing risk and ambiguity.®

8This is a prediction that could be tested in the laboratory. If one is able to identify risk and ambiguity
attitudes, then one could rank individuals according to risk aversion. The prediction above says that, an
observed increase in risk aversion from 6, to # should increase more the insurance demand in the group of
ambiguity neutral individuals than in the group of ambiguity averse agents.
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Moreover, given a level of risk aversion and subjective probability @), an ambiguity averse
agent will demand more (co)insurance at the optimum than an ambiguity neutral
individual (i.e., al* > oMLl*) " Alary et al. (2010, p. 12) showed that this is a general
result for two states of nature. My tractable framework allows us to derive a “local”

version of this result: An increase in absolute ambiguity aversion increases the optimal

insurance demand. The following derivative proves this proposition:

804M1* . mEQ [h]

amb

oy {605(h) + o2 (E)))

[0 (E[h])] > 0 (2.11)

The Effects of Changes in Initial Wealth

It is usually assumed that people become less risk averse as they get wealthier. There are
two important definitions of decreasing aversion in the economic literature. The first
definition states that, in the portfolio choice problem with one safe and one risky assets,
the optimal demand for the risky asset is increasing in wealth (Arrow, 1963; Pratt, 1964)).
The second definition states that an individual has “decreasing aversion if any risk that is
undesirable at some specific wealth level is also undesirable at all smaller wealth levels”
(Cherbonnier and Gollier, 2011, p. 1). In the expected utility model both definitions of
decreasing aversion are equivalent. A necessary and sufficient condition for this equivalency
to hold is that the utility function u exhibits decreasing absolute risk aversion. One would
expect that a similar condition would hold in the presence of ambiguity.

However, Cherbonnier and Gollier (2011, p. 18) show, in a general setting of the KMM

model, that the equivalency of the two definitions above does not hold in general. They
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demonstrate that restrictions on risk and ambiguity attitudes are sufficient to guarantee
that any uncertain situation that is undesirable at one wealth level is also undesirable at a
lower wealth level. Nevertheless, they show that one has to impose restrictions on both risk
and ambiguity attitudes, as well as on the ambiguity structure, to guarantee that an
increase in wealth will increase the demand of an ambiguous asset.

Since there is a close relationship between the portfolio choice and the coinsurance choice
problems (see Schlesinger, 2000, p. 135), the results in Cherbonnier and Gollier (2011) also
apply to the choice of the optimal coinsurance rate.

[ show below that in the “small,” in the spirit of Pratt (1964) and as discussed by
Maccheroni et al. (2011b), restrictions on risk and ambiguity attitudes are sufficient to
guarantee that the optimal coinsurance demand is decreasing in wealth. This discrepancy
between the small and the large is not uncommon.’

In the expected utility model, individual’s risk preferences are represented by u and exhibit
DARA if and only if —u"(z)/u/(x) is decreasing in x. Similarly, ambiguity attitudes in the
KMM model exhibit decreasing absolute ambiguity aversion (DAAA) if —¢”(z)/¢'(2) is
decreasing in z. The following definition characterizes this property for any function as
decreasing concavity.

Definition 1 (Cherbonnier and Gollier, 2011, p. 3): A function f : R — R satisfies
(weak) Decreasing Concavity (DC) if —f’/f” is non-increasing.

A fact that I will use in the proposition below is that 0% (h) > o7 (E[h]) (see Lemma 1 in

9For instance, in the classical expected utility model, “a necessary and sufficient condition for any pure
small background risk to reduce the optimal exposure to other risks... is just necessary if one wants the
comparative statics property to hold for any risk” (Eeckhoudt and Gollier, 2000, p. 126).
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Appendix A). This means that the subjective variance of E[h|, the measure of ambiguity in
MMR [2010], is always going to be smaller than the subjective variance of h calculated
with the compound distribution Q.'°

An important component of the KMM model is the function v = ¢ o u. In fact, one of the
key assumptions in Klibanoff et al. (2005, p. 1855) is that subjects behave according to
SEU, derived from v and p, when they are presented with second order acts.!! We are now
ready to state the first proposition.

Proposition 1: Assume m > 0. An increase in the initial wealth level Wy reduces the
optimal insurance demand if v and v = ¢ o u satisfy DC.

Proof. See Appendix A.

Proposition 1 implies that, in the “small,” restrictions on risk and ambiguity attitudes of
the KMM model are sufficient to guarantee that the optimal coinsurance demand under
ambiguity is decreasing in wealth. No additional restrictions on the ambiguity structure are
needed, like the ones imposed by Cherbonnier and Gollier (2011) in a general setting, to

obtain the desired comparative static.!?

10This is easily seen in a simple example. Suppose h € {0,100}, and the probability distribution could be
either {.25,.75} or {.75,.25}. Also assume that the subjective weights over these distributions are such that
11 = pg = .5. Then, a%(h) = 2500 > 625 = Ui(E[h])

' The Ellsberg thought experiment can be represented by a second order urn that is ambiguous to subjects
and that defines the possible configurations of the first order urn used to illustrate the Ellsberg paradox. A
bet on the second order urn is a second order act.

12This result is potentially important for possible experimental applications attempting to test the pre-
dictions of models under ambiguity like the ones in this study. An experimenter trying to test such a model
under ambiguity in the “small” will have to identify risk and ambiguity attitudes, as well as the perceived
ambiguity, but does not have to control for the structure of ambiguity to test certain theoretical predictions.
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2.3.2 Model for Coinsurance Demand in the Presence of
Ambiguity and a Non-traded Asset

Suppose that the DM faces the same insurance decision as before, except that the
individual owns a non-tradable and uninsurable asset (e.g., human capital) with risky
return H that might be correlated with the loss. I argue that it could be reasonable to
assume that subjects have a better idea about the uncertainty of their human capital, thus
treating it as risk; meanwhile they may have ambiguous information about events that can
negatively affect their health such as a genetic chronic disease. Although it is a fair
question to ask if people perceive human capital as risky or ambiguous, this choice is more
for expositional purposes since it allows us to study the potential trade-offs that agents
might face in the presence of both risk and ambiguity.

As before, the risk and ambiguity neutral insurer offers coinsurance o € (0, 1] and charges
an insurance premium 7 = (14 m)Eg[h]. Consequently, the ambiguous end-of-period
wealth is W = Wy + H — h — am + ah. The MMR orthogonal decomposition implies that

h = Eglh] + h* + h* and H = Eg[H]| + H*. Thus the maximization problem is:

max Eg[IW] - §a2 (W) — Lo2(E[W]) (2.12)

where
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The covariance between H and h is defined as covg(H*, h*), because the ambiguous
component of the loss (k') is orthogonal to the elements of set M (the set of risky and
risk-free gambles). The joint probability distribution @ is the DM’s best estimate to model
the process driving the movements of H and h. The ambiguity of A implies that the DM
behaves as if there were many joint distributions ();. The interpretation of this ambiguous
situation is that the individual behaves as if he was sure about the marginal distribution in
the direction of H, but is unsure about the marginal distribution of . The distribution Q
is the DM’s best estimate of the joint distribution that is calculated by taking the average
over the reasonably possible joint distributions with respect to a probability measure p.
The perceived ambiguity in the end-of-period wealth arises from h*, and is captured by

o> (E[hH]).

Taking the derivative with respect to «, the first order condition is:

la] : = mEg[h] — 2{2(1 — a)(—l)[aé(h*) + aé(hL)] — 2(—1)covg(H",h")}

(2.13)
Y
- 1201~ a) (1) (B ]} = 0
The optimal demand for insurance is:
oM _ mEg[h] _ covg(H*, W) (2.14)
ot 005, (h) +yop(ERY])  of(h) + Gon(E[h*]) '

where o, (h) = o2 (h*) + g (h*).

For comparison purposes, an ambiguity neutral but risk averse DM that has a subjective
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distribution Q, will exhibit an optimal insurance demand defined by:

mEglh]  covg(H*,h*)

ek G2 (h) o3 (h)

(2.15)

Comparative Statics of Risk and Ambiguity Attitudes

The optimality of full insurance is not qualitatively changed by the introduction of
ambiguity and a non-traded asset. As shown by Doherty (1984), the Mossin-Smith theorem
holds only if covg(H*, h*) < 0. However, there is a quantitative difference that I explain in
the next paragraph.

Given the same level of risk aversion and subjective probability distribution @, an
ambiguity averse agent will demand more (co)insurance at the optimum than an ambiguity

S M2x M2x
neutral individual, because oy, > o7

The inclusion of a non-traded asset does not
change significantly a similar result shown by Alary et al. (2010, p. 12). They show that,
for two states of nature and given risk aversion, an ambiguity averse agent demands more

insurance than an ambiguity neutral person when insurance decisions are modeled in

isolation. However, depending on the sign and level of covariance, the optimal demand

M2x
amb

M1x
amb

and/or aM1*. Finally, as the next

Q can be smaller, equal or greater than «
proposition shows, my tractable model allows us to derive a “local” version of the
comparative static of ambiguity attitudes.

Proposition 2: In the presence of ambiguity and aversion towards it, if the incentives to

self-hedge, represented by covg(H*, h*), are low (high) enough, more ambiguity aversion

decreases (increases) the optimal demand for insurance.
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Proof.
* * h
paly  mEglh][-o(h") covg(H", 1) |5
oy oA T2 (BRP | o3 + 302
_ [mEg[h] + Ocovg(H, h*)|o(E[h*])
6o (h) + yoi (E[RH])]?
Define a threshold covariance /{%%"‘7 = mEQ[h] Therefore,

<0, if covg(H*, h*) < ki3
80511\;[”12; = 1=0, if covg(H*, h*) = K33, (2.16)
> 0, if covg(H*,h*) > ryf7e
[
M2+

M2x If

The optimal demand « is always greater than one whenever covg(H*, h*) < K3 -

amb
the supply of insurance is restricted to [0, 1], then we would only observe that 2 f”"b > 0.
This is consistent with Alary et al. (2010) who found that the demand for insurance is
increasing in ambiguity aversion when the insurance decisions are made in isolation.
However, if the agent is allowed to own a non-traded asset, to have an insurance demand
greater than one and covg(H*, h*) < kjf > she will reduce her demand for insurance when
ambiguity aversion increases.

Gollier (2009) found that under certain conditions more ambiguity aversion can increase

the demand for the ambiguous asset. We can infer that if my model is framed in a portfolio

choice context without restrictions on the asset demand, the incentives to “self-hedge” may
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constitute a rationale different from Gollier (2009) to explain why more ambiguity aversion
might increase the demand for the uncertain asset.

An important result is that the introduction of ambiguity and a non-traded asset may
contradict the Pratt-Arrow result that insurance demand increases with risk aversion. I
state the result in the following proposition and explain its rationale in the next section.
Proposition 3: When ambiguity matters to the individual, an increase in risk aversion
may or may not increase the demand for insurance depending on the incentives to “self
hedge” created by cov(H*, h*).

Proof: The derivative of the optimal insurance demand with respect to the absolute risk

aversion coefficient is given by:

amb

00  [Blo3 (W) + o3 (hH)] + 102 (B[R]

. 1% a2 (Eht
covg(H*, h*) x [—W] (2.17)

[[Ué(h*) + 05 (WD) + o (B

g (") + 03 (hh)] = yeovg(H*, h)o, (E[h*])
[9[ é(h) JQ(hL)] +yon (B[R]

9y M2 B [ mEQ[h] X [U%(h*) —f-aé(hl)] ]

. M2x mEQ[h] U%(h*)""o—%(hj_)
Define a threshold covariance rjjly = —— X ZER) Therefore,

>0, if covg(H*, h*) < ki

M2x
aaamb

90 =0, if covg(H* h*) = k}i7 (2.18)

<0, if covg(H*, h*) > K7
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In the limit, when the agent behaves as a SEU-maximizer, we obtain the Pratt-Arrow
result because the optimal insurance demand will be non-decreasing in risk aversion. When
the ambiguity averse agent converges to an SEU-maximizer (7 — 0) or ambiguity
disappears (o2 (E[h']) — 0), the threshold x}/3% will never be reached for variables with
finite covariance. Thus, we would only observe that %AZ’% > 0. However, proposition 3
shows an exception to Pratt-Arrow result that arises when ambiguity and a non-traded
asset are present. The rationale of this counterintuitive result, which I explain in the next

section, relies on possible trade-offs between risk and ambiguity that the DM must solve.

A Trade-off between Risk and Ambiguity: Are Subjects Behaving

“Inefficiently”?

The Pratt-Arrow result with only risk, or with ambiguity but with a SEU-maximizer,
implies that more risk aversion increases the insurance demand because the lower variance
that higher risk aversion demands can always be met with more insurance. In Proposition
3 I showed that if ambiguity matters to the agent and there is a non-traded asset, more
risk aversion does not always increase the insurance demand. The reason is that in this
environment the lower variance of wealth required by an increase in risk aversion is not
necessarily achieved through more insurance if the incentives to self-hedge are high enough.
The source for this counterintuitive result is that the DM might have to face a potential
trade-off between risk and ambiguity that depends on the incentives to self-hedge. This can

induce the subject to behave as if she was choosing voluntarily a risk allocation that is
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“inefficient” from a SEU perspective. However, this allocation might be optimal once
ambiguity is taken into account. I explain below the origin of the risk-ambiguity trade-off
by expressing the insurance problem in the form of a portfolio problem. This will allows me
to draw some possible implications of my results to the theory of portfolio.

The insurance decision problem can be interpreted as a portfolio problem (Schlesinger,
2000, p. 135), since a higher (lower) demand for insurance is equivalent to a lower (higher)
demand for the risky asset. Therefore, I can define a mean-variance frontier, in the same
spirit as the financial literature, by finding the locus of {aé(W(oz)), Eo[W ()]} pairs

generated by every value a € [0, 1]. Define o ;,var = 1 — %

as the insurance level
that provides the wealth with minimum variance.!® Moreover, suppose that

A invaer € (0,1), which is guaranteed by cov(H*, h*) € (0, Ué(h)).

The efficient (inefficient) portion of the mean-variance frontier is usually defined as the set

of mean-variance allocations that offer the highest (lowest) expected wealth at a given level

of risk. In my framework, the efficient (inefficient) part of the frontier is defined as the set

do2(W(a)

B W] > (<)0 (See Lemma 2 in the Appendix A).

of {03, (W(a)), Eq[W(a)]} pairs where
Definition 2: The mean-variance allocation {aé(W(oz)), Eo[W(a)]} will be located on the
SEU-efficient (SEU-inefficient) part of the frontier whenever the insurance demand

< Oinvar (@ > Vginyar)-

I refer to the efficient (inefficient) region as the SEU-efficient (SEU-inefficient) part of the

frontier. This emphasizes the fact that a subject, who would appear inefficient in the light

of SEU theory, might optimally choose such an allocation to deal both with risk and

13This is easily found by minimizing a%(W) with respect to a.
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ambiguity. I show below that this is the case under certain conditions.

Proposition 4: Assume that the loss h is ambiguous and the non-traded asset H is risky.
An ambiguity neutral agent will choose an optimal mean-variance allocation that will be
located on the SEU-efficient region of the frontier.

This proposition is obvious since a subject that does not care about ambiguity and behaves
according to Savage (1972), will choose an allocation that maximizes expected wealth given
a certain level of variance.

risk risk

Proof. According to definition 2, the optimal allocation {o (W (ay'f})), Eg[W ()]}

M2x

induced by «,; ;" will be located on the efficient part of the frontier because:

aM2x — mEg|[h] covg (H*,h*) cov(H* ,h*)
o

— *
risk — L 603 () - 2 <1- o2y AprinVar

Figure 2.1 shows the optimal mean variance allocation induced by the optimal insurance

demand of a SEU maximizer. In the particular parametrization used to construct the

M2x __
risk

figure, this optimal demand is « 67.5% (see the tangency of the isocurve and the
mean-variance frontier). Remember that, according to definition 2, a mean-variance
allocation will be SEU-efficient if the optimal insurance demand is less than the
coinsurance demand that provides minimum variance, which is a};,1., = 70% in Figure
2.1. Although it is still possible in this example for the DM to choose an insurance
coverage above o} ;,14-» She will not do it so because there is still an attainable allocation

(in the SEU-efficient part of the frontier) that provides higher expected return for the same

variance. Finally, if cov(H*, h*) < 0 then o’ ;. = 100%, provided the insurer only offers
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Figure 2.1: Portfolio Problem Interpretation of a Simple Insurance Decision
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Parametric assumptions: 0 = v = 2,05(h*) + oj(ht) = oi(E[LY]) = LW, =
1000, covg(H*,h*) = 0.3,m = .01, E5[H] = 100 and Eg[h] = 5. The isocurve contains
the {aé(W), Eo[W]} pairs that make the individual indifferent to the optimal allocation
which is determined by the tangency with the mean-variance frontier.

coinsurance « € (0,1]; as a consequence all mean-variance allocations induced by a € (0, 1]
will be located in the SEU-efficient region of the frontier.

In the presence of ambiguity, the optimal risk-return allocation will not always be located
in the efficient part of the frontier because high incentives to self-hedge (i.e.,

cov(H*, h*) > ki) create a trade-off between the variance and ambiguity of wealth.
Thus, the individual would appear to be “SEU-inefficient”, however such action is optimal
in the presence of the ambiguity dimension.

Proposition 5. Suppose that an ambiguity and risk averse agent is exposed to an

ambiguous loss ~h and owns a risky non-traded asset H. Whenever the incentives to
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“self-hedge” are high (low) enough, i.e., covg(H*, h*) > (<)/<],‘f%f9, the optimal

mean-variance allocation {3 (W (agms)), Eq[W (eg )]} induced by agi% will be located

on the SEU-inefficient (SEU-efficient) part of the frontier. More formally,

(> 0, if covg(H*, h*) < K7
2
% N = \=0, if covg(H* h*) = K} 7% (2.19)
< 0, if covg(H*, h*) > K7
where /{%i’fa = mEf[h] U%(U;*();[sz](: ) > 0.

Proof. See Appendix A.
To prove the proposition I show that the position of the SEU-efficient mean-variance
allocation on the frontier depends on the incentives to “self-hedge” by comparing the

optimal insurance demand with o}, -

When the incentives to self-hedge are high enough (cov(H*, h*) > rj{7%), the optimal

risk-return allocation of an ambiguity averse individual will be located on the

M2

SEU-inefficient part of the frontier, because a7

> Orinver- Lhe individual would appear
to be SEU-inefficient because she will buy more insurance than a SEU-maximizer would
buy in the same situation. However, in the presence of ambiguity and aversion towards it,
this “additional” demand for insurance is optimal.

Figure 2.2 shows an example of an optimal allocation that is seemingly SEU-inefficient but

completely optimal when the ambiguity domain is taken into account. According to

M2x

ek = 83.8% (see tangency of isocurve and

definition 2, the optimal insurance demand «
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mean-variance frontier) would be SEU-inefficent because it is greater than ajsmyer = 70%.

However, one has to take into account the ambiguity dimension.

Figure 2.2: Optimal Choice in the Risky Domain in the Presence of Ambiguity

Robust Mean-Variance Efficient Frontier (Risk Domain)
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Parametric assumptions: 6 = v = 2,05(h*) + %(hL) = oA(EhT]) = 1L,W, =
1000, covg(H*,h*) = 0.3,m = .Ol,E*[H] = 100 and Eglh] =

Figure 2.3 shows the “mean-ambiguity” frontier that a subject faces in the presence of
ambiguity as well as the isocurve that contains the optimal mean-ambiguity allocation

{o2 (W (i), EglW (afiZ)]}. If the individual was an SEU-maximizer, she would exhibit

amb amb

M2x

an insurance demand of a5 = 67.5%. However, she would have to bear more ambiguity

(o2(W(a}3:)) = 0.11) than she would be willing to accept if she was ambiguity averse (

o (W (%)) = 0.03). Thus, when incentives to self-hedge are high (covg(H*,h*) > K}3%),

o amb

the ambiguity averse individual will demand a level of insurance that seems excessive from

an classical SEU perspective in order to reduced ambiguity to the desired level.
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Figure 2.3: Optimal Choice in the Ambiguity Domain

Robust Mean-Ambiguity Efficient frontier (Ambiguity Domain)
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Parametric assumptions: 6 = = 2,05(h*) + oj(ht) = oL(ERT]) = LW, =

g
1000, covg(H*, h*) = 0.3,m = .01, Eg[H] = 100 and Eg[h] = 5.

The exhibited SEU-inefficient type of behavior that I just described arises from a trade-off
between risk and ambiguity that the DM must resolve. The intuition is that under certain
conditions, more insurance does not necessarily reduce variance and ambiguity at the same
time. Figure 2.4 shows the locus of risk/ambiguity {07 (W), 07, (E[W])} pairs that are
attainable for any given level of insurance demand « € [0,1]. An increase in the
coinsurance demand moves the DM from right to left in the figure. For instance, Figure 2.4
emphasizes at the top right corner the case where the DM does not insure at all (o = 0)
and at the lower left corner the case when the DM is fully insured (o = 1).

The parametrization for the example in the Figure 2.4 was carefully chosen to exemplify

the situation in which it is not always possible to reduce variance and ambiguity at the
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same time. This is represented by the non-monotonicity of the curve in Figure 2.4. The
first part of the curve that is decreasing indicates that more insurance decreases ambiguity
but increases variance. The part of the figure that is increasing indicates that buying more
insurance decreases both ambiguity and variance in that region. The non-monotonicity is
present only when covg(H*, h*) > 0;'* however, its mere presence does not imply that a
DM will exhibit a SEU-inefficient type of behavior. We need the stronger condition that
covg(H*, h*) > /@% %fe > 0, identified in proposition 5. Therefore, a DM will behave as if she
was SEU-inefficient, but optimally if ambiguity is taken into account, when the incentives

to self-hedge are sufficiently high.

. . o e HaM2*
What is the intuition for #m” < 07

I can finally give a more comprehensive explanation for the intuitive result that more risk
aversion might reduce the coinsurance demand in the presence of ambiguity and a

non-traded asset. Proposition 3 and 5 show, respectively, that the same condition

M 2x
(covg(H*, h*) < Kj7) is needed for aagé”b to be positive and the optimal mean-variance
allocation to be on the SEU-efficient part of the frontier. The intuition is that in the

SEU-efficient part of the frontier the lower variance required by higher risk aversion can be

achieved by buying more insurance. This is possible because in this region of the frontier

147t is easily shown that the curve defined by the locus of the {a% (W), 07 (Eq[W])} pairs is non-monotonic

doZ (W) covs (H™ ,h™)

Q _ 1 2 _ Q

TZ(BgWD = oZ(EalW]) (U@(W) o) ) The
2

do2, (W
comparative static #ﬁ;[vz/]) is greater than 0 for any « € [0, 1] if covg(H*, h*) < 0. If this covariance was
n

da%(W)
do (EQ[WT])

if covg(H*,h*) > 0. This is done by noting that

positive, there is always a given coinsurance demand for which is negative.
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Figure 2.4: Risk/Ambiguity Trade-off and Optimal Choice

Risk/Ambiguity Trade-off
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Parametric assumptions: 0 = v = 2,05(h*) + oj(ht) = oi(E[LY]) = LW, =
1000, covg(H*,h*) = 0.3,m = .01, E5[H] = 100 and Eg[h| = 5. The figure shows the
{aé(W),ai(EQ[W])} pairs that can be achieved for any value of coinsurance demand
a € [0,1]. Three cases are emphasized in the figure: (i) o = 1, (ii) a = aM2%r = 8375,

amb —
and (iii) o = 0.
the variance of wealth is decreasing in the insurance demand .
Nevertheless, when the optimal risk-return allocation is in the SEU-inefficient part of the
frontier, more risk aversion will decrease the demand for insurance. The reason is that the
reduction in variance required by higher risk aversion cannot be met through more
insurance under these conditions. When the individual buys more insurance, she reduces

2

the variance of loss h she is exposed to, i.e., (1 — oz)QUQ(h). However, she also affects the

15 [‘)o%(W) _ 2(1 2 * * f *
S = — (1- a)oQ(h) + 2cov(H*,h*) < 0, if & < &}pinvar
]M2l;k

-1 _ cov(H" ,h™)

- o5(h) -

< OpinVar if con(H*,h*) < f{%%ﬁe. Thus, the variance of wealth is decreasing in the optimal

B0 (W)
Q

oo |a:a

By proposition
9, a

wa. < 0) whenever covg(H*, h*) < K37

amb

insurance demand (i.e.,




103

self-hedging possibilities because more insurance reduces the effective covariance she
actually faces, i.e., (1 — a)cov(H*, h*).

When the optimal insurance demand is sufficiently high, such that o2 > a3, .. a
marginal increase in insurance also increases the variance of wealth because the reduction
in self-hedging possibilities outweighs the reduction in the variance of h. Under these
conditions, buying more insurance would increase the variance of wealth. Hence, an
increment in risk aversion induces a reduction in the insurance demand. In the example
shown in Figure 2.3, increasing the parameter of absolute risk aversion from 2 to 3 will
decrease the optimal insurance demand from 83.8% to 81%.

Finally, one could assume that the subject perceives both the non-traded asset and the loss
as ambiguous. Suppose the measure p is a subjective joint distribution of beliefs about H
and h and cov,(E[H™*], E[h*]) represents the incentives to self-hedge in the ambiguity
domain. One can infer that it is possible to have similar versions of proposition 4 and 6 for

the ambiguity domain. The bottom line is that that incentives to self-hedge are very

important to insurance and asset demand both in the risk and ambiguity domain.

Trade-offs between Risk and Ambiguity in Portfolio Choice Problems

Cochrane (2007, p. 49) claims that in the multifactor efficient portfolio model developed by
Fama (1996) “typical investors do not hold mean-variance efficient portfolios... [t]hey are
willing to give up some mean-variance efficiency in return for a portfolio that hedges the
state variable innovations.” My model resembles the most simple case of such a model with

one asset and one non-traded asset that plays the role of a factor. Proposition 5 suggests
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that there exist conditions under which ambiguity induces the subject to choose a
SEU-inefficient mean-variance allocation that even takes into account the covariance of the
factor with the other assets.

There is literature documenting the (SEU-)inefficiency in household portfolio and studying
its source (e.g., Benartzi, 2001; Goetzmann and Kumar, 2008). Typically, these studies
propose a myriad of behavioral explanations for the under-diversification of portfolios like
familiarity bias, ignorance, overconfidence, informational frictions, subjective beliefs and
alternative preferences representations (e.g. Rank-Dependent utility theory).

However, there is limited research on the presence of non-traded assets as another possible
explanation for the “seemingly” observed under-diversified portfolios, probably due to the
difficulty of getting detailed data on households. Massa and Simonov (2006) study a
unique data set of Swedish investors where they can identify various components of income,
wealth and demographic characteristics. Massa and Simonov (2006, p. 661 and 667) find
evidence that a wide range of investors do not hedge neither their financial assets nor their
labor and entrepreneurial income (i.e., returns of non-traded assets). They conclude that
familiarity, the tendency to invest in stocks that are geographically or professionally close
to them, or that have been held for a long period, affects investors’ hedging behavior and
induces them to behave inefficiently from a classical SEU perspective. In particular, Massa
and Simonov (2006) find that people tend to choose portfolio allocations that are positively
correlated with their labor income. However, individuals with greater wealth tend to pick
asset allocations that are more in the lines of traditional portfolio theory. Another

explanation within the SEU model is that the subjective beliefs that investors use to make
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portfolio choices are different from the ones used by researchers to define their notion of
efficiency. The explanation below also depends on subjective beliefs but departs from the
SEU framework.

The issue of familiarity has a long tradition in experimental economics and was originally
studied in contexts with ambiguity. Heath and Tversky (1991) and Fox and Tversky (1995)
present experimental evidence in which they claim that subjects tend to prefer (or to
avoid) ambiguous prospects for which they feel they are more (less) familiar. This
familiarity interpretation was introduced as an explanation to typical behavior under
ambiguity. However, many of the familiarity interpretations can be formalized in terms of
attitudes towards ambiguity. In fact, studies such as Myung (2009) provide evidence to
support the claim that ambiguity aversion is related to the equity market home bias
paradox and Boyle et al. (2012) model the trade-offs between familiarity (modeled as
attitudes towards ambiguity) and diversification.

A generalization of my model that includes traded assets, non-traded assets and insurance
can offer an alternative explanation to the under-diversification puzzle of households.
Intuitively, the interaction of traded assets, non-traded assets and insurable assets, that
can each be ambiguous or not, can result in observed behavior that is “under-diversified”
from a classical SEU perspective but optimal from a broader perspective. The main
message is that deviations from the classical portfolio theory that assumes SEU can be
explained by expanding the concept of portfolio to non-traded assets, which has been
recognized in the financial literature, but more importantly to also allow for preference

representations that can explain attitudes towards ambiguity.
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I present below a simple model that can explain the following two observations in Massa
and Simonov (2006): (i) investors tend to hold stocks that are familiar to them and that
are positively correlated with their labor income; and (ii) wealthy individuals have a
greater tendency to pick stocks that can help hedging their labor income risk.

Suppose a DM (who could be an individual or a household) with labor income H, and that
has the opportunity to invest part of his initial wealth W, into two financial assets, X and
Y. For exposition purposes, assume that the DM perceives labor income H and asset X as
risky, while asset Y is perceived as ambiguous. Labor income could be modeled as an
ambiguous process but it is assumed risky for simplicity.'® In the spirit of Massa and
Simonov (2006), asset X can be understood as the set of stocks with which the DM is very
familiar and asset Y is the set of stocks that are less familiar to the DM. There is a joint
probability distribution @ that the DM considers is the best estimate to model the process
driving the comovements of H, X and Y. The ambiguity of Y implies that the DM
behaves as if there were more than one joint distributions, each denoted by ;. The
interpretation of this particular case is that the individual behaves as if he was sure about
the marginal distributions in the direction of H and X, but is unsure about the marginal
distribution of Y. This results in the individual behaving as if there was a myriad of
reasonable possible distribution @; with i € I and @ his best estimate of the joint

distribution. The latter is calculated by taking the average over the many possible joint

16For example, take the case of a dentist for whom income varies from month to month but she is very
familiar with the number of patients that might or might not come each month. In this case, the dentist
might perceive her labor income as risky. In contrast, think of a self-employed consultant that is just starting
up his business. He might have an idea of what a consultant can earn each month from the experience of
others. However, this situation could be perceived as ambiguous because he doesn’t have enough information
to believe that his labor income is going to follow the path of other colleagues’ income. In this case, the
consultant might perceive his income as ambiguous.
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distributions with respect to a probability measure p that captures the beliefs that any of
the reasonable possible joint distributions is the true one.

The MMR orthogonal decomposition implies that labor income and assets can be
expressed as H = Eg[H) + H*, X = Eg[X]+ X* and Y = Eg[Y] +Y* + Y*. The
subindex () is used in the expectations operator to remind the reader that the mean of the
random variables is taken using the marginals of (). Define o and 3 as the proportions of
initial wealth invested in asset X and Y, respectively, and there are no restrictions on these
proportions. The final wealth can be written as W = H + (1 — a — )Wy + aX + Y. Thus

the maximization problem is:

max Bg[W] - So3(W) - T2 (E[W) (2.20)

where

EQ[W] = EQ[H] +(1—a—-pWy+ OéEQ[X] + 6EQ[Y];
05(W) =03 (H") + ()*03(X*) + (B)[03(Y™) + 05 (V)]
+2(aB)covg (X*,Y™) + 2(a)covg (X, H*) + 2(a)covg (Y, H*)

and o2 (E[W]) = (8)*02(E[Y 1))

Taking the derivative with respect to o and S, the first order conditions are:

la] : (Eg[X] —Wh) — g [2040%()(*) + 2Bcovg (X, Y™) + 2covg (X™, H*)} =0 (2.21)

0
[Qﬁaé(Y*) + 20covg (X ™, Y™) + 2covg (Y™, H*)]

8] (EqlY] - Wo) - 5

(2.22)
— 212802(E[Y )] = 0
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For the sake of the argument assume that under probability @) asset X and Y only differ in
that X is positively correlated with H:
covg (Y™, H*) = covg(X*,Y*) =0,
covg(X*, H*) > 0,
Eq[X*] = EglY*] = Z,

0% (X*) =a%(Y*) = o2

Qi
Qi

Therefore, the optimal asset demands are given by:

7 W _ X*, H*
o = 0 _ coval ) (2.23)
Oo? o?

Z—W,

7=y o3 (B[Y)

(2.24)

An SEU maximizer should choose an asset allocation such that g— < 1 because both assets
have the same mean and variance. However, asset Y is more suitable to hedge income risk
than asset X is, given that covg (Y™, H*) = 0 and covg(X*, H*) > 0. This can be seen by
taking the ratio of both asset demands and setting Vaé(E [Y]) = 0, since an SEU
maximizer does not care about ambiguity.

However, an individual that is suffiently averse to ambiguity and/or finds asset Y very

ambiguous, represented by a high value of 70%(E [Y]), may choose a portfolio allocation

o*

that puts more weight on asset X (i.e., &> 1) even though it is positively correlated with
his income. This rationalizes the first empirical finding in Massa and Simonov (2006).
The second finding in Massa and Simonov (2006), that wealthy individuals behave

according to what SEU would predict, can be explained in several ways. One common
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explanation is that wealthy investors are more financially sophisticated as suggested by
Campbell (2006, p. 1576). Another interpretation is that ambiguity attitudes are affected
by the level of wealth. In my highly stylized model, an individual with sufficiently high

wealth can overcome an aversion towards ambiguity and choose a portfolio allocation that

a*

puts more weight in the asset that helps to hedge income risk (i.e. 7 < 1). This can be

shown by taking the derivative of the ratio of asset demands with respect to initial wealth:

da*/B* [ Ov g 00

We oW, oW, ! 225
T oy BEYID 2 |
_COUQ(X,H)[<6WO+8WO — (Z = W) + 6 + 75— —

For simplicity, assume that the DM exhibits CARA which implies that 88—1/30 = 0. Therefore,

we can guarantee that &g*—v‘fk < 0 by assuming the following: (i) 88—147/0 < 0 which is implied

by ¢(.) satisfying the decreasing concavity property, that is to say, that absolute ambiguity

aversion is decreasing in wealth; and (ii) that the estimated covariance between X and H is

Z—Wo

not so high, i.e. covg(X*, H*) < %

, otherwise strong hedging incentives would be the
main explanation for the tilt of the portfolio towards the ambiguous asset. Therefore, an
individual that originally chose a portfolio that was tilted towards the risky asset X and
positively correlated to income can revert his choice towards a portfolio that puts more
weight on the ambiguous asset Y if his wealth increases such that his aversion to ambiguity

is significantly reduced.
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2.4 Optimal Insurance Contracts Under Ambiguity

2.4.1 Optimality under Ambiguity of Insurance Contracts with a
Straight Deductible: A Counterexample

A well-established result in insurance economics states that the optimal insurance contract
for a risk averse DM is one with a straight deductible. The latter is due to Arrow (1971,

p. 212), who proves the following proposition:

If an insurance company is willing to offer any insurance policy against loss

desired by the buyer at a premium which depends only on the policy’s actuarial

value, then the policy chosen by a risk-averting buyer will take the form of 100

per cent coverage above a deductible minimum.
Alary et al. (2010, p. 12-13) proves that this result is robust to the introduction of
ambiguity when insurance decisions are made in isolation. This section shows that under
certain conditions this result might not hold. I use a similar argument to Doherty (1984,
p. 214), who showed that when a “portfolio contains non-insurable risky assets [e.g., human
capital], the preference of the insured between a deductible and a coinsurance policy
depends upon the covariance” between the loss and the non-tradable asset.
Proposition 6: In the presence of ambiguity and a non-traded asset, an insurance
contract with a straight deductible does not always dominate a coinsurance contract.
Proof. See Appendix A.
The rationale of this result is as follows. The level of the deductible could be so high that
there is a substantial loss in self-hedging possibilities that outweighs the benefits of

variance and ambiguity reduction. However, in the presence of ambiguity, the conditions

for a coinsurance arrangement to dominate are more stringent than in the case with only
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risk. The reason is that the potential benefits of self-hedging of the coinsurance
arrangement must compensate both for the reduction in variance and ambiguity created by
the contract with a deductible.

Notice that self-hedging is restricted in the present model to the risk domain. However, one
can easily construct a model in which the non-traded asset is also ambiguous. This would
make the self-hedging possibilities important in the ambiguity domain. The latter would be
captured by a covariance term under the second order subjective measure p of the
ambiguous non-traded asset and the ambiguous loss. As a consequence, one can think of

numerous trade-offs between the risk domain and the ambiguity domain.

2.4.2 The Borch Rule Under Ambiguity

An important result in the economic literature, derived by Borch (1962, p. 428), is the
optimality of a coinsurance contract when both parties are risk averse. The rule is stated

by Arrow (1971, p. 216) as follows:

If the insured and the insurer are both risk averters and there are no costs other
than coverage of losses, then any nontrivial Pareto-optimal policy, [a(h)], as a
function of the loss, [h], must have the property, 0 < [da/dh] < 1. 17

I show that this result is robust to the introduction of ambiguity aversion. However, the
level of coinsurance under ambiguity, relative to the case with only risk, will depend on the
relative importance of risk and ambiguity for each party and the differences in beliefs. In
other words, it will depend on the ratios of the risk aversion and ambiguity aversion

parameters, as well as on the compound distribution and the second order probability

17T change the original notation in Arrow’s quote to match ours. In his book, the loss is denoted by X
and the insurance policy by I.
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measure . I use similar arguments of the derivation in Arrow (1971, p. 217-219) and
extend its logic to the ambiguity domain.

Proposition 7: Let u(.) and v(.)'® be the von-Neumann-Morgenstern utility functions
that capture, respectively, the risk attitudes of the insured and the insurer. Assume both
are risk averse, i.e. u”(.) < 0 and v”(.) < 0. Moreover, define ¢,(.) and ¢,(.) as the
functions that capture the ambiguity aversion of the insured and the insurer, respectively.
Both agents have a KMM representation of preferences under ambiguity. Let W, and W,
be the initial wealth of the insured and the insurer. Additionally, define a(h) as the
insurance payment net of the insurance premium when the ambiguous loss takes the value

h. The end-of-period wealth of each agent is:
e Insurer: W, = W, — a(h)
e Insured: WN/u =Wy—h+ Oé(il)

Each party’s valuation of any insurance schedule a(iz) has a KMM structure:
e Insurer: V = fA b (fs dQv> dj,

e Insured: U = fA Ou (fs dQu> dpu,

where the subindices imply the obvious definition for each variable.
Furthermore, assume a finite world where there are n possible outcomes for h, and

Q=1{q1,q2, Q> G}, 0, v and p, = {pt, p2, ..., ¥, ..., u5} represent, respectively, the

compound probability distribution, risk attitudes, ambiguity attitudes and second order

18Not to be confused with v = ¢ o u as defined before
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beliefs of the insured. Similarly, for the insurer these variables are represented by

P ={p1.pas.cpn}, 0, 7 and g, = {pd, 12, ..., piF, ..., i}, Notice that this is a general
model that allows for different beliefs (Q # P), risk and ambiguity attitudes (6 # 6 and
v # 7) and probability measures over sets A, = {Q1, Qs, ..., Qk, ..., @k } and

A, =A{Py, P, ..., Py, ..., Px} (po, # jty). Elements in @y and Py are denoted by qf and p;?,
respectively.

The risk/ambiguity arrangement in each of the possible outcomes h; of the ambiguous loss

is defined by

da(h) a [0g:(1—¢;) + 0, (4:)] (2.26)
i a 00,1 - g:) + 702, (@)] + b [ Opi(1 = pi) + 2, ()
Notice that %]zi) € (0,1), since 6 > 0, 6 > 0,v>0,7 >0, and p;,q > 0. In other words,

the optimal contract is a coinsurance schedule.

Proof. See Appendix A

This implies that the Borch rule is robust to the introduction of ambiguity and even of
heterogeneity of beliefs. However, the rule corrects for differences in beliefs, ambiguity and
attitudes towards it. Though not reported here, the introduction of a risky non-traded asset
does not affect the coinsurance structure of the optimal program. The intuition is that
such an extension of the model will not affect the concavity of the Pareto-optimal frontier
of the set of feasible {U, V'}, leaving the structure of the maximization program unaffected.
da(h;) _  af

T = 20400 is the optimal coinsurance schedule with only risk

For comparison purposes,

and homogeneous beliefs. With Q = P and i, = pt, = pt. The equivalent coinsurance rule
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when ambiguity is introduce is equal to:

a 01— q) +vo2(a)/ 4]
a 001 = g) +02(a) /0] +b 001 - @) +Fo2(a) /g

(2.27)

> (<)%

™

For all h;, the coinsurance demand is higher (lower) under ambiguity if

Intuitively, if the insurer is more ambiguity tolerant, relative to its own risk tolerance, than

the insured is, the coinsurance demand is higher under ambiguity. However, this sharp

comparative static is not possible when there are heterogeneous beliefs.

For any h;, Q # P and p, # i, the optimal coinsurance demand is higher (lower) in the
2i(1—gi)

presence of ambiguity if g— > (<)

o7 (i)

0 ¢i(1-g:)

s—= . Consequently, when there are differences
Y Ol (QZ)

in beliefs and ambiguity matters to both parties, it cannot be easily predicted under which

conditions the coinsurance demand is higher or lower than that under risk.

2.5 Conclusions

I have shown that if ambiguity matters, risk and ambiguity attitudes interact in nontrivial
ways to determine the change of insurance demand for a given change in wealth. I derive
sufficient conditions to guarantee that the optimal coinsurance demand is decreasing in
wealth. Moreover, in the presence of a risky non-traded asset, I identify conditions under
which more risk or ambiguity aversion decrease the demand for coinsurance.

Additionally, my model predicts behavior that is inconsistent with the classical portfolio
theory that assumes Subjective Expected Utility theory, however, it provides hints to a

possible solution of the under-diversification puzzle of households. The main message is
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that deviations from the traditional portfolio theory can be explained by expanding the
concept of portfolio to non-traded assets, which has been recognized in the financial
literature, but also by simultaneously allowing for preference representations that can
explain attitudes towards ambiguity.

A modified Borch rule remains the optimal contract with bilateral risk/ambiguity aversion
and heterogeneity in beliefs. However, an insurance contract with straight deductible might
be dominated by a coinsurance schedule in the presence of ambiguity and a non-traded
asset.

Several challenging questions remain. Other non-EU models of decision under ambiguity
should be explored to corroborate that my results are not a mere artifact of the preference
representation that I chose. However, an important challenge in the ambiguity literature is
to derive more general results that do not depend heavily on the structure of the preference
representation. Also, the optimality of contracts should be studied in the presence of
asymmetric information and ambiguity. Finally, it would be desirable to derive a model
which does not depend on an approximation and that allows for traded assets, non-traded

assets and insurance.

2.6 Appendix A. Proofs of Results

Proof of Lemma 1. 07 (h) > o7.(E[h]). I show below that o7 (E[h]) = o
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and hence the inequality holds.

i) - [ T (/ st |
(s (] o)
] o | fron
] (] fos)
SAICCE / (fre) |

= O'%(h) — B, [0*(h

Rearranging the last equality we have that o3 (h) = E,.[0%(h)] + o7 (E[h]). Since
E,[0*(h)] > 0 because it is an average of variances, the latter equation implies that

ag—g(h) > a.(E[h]).
[

Proof of Proposition 1. Assume m > 0. The following derivative defines the comparative
statics of the optimal insurance demand with respect to changes in initial wealth:

6@%; . mEQ[h] ) 90 &y Ui(E[h])
oWy {QUé(h) +702(E[h])}20Q(h) [aWO + e %(h) (2.28)

where O’%(h) = Ué(h*) + U%(hl). Since v = {—UH(WD)} — {_1;’/’((‘/‘1/12))} the partial derivative

above can be written as:

O _ mElhl CAER) 90 GA(EI) 8,
aWo (050 + o2 B e [(1 o) )awﬁ 2 an (229)
where 6, = _l;/'/((vl?//o))

Notice that the sign of this partial derivative depends on the sign of the term in the square
brackets. Since both u and v satisfy DC, which implies that 6, and 6 are decreasing in Wy,

and 02 o(h) > o>(E[h]) > 0, the optimal insurance demand under ambiguity is decreasing in
M1

. O«
W, t.e. ‘””b < 0.
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Proof of Lemma 2. The efficient (inefficient) part of the frontier is defined as the set of

. dod (W(a))
{aé(W(oz)), Eo[W ()]} pairs where m > (<)O0.

This relationship can be found by taking the total derivative of the variance and expected
value of wealth and dividing one over the other to obtain the following:

d a%(W(a))
d Eg[W(a)]

(1—a)aé(h)—cov(H*,h*)

=2 mEg|h]

The sign of this derivative depends on the level of insurance demand:

>0, if a<alnvae
N P 3 J— *
- — 07 if = Y NMinVar

<0, ifa>aymvar

[ |
Proof of Proposition 5. According to definition 2, the optimal allocation
a2 (W (aM%)), E5[W (2]} will be located on the SEU-inefficient part of the frontier
Q amb Q amb
whenever
M2 _ 1 mEg[h] . covg (H*,h*) . covg(H*,h*)
Yoy = 1~ G2 mroq BT B3R ERT LT odm - WMinVar
Thus,
x * - s 1wy  mBglhl _ of(h)+od(ht) N
Oétjz\/rlr?b > aMinVar lf COUQ<H ,h ) > $ QUE(E[hCi]) = K/%%;G
Similarly, {2 (W (aM%)), E5[W (a24)]} will be located on the SEU-efficient part of the
Q amb Q amb
frontier if covg(H*, h*) < ki35
[ |

Proof of Proposition 6. Suppose there is a DM that is both risk and ambiguity averse,
owns a risky non-traded asset H and is exposed to an ambiguous loss h. Furthermore,
suppose there is an insurance contract that covers 100% of any realization of the ambiguous
loss above ¢, a deductible amount chosen by DM. However, if h < §, the DM assumes the
loss in its entirety. Moreover, assume that there is an alternative coinsurance contract that
pays zero if no loss is realized and ah if a loss of amount h is realized, where « € [0,1]. The
alternative coinsurance contract is carefully chosen such that a risk and ambiguity neutral
insurer charges the same premium it does in the contract with deductible 9. Thus, « is
defined by the following condition: a(1 +m)Eg[h] = (1 +m)Eg[max{0,h — §}] = 7.

The strategy is to show that, under certain conditions, the CE implied by a coinsurance
contract (C'E¢, henceforth) can dominate the one implied by an actuarially equivalent
contract with straight deductible (C'Ep).
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A coinsurance contract dominates one with a deductible if the following condition is
satisfied:

2" (2.30)

where
We=H — h—7+ ah,

Wp=H —h— 7+ max{0,h — ¢},

fe)

aé(WC) = U%(H) + (1 — a)?c3(h) — (1 — a)covg(H, h),

o4 (Wp) = 0} (H) + o (max{h, §}) — covg(H, max{h,})
We and Wp denote, respectively, the end-of-period wealth under the coinsurance contract
and under the contract with straight deductible.
Given that the same premium 7 is charged, the expected value of wealth is the same under
both contracts (i.e., Eg[We] = Eg[Wp]). Thus, we just need to focus on the
variance-covariance structure and the perceived ambiguity generated by each contract.

Vajda [1962] showed that the deductible offers a greater reduction in the variance of
retained losses given an amount of insurance premium. This implies that:

(1= ayod(h)  og(maxih,o})
(1 =) Eg[h]]* ~ [(Eg[max{h, d}]]”

A similar argument can be made about the ambiguity perceived by the DM, since in my
framework it is measured as the (subjective) variance of E[h|. Therefore, Vajda’s argument
also implies that an insurance contract with a straight deductible will induce lower
perceived ambiguity than a coinsurance arrangement, given an expected value of retained
losses. Therefore:

(I —a)*or(E[h])  o(E[max{h,d}])

o
(1= a)Egl> ~ TEglmax{h, o}

In the absence of the non-traded asset, these two simple facts show why Gollier’s result
holds. Intuitively, for a given level of insurance premium, such an insurance contract with
straight deductible provides the DM with lower variance and ambiguity than the
coinsurance arrangement does. However, as shown by Doherty (1984, p.213-216) in a
context with only risk, the covariance between the non-traded asset and the retained losses
plays a crucial role in the robustness of Arrow’s result. The same logic can be extended to
the ambiguity domain.
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A coinsurance arrangement dominates a contract with straight deductible if CEc > C'Ep.
Using the MMR approximation of each CE, the latter condition is satisfied whenever

i (1= @)’02(E[h]) — o (E[max{h,§}]] + [(1 - a)za%(h) — aé(max{h, o})

0 7 jz

< (1 —a)cov(H, h) — cov(H, max{h,d})

(2.31)

It is plausible that, even though cov(H, h) = 0, the covariance induced by the deductible,
cov(H,max{h,d}), is low enough such that the above condition is satisfied. In this case the
coinsurance arrangement dominates the contract with a deductible.

Proof of Proposition 7. Let u(.) and v(.)* be the von-Neumann-Morgenstern utility
functions that capture, respectively, the risk attitudes of the insured and the insurer.
Assume both are risk averse, i.e. u”(.) < 0 and v”(.) < 0. Moreover, define ¢,(.) and ¢,(.)
as the functions that capture the ambiguity aversion of the insured and the insurer,
respectively. Both agents have a KMM representation of preferences under ambiguity. Let
Wo and W; be the initial wealth of the insured and the insurer. Additionally, define a(iz)
as the insurance payment net of the insurance premium when the ambiguous loss takes the
value h. The end-of-period wealth of each agent is:

e Insurer: W, = W, — a(h)

e Insured: W, = Wy — h+ a(h)

Each party’s valuation of any insurance schedule «/(h) has a KMM structure:
e Insurer: V = fAv b (fSU(VIN/U)dQv> dj,

e Insured: U = fAu Ou (fs u(ﬁ/\;)dQu) dpt,

where the subindices imply the obvious definition for each variable.
The set of all {U,V'} pairs has a boundary that is convex to the northeast. To show this,

suppose any two insurance policies a4 (h) and ay(h) that induce allocations {Uy, V1 } and
{U,, V3 }, respectively. Define a third insurance schedule as(h) = .5a4(h) + .5as(h) for each
h. The three insurance schedules induce the following end-of-period wealth W;;, W;, and
Wis = .BW;1 + .5W;s for i = u, v. Given that both parties are risk averse, the following

statements are true:
u(Wug) > 5U(Wu1> + 5U(Wu2)

v(Wey3) > 5u(Wyp) + 5v(Wye)

YNot to be confused with v = ¢ o u as defined above.
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Since both conditions hold for each h, it also holds when we take expectations. Without
ambiguity, the latter argument will imply that the set of {U, V'} pairs induced by all the
attainable insurance schedules will have a frontier that is convex to the northeast.
Therefore, any Pareto-optimal insurance schedule can be obtained by maximizing a linear
function aE[u(W,)] + bE[v(W,)] for a,b > 0 and at least one positive. I show that this is
also the case when ambiguity is introduced.

Suppose the sets of reasonably possible probabilities A, and A, are finite, and elements in
each set are denoted by Q. and @), respectively, which are indexed by k. The second
order belief 1, is the subjective probability weight that the insured puts over the
probability distribution Q),x; pur is similarly defined for the insurer.The argument in the
previous paragraph and the concavity of ¢,(.) and ¢,(.) imply that the following
statements are true:

Zk Huk X¢u(EQuk [U(Wui’))]) > -5XZI~: Houk X¢u(EQuk [U(Wul)])+-5x Zk Huk X¢U(EQuk [U<Wu2)])

or

U3 > .bU; 4 .bUs

and

2 ok X P (B, [0(Waz)]) > 5X 3 prok X do (B, [0(War)]) 45X 30 pror X o (Eq, [v(We2)])

Vs > .5V) + 514

Since these statements hold for every pair of points {U;, Vi} and {Us, V2} in the set of
allocations defined by the possible insurance schedules, the northeast boundary of this set
is convex to the northeast. Therefore, any Pareto-Optimal point, i.e. any point on the
northeast boundary, can be obtained by maximizing a linear function aU + bV, for any

a,b > 0, and at least one of them positive. Assume, that both agents have some bargaining
power, thus a,b > 0. Moreover, I approximate the CE of U and V with the MMR
approximation. Consequently, the maximization problem above is approximated by
maximizing aC F;,sured + bC Eipsurer- Assuming that the state space S is finite, the optimal
insurance schedule with bilateral risk and ambiguity aversion is the solution to:

maxa (EQ[WO —h+a(h)] -

O 2 i — i — Yo? (Elalh) —
max oBalh) i) - Jo2 (Ela(h) - i)

~ ; o ) (2.32)
+ (Ep[wl ~a(h)] ~ 5opla(h) - %ai(E[a(h)]))

where Q = {q1, G, .., @i, ooy @n }, 0, v and g, = {pl, 12, ..., pk, ... u} represent,
respectively, the compound probability distribution, risk attitudes, ambiguity attitudes and

second order beliefs of the insured. Similarly, for the insurer these variables are represented
by P = {p1,p2, s Pn}, 0, 7 and p, = {pl, 2, ..., pu*, ..., u}. Notice that this is a general
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model that allows for different beliefs (Q # P), risk and ambiguity attitudes (6 # 6 and
v # 7) and probability measures over sets A, = {Q1, Qs, ..., Qk, ..., @k } and

A, =A{Py, P, ..., Py, ... Pk} (pu, # p1y). Elements in Q and Py are denoted by qf and p;?,
respectively. Define the following:

Ep[Wo — h+a(h)] = Wy — 32, pja(hy),
EqWo — h+ a(h)] = Wo = X, gih; + 32 qse(hy),
ap(a(h)) = X palh;)® = (2, palhy))?,
og(alh) = h) =32, q;(alhy) = hy)* = (X, g5(a(hy) = hy))?,
o7 (Ela(h)]) = 3, i[>, pha(hy)? = [, 1 3, pha(hy)]?
op (Ela(h) = h]) = 32, w32 05 (a(hy) — hy)2 = [, b 2, i (alhy) = hy)]?

The first order condition with respect to a(h) is:

—p; — Op; {Oé(hi) - ija(hj)} -7 {Z Mﬁpf(zpfa(hj)) —Di ija(hj)}]
+a|—q — 0g {(a(hi) —h;) — Z g;(a(hy) — hj)}] (2.33)

+a |—y {Z MEQf(Z q; (a(hy) — hy) — g Z gi(a(h;) — hj)}] =0

Now differentiate the first order condition with respect to h;:

b

—b [épi(l —pi) + :YU;%U (Pz)} (djlgjl)) —a [9%(1 —qi) + ’YUZu(Qi)} <d(jl§jjl) - 1) =0

or equivalently

da(h;) _ a[6g:(1 — a) + 07, ()] (2.34)
dhi a[0g;(1 - q) + 702, ()] +b [épi(l —pi) +702, (pi)]
Notice that %}Zi) € (0,1), since @ > 0,0 >0,y > 0,7 >0, and p;, ¢; > 0. In other words,

the optimal contract is a coinsurance schedule.
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2.7 Appendix B. Baseline Model: Insurance Demand
under Risk

Consider a risk averse decision maker (DM) with a von Neumann-Morgenstern utility

function u(.), with «/(.) > 0 and «”(.) < 0, and initial wealth W}. She is exposed to a risky
loss h that has mean Ep[h] and variance o%(h) under probability distribution P. There is a
risk neutral insurer that is willing to offer the individual any desired amount « € (0, 1] of a
coinsurance contract.?? The insurer charges a premium 7 = (1 + m)Ep[h] per unit of

insurance, where m > 0 is the loading factor. The insurance contract pays zero if no loss is
realized and ah if it is realized. If the individual decides to purchase insurance, her random
final wealth is W = Wy — h — am + ah. Thus, the maximization problem of the individual is:

max Eplu(W)] = max Ep[u(Wy — h — a(l +m)Ep[h] + ah)] (2.35)

I simplify the problem by using the Arrow-Pratt approximation of the certainty equivalent
(CE) of the expected utility wealth.?! Therefore, the problem in equation (1) can be
approximated by:

max Ep[W] — gafg(W) (2.36)
subject to: W =Wy —h —ar + ah
where
Ep[W] = Ep[Wy — h —a(l +m)Ep[h] + ah] = Wy — (1 + am)Ep[h],
(W) = 03(Wy — h — a(l + m) Ep[h] + ah) = (1 — a)?03(h)

and 0 = _Z/’/((I/IW//S)) > 0 is the Arrow-Pratt degree of absolute risk aversion.

The first and second order condition with respect to « are:
0
[F.O.C]: —mEp|[h] — 5[2(1 —a)(=1)o%(h)] =0 (2.37)
[S.0.C] : —0o%(h) <0 (2.38)
Solving for «, we obtain the following optimal insurance demand :

Mlx _ q _ mEp|h]
risk HU%UL)

«

(2.39)

Four standard results in the literature of insurance demand follow immediately:

20T focus in this section only on coinsurance contracts and deal later with the optimality of this type of
contract.
21See Gollier (2001, p. 21-24) for details of the approximation.
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1. Full coverage is optimal (a}}* = 1), if coinsurance is available at a fair price

(m = 0). This is the “Mossin-Smith Theorem” developed in Mossin (1968) and
Smith (1968).

2. Given m > 0 such that 0 < a%, < 1, an increase in the degree of risk aversion will
lead to an increase in the optimal demand for insurance at all levels of wealth,
ceteris paribus. Schlesinger (2000, p. 138)Schlesinger [2000; p. 138] proves this
statement. In the present framework, this is easily seen from the following
derivative:

dalix  mEp[h]

risk

20 020%(h)

>0 (2.40)

This result is a direct consequence of a standard result independently derived by
Pratt (1964, p. 136) and Arrow (1971, p. 102). They showed that an increase in
absolute risk aversion decreases the demand for a risky asset. This would imply
that a risk averse agent will demand more insurance to cover the loss than another
individual that is less risk averse.??

A change in risk, o%(h), affects coinsurance demand in the same direction that risk

aversion does because: e Epli]
arisk* miup
= 2.41
Do)~ BB (241)

3. Recall that if the local measure of risk aversion, § = —%, is decreasing

(increasing) in Wy, individual’s preferences are said to exhibit DARA (IARA).
Moreover, if # is independent of W), preferences exhibit CARA.
Proposition B.1 (Schlesinger,2000, p.136):Assume that m > 0 but is not too

large such that 0 < a*X* < 1. Then, for an increase in the initial wealth Wy,

(i) aMl* will decrease under decreasing absolute risk aversion (DARA).

(ii) oM will be invariant under constant absolute risk aversion (CARA).
M1x

(ili) iy will be increasing under increasing absolute risk aversion (IARA).

Proof. Take the derivative of o™ }* with respect to Wy:

ool mEp[h] 00

risk

6WQ N 920']23(h) 8WO

(2.42)

The sign of this derivative depends on whether preferences exhibit IARA, CARA or
DARA.: )
e 00
ao[Mlk* > 0, if % >0 (IARA)
<0, if 22 <0 (DARA)
0

22Tn the context of insurance, the risky asset would be the retained loss. Thus, more insurance would
translate into a lower exposure to the risky asset.
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This proposition states that, if a subject exhibits DARA preferences, the optimal
coinsurance demand decreases when initial wealth increases because her risk
tolerance increases with it, that is to say, it becomes less risk averse. Similar
intuitive arguments can be made about CARA and TARA. However, Schlesinger
(2000, p. 136) warns that “each of these conditions [DARA, CARA and IARA] is
shown to be sufficient for the comparative-static effects in Proposition [1], though
not necessary.”

. Definition B.1: n = —Zl,l,/((;‘,?)) > ( is the index of absolute prudence. An individual
is locally prudent at Wy if u"'(Wy) > 0, which is equivalent to «’(W}) being locally
convex ( See Gollier, 2001, p. 237).

Prudent individuals will increase savings if uncertainty affecting future income is
introduced. In other words, the degree of prudence captures the sensitivity of
savings to changes in risk. This is referred to as the precautionary motive of saving.
The following proposition, derived by (Gollier, 2001, p. 238), links absolute risk
aversion to the concept of prudence.

Proposition B.2: Prudence is a necessary condition for preferences to exhibit

DARA.
Proof.
aa_v‘;o _ [U’”(Wo)U’[ %%@;]Q[u”(Woﬂz}
2.44
el ) e
Given 6 > 0, 7 > 0 is a necessary condition for 7%= < 0.
|

Corollary B.1: Strong enough prudence (i.e., n > ) is a sufficient condition for
8a]\/[1*

e < 0. Proof. See Proposition 1 and 2.
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2.8 Appendix C. Insurance Demand in the Presence
of a Non-traded Asset under Risk

Suppose that the DM faces the same situation as in the baseline model, except that the
individual now has a non-tradable and uninsurable asset (e.g., human capital) with risky
return H that might be correlated with a risky loss h. Thus the risky end-of-period wealth
is W=Wy+ H—h— ar + ah. Assume the DM maximizes expected utility defined by
utility function u(.) and Q, the joint distribution of H and h. Therefore the maximization
problem is:

6
max EgW] — 50%(1/1/) (2.45)
where

EgW] = EgWo+ H —h —a(l4+m)E[h] + ah) = Wy + Eg[H] — (1 + am)Eg[h)
05(W) =03(H) + (1 —a)*c5(h) — 2(1 — a)covg(H, h)

Q Q Q
The first order condition of the maximization problem is:
4 2
o] : =mEqlh] - 5 {2(1 —a)(=1)a}(h) — 2(~1)covg(H, h)} =0 (2.46)

The optimal demand for insurance is:?3

My _ mEgs|[h] B covg(H, h)

risk B0 (h) g (h)

(2.47)

(07

The Mossin-Smith theorem only holds if covg(H, h) < 0. Doherty (1984, p. 209) derived a
related result, and Mayers and Smith (1983) were the first to emphasize the
interdependency between insurance demand and traded and non-traded assets.
Following the terminology in Mayers and Smith (1983, p. 308), covg(H, h) represents the
individual’s incentive to “self-insure.” The sign of this covariance makes the insurance
demand lower, equal or higher than in the absence of the non-traded asset (i.e.,
a3 § aM1¥). However, I prefer to use the term “self-hedging” to avoid confusion with the
usage of “self-insurance” in the literature. The intuition is that even if the insurance
premium is fair (i.e., m = 0), the DM might still not be willing to fully insure if she can
compensate high losses with high realizations of her human capital. However, if
covg(H, h) < 0, the individual might want to fully insure if a health shock (h) affects
negatively her productivity, which would undermine her human capital.
Moreover, the introduction of a risky non-traded asset does not affect the Arrow-Pratt
result. As a result, higher risk aversion increases the demand for insurance:

daM3x mEg[h]

risk

0 920%(h> >0 (2.48)

23The second order condition is satisfied.
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Finally, Proposition B.1 ( the sufficiency of CARA, DARA or IARA for the insurance
demand to be independent of, decreasing or increasing in Wy) and Proposition B.2 (the
necessity of prudence to exhibit DARA) are robust to the presence of a non-traded asset.

The optimal demands o} and o237, differ only in the term that depends on COZ‘“E_((ZI)’M,
Q

risk
which is not affected by initial wealth. Thus, the proofs of these two propositions remain
basically unchanged.
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Chapter 3

Reduction of Compound Lotteries
with Objective Probabilities: Theory

and Evidence

by Glenn W. Harrison, Jimmy Martinez-Correa and Todd J. Swarthout

Abstract

The reduction of compound lotteries (ROCL) has assumed a central role in the
evaluation of behavior towards risk and uncertainty. We present experimental
evidence on its validity in the domain of objective probabilities. Our experiment
explicitly recognizes the impact that the random lottery incentive mechanism
payment procedure may have on preferences, and so we collect data using both
“1-in-1” and “1-in-K” payment procedures, where K>1. We do not find violations of
ROCL when subjects are presented with only one choice that is played for money.
However, when individuals are presented with many choices and random lottery
incentive mechanism is used to select one choice for payoff, we do find violations of
ROCL. These results are supported by both non-parametric analysis of choice
patterns, as well as structural estimation of latent preferences. We find evidence that
the model that best describes behavior when subjects make only one choice is the
Rank-Dependent Utility model. When subjects face many choices, their behavior is
better characterized by our sourcedependent version of the Rank-Dependent Utility
model which can account for violations of ROCL. We conclude that payment
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protocols can create distortions in experimental tests of basic axioms of decision
theory.

3.1 Introduction

The reduction of compound lotteries has assumed a central role in the evaluation of
behavior towards risk, uncertainty and ambiguity. We present experimental evidence on its
validity in domains defined over objective probabilities, as a prelude to evaluating it over
subjective probabilities

Because of the attention paid to violations of the Independence Axiom, it is noteworthy
that early formal concerns with the possibility of a “utility or disutility for gambling”
centered around the Reduction of Compound Lotteries (ROCL) axiom.? von Neumann and
Morgenstern (1953, p. 28) commented on the possibility of allowing for a (dis)utility of

gambling component in their preference representation:

Do not our postulates introduce, in some oblique way, the hypotheses which
bring in the mathematical expectation [of utility]? More specifically: May there
not exist in an individual a (positive or negative) utility of the mere act of
‘taking a chance,” of gambling, which the use of the mathematical expectation
obliterates? How did our axioms (3:A)- (3:C) get around this possibility? As
far as we can see, our postulates (3:A)-(3:C) do not attempt to avoid it. Even
the one that gets closest to excluding the ‘utility of gambling’ - (3:C:b)- seems
to be plausible and legitimate - unless a much more refined system of

'We explain in Appendix A of this chapter the theoretical, methodological and experimental issues of
testing ROCL under subjective probabilities.

2The issue of the (dis)utility of gambling goes back at least as far as Pascal, who argued in his Pensées
that “people distinguish between the pleasure or displeasure of chance (uncertainty) and the objective eval-
uation of the worth of the gamble from the perspective of its consequences” (see Luce and Marley (2000,
p. 102). Referring to the ability of bets to elicit beliefs, Ramsey (1926) claims that [t]his method I regard
as fundamentally sound; but it suffers from being insufficiently general, and from being necessarily inexact.
It is inexact partly [...] because the person may have a special eagerness or reluctance to bet, because he
either enjoys or dislikes excitement or for any other reason, e.g. to make a book. The difficulty is like that
of separating two different cooperating forces” (from the reprint in Kyburg and Smokler (1964, p. 73)).
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psychology is used than the one now available for the purposes of economics |...]
Since (3:A)-(3:C) secure that the necessary construction [of utility] can be
carried out, concepts like a specific utility of gambling cannot be formulated
free of contradiction on this level.

On the very last page of their magnus opus, von Neumann and Morgenstern (1953, p. 632)
propose that if their postulate (3:C:b), which is the ROCL, is relaxed, one could indeed

allow for a specific utility for the act of gambling:

It seems probable, that the really critical group of axioms is (3:C) - or, more
specifically, the axiom (3:C:b). This axiom expresses the combination rule for
multiple chance alternatives, and it is plausible, that a specific utility or
disutility of gambling can only exist if this simple combination rule is
abandoned. Some change of the system [of axioms| (3:A)-(3:B), at any rate
involving the abandonment or at least a radical modification of (3:C:b), may
perhaps lead to a mathematically complete and satisfactory calculus of utilities
which allows for the possibility of a specific utility or disutility of gambling. It
is hoped that a way will be found to achieve this, but the mathematical
difficulties seem to be considerable.

Thus, the relaxation of the ROCL axiom opens the door to the possibility of having a
distinct (dis)utility for the act of gambling with objective probabilities.® Fellner (1961,
1963) and Smith (1969) used similar reasoning to offer an explanation for several of the
Ellsberg (1961) paradoxes.

This argument rests on the hypothesis that subjects potentially view simple and compound
random processes differently. If this hypothesis is true, it could explain why people prefer
risky over ambiguous gambles in the thought experiments of Ellsberg (1961). Fellner (1961,
1963) and Smith (1969) believed that if a subject could exhibit utility or disutility of

gambling she may also use different utility functions to make decisions under different

30f course, it is of some comfort to the egos of modern theorists that no less than von Neumann and
Morganstern at least viewed it as a serious mathematical challenge.
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processes. Smith (1969) went further and explicitly conjectured that a compound lottery
defined over objective probabilities, and its actuarially-equivalent lottery over objective
probabilities, might be viewed by decision makers as two different random processes. In
fact, he proposed a preference representation that allowed people to have different utility
functions for different random processes. We use this conjectured preference representation
to test for violations of ROCL.

One fundamental methodological problem with tests of the ROCL assumption, whether or
not the context is objective or subjective probabilities, is that one cannot use incentives for
decision makers that rely on the validity of ROCL. This means, in effect, that experiments
must be conducted in which a subject has one, and only one, choice.* Apart from the
expense and time of collecting data at such a pace, this also means that all evaluations
have to be on a between-subjects basis, implying the necessity of modeling assumptions
about heterogeneity in behavior.

In sections 3.2 and 2 we define the theory and experimental tasks used to examine ROCL
in the context of objective probabilities. In section 3 and 4 we present evidence from our
experiment. We find no violations of ROCL when subjects are presented with one and only
one choice, and that their behavior is better characterized by the Rank-Dependent Utility
model (RDU) rather than Expected Utility Theory (EUT). However, we do find violations
of ROCL when many choices are given to each subject and the random lottery incentive

mechanism (RLIM) is used as the payment protocol. Under RLIM, behavior is better

4One alternative is to present the decision maker with several tasks at once and evaluate the portfolio
chosen, or to present the decision maker with several tasks in sequence and account for wealth effects. Neither
is attractive, since they each raise a number of (fascinating) theoretical confounds to the interpretation of
observed behavior. One uninteresting alternative is not to pay the decision maker for the outcomes of the
task
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characterized by our source-dependent version of RDU that can account for violations of
ROCL. Section 5 draws conclusions for modeling, experimental design, and inference about

decision making.

3.2 Theory

Following Segal (1988a, 1990, 1992), we distinguish between three axioms. In words, the
Reduction of Compound Lotteries axiom states that a decision-maker is indifferent
between a compound lottery and the actuarially-equivalent simple lottery in which the
probabilities of the two stages of the compound lottery have been multiplied out. To use
the language of Samuelson (1952, p. 671), the former generates a compound
income-probability-situation, and the latter defines an associated
income-probability-situation, and that “...only algebra, not human behavior, is involved in
this definition.”

To state this more explicitly, with notation to be used to state all axioms, let X, Y and Z
denote simple lotteries, A and B denote compound lotteries, = express strict preference,
and ~ express indifference. Then the ROCL axiom says that A ~ X if the probabilities and
prizes in X are the actuarially-equivalent probabilities and prizes from A. Thus if A is the
compound lottery that pays “double or nothing” from the outcome of the lottery that pays
$10 if a coin flip is a head and $2 if the coin flip is a tail, then X would be the lottery that
pays $20 with probability 0.5 x 0.5 = 0.25, $4 with probability 0.5 x 0.5 = 0.25, and nothing

with probability 0.5. From an observational perspective, one would have to see choices
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between compound lotteries and the actuarially-equivalent simple lottery to test ROCL.
The Compound Independence Axiom (CIA) states that a compound lottery formed
from two simple lotteries by adding a positive common lottery with the same probability to
each of the simple lotteries will exhibit the same preference ordering as the simple lotteries.
So this is a statement that the ordering of the two constructed compound lotteries will be
the same as the ordering of the different simple lotteries that distinguish the compound
lotteries, provided that the common prize in the compound lotteries is the same and has
the same (compound lottery) probability. It says nothing about how the compound
lotteries are to be evaluated, and in particular it does not assume ROCL. It only restricts
the preference ordering of the two constructed compound lotteries to match the preference
ordering of the original simple lotteries.

The CIA says that if A is the compound lottery giving the simple lottery X with
probability « and the simple lottery Z with probability (1 — «), and B is the compound
lottery giving the simple lottery Y with probability o and the simple lottery Z with
probability (1 — ), then A = B iff X > Y Va € (0,1). So the construction of the two
compound lotteries A and B has the “independence axiom” cadence of the common prize Z
with a common probability (1 — «), but the implication is only that the ordering of the

5

compound and constituent simple lotteries are the same.

Finally, the Mixture Independence Axiom (MIA) says that the preference ordering of

SFor example, Segal (1992, p. 170) defines the CIA by assuming that the second-stage lotteries are replaced
by their certainty-equivalent, throwing away information about the second-stage probabilities before one
examines the first-stage probabilities at all. Hence one cannot then define the actuarially-equivalent simple
lottery, by construction, since the informational bridge to that calculation has been burnt. The certainty-
equivalent could have been generated by any model of decision making under risk, such as RDU or Prospect
Theory.
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two simple lotteries must be the same as the actuarially-equivalent simple lottery formed
by adding a common outcome in a compound lottery of each of the simple lotteries, where
the common outcome has the same value and the same (compound lottery) probability. So
stated, it is clear that the MIA strengthens the CIA by making a definite statement that
the constructed compound lotteries are to be evaluated in a way that is ROCL-consistent.
Construction of the compound lottery in the MIA is actually implicit: the axiom only
makes observable statements about two pairs of simple lotteries. To restate Samuelsons
point about the definition of ROCL, the experimenter testing the MIA could have
constructed the associated income-probability-situation without knowing the risk
preferences of the individual (although the experimenter would need to know how to
multiply).

The MIA says that X > Y iff the actuarially-equivalent simple lottery of aX + (1 — «)Z is
strictly preferred to the actuarially-equivalent simple lottery of aY + (1 — «)Z, Va € (0, 1).
The verbose language used to state the axiom makes it clear that MIA embeds ROCL into
the usual independence axiom construction with a common prize Z and a common
probability (1 — «) for that prize.

The reason these three axioms are important is that the failure of MIA does not imply the
failure of CIA and ROCL. It does imply the failure of one or the other, but it is far from
obvious which one. Indeed, one could imagine some individuals or task domains where only
CTA might fail, only ROCL might fail, or both might fail. Because specific types of failures
of ROCL lie at the heart of many important models of decision-making under uncertainty

and ambiguity, it is critical to keep the axioms distinct as a theoretical and experimental
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martter.

3.2.1 Experimental Payment Protocols

Turning now to experimental procedures, as a matter of theory the most popular payment
protocol assumes the validity of MIA. This payment protocol is called the Random Lottery
Incentive Mechanism (RLIM). It entails the subject undertaking K>1 tasks and then one
of the K choices being selected at random to be played out. Typically, and without loss of
generality, assume that the selection of the k-th task to be played out uses a uniform
distribution over the K tasks. Since the other K-1 tasks will generate a payoff of zero, the
payment protocol can be seen as a compound lottery that assigns probability a = 1/K to
the selected task and (1-a) = (1-(1/K)) to the other K-1 tasks as a whole. If the task
consists of binary choices between simple lotteries X and Y, then the RLIM can be
immediately seen to entail an application of MIA, where Z = U($0) and (1-«) = (1-(1/K)),
for the utility function U(.). Hence, under MIA, the preference ordering of X and Y is
independent of all of the choices in the other tasks (Holt, 1986).

The need to assume the MIA can be avoided by setting K=1, and asking each subject to
answer one binary choice task for payment. Unfortunately, this comes at the cost of
another assumption if one wants to compare choice patterns over two simple lottery pairs,
as in most of the popular tests of EUT such as the Allais Paradox and Common Ratio test:
the assumption that risk preferences across subjects are the same. This is a strong
assumption, obviously, and one that leads to inferential tradeoffs in terms of the “power” of

tests of EUT relying on randomization that will vary with sample size. Sadly, plausible
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estimates of the degree of heterogeneity in the typical population imply massive sample
sizes for reasonable power, well beyond those of most experiments.

The assumption of homogeneous preferences can be diluted, however, by changing it to a
conditional form: that risk preferences are homogeneous conditional on a finite set of
observable characteristics.® Although this sounds like an econometric assumption, and it
certainly has statistical implications, it is as much a matter of (operationally meaningful)

theory as formal statements of the CIA, ROCL and MIA.

3.3 Experiment

3.3.1 Lottery Parameters

We designed our battery of lotteries to allow for specific types of comparisons needed for
testing ROCL. Beginning with a given simple (S) lottery and compound (C) lottery, we
next create an actuarially-equivalent (AE) lottery from the C lottery, and then we
construct three pairs of lotteries: a S-C pair, a S-AE pair, and an AE-C pair. By repeating
this process 15 times, we create a battery of lotteries consisting of 15 S-C pairs shown in
Table 3.11, 15 S-AE pairs shown in Table 3.13, and 10 AE-C pairs’ shown in Table 3.11.
See section 3.10 for additional information regarding the creation of these lotteries.

Figure 3.1 displays the coverage of lotteries in the Marschak-Machina triangle, covering all

6 Another way of diluting the assumption is to posit some (flexible) parametric form for the distribution of
risk attitudes in the population, and use econometric methods that allow one to estimate the extent of that
unobserved heterogeneity across individuals. Tools for this “random coefficients” approach to estimating
non-linear preference functionals are developed in Andersen et al. (2012).

"The lottery battery contains only 10 AE-C lottery pairs because some of the 15 S-C lottery pairs shared
the same compound lottery.
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of the contexts used.® Probabilities were drawn from 0, 0.25, 0.50, 0.75 and 1, and the final
prizes from $0, $10, $20, $35 and $70. We use the familiar “Double or Nothing” (DON)
procedure for creating compound lotteries. So, the first-stage prizes displayed in a
compound lottery were drawn from $5, $10, $17.50 and $35, and then the second-stage

DON procedure yields the set of final prizes given above.

Figure 3.1: Battery of 40 Lotteries Pairs Probability Coverage
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The majority of our compound lotteries use a conditional version of DON in the sense that
the initial lottery will trigger the double or nothing option that the subject will face only if
a particular outcome is realized in the initial lottery. For example, consider the compound

lottery formed by an initial lottery that pays $10 and $20 with equal probability and the

8Decision screens were presented to subjects in color. Black borders were added to each pie slice in
Figures 3.3, 3.4 and 3.5 to facilitate black-and-white viewing.
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option of playing DON if the outcome of the initial lottery is $10, implying a payoff of $20
or $0 with equal chance if the DON stage is reached. If the initial outcome is $20, there is
no DON option beyond that. The right panel of Figure 3.2 shows a tree representation of
the latter compound lottery where the initial lottery is depicted in the first stage and the
DON lottery is depicted in the second stage of the compound lottery if reached. The left
panel of Figure 3.2 shows the corresponding actuarially-equivalent simple lottery which

offers $20 with probability 0.75 and $0 with probability 0.25.

Figure 3.2: Tree Representation of a Compound Lottery and its Corresponding Actuarially-
Equivalent Simple Lottery

Actuarially-Equivalent Lottery Compound Lottery

First stage

The first and 1p="% £10 320
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220 Second stage:
“Double ar Nothing”

$0 $20

The conditional DON lottery allows us to obtain good coverage in terms of prizes and
probabilities and to maintain a simple random processes for the initial lottery and the DON
option. One can construct a myriad of compound lotteries with only two components: (1)
initial lotteries that pay two outcomes with 50:50 odds or pay a given stake with certainty;
and (2) a conditional DON which pays double a predetermined amount with 50%
probability or nothing with equal chance. Using only the unconditional DON option would

impose an a priori restriction on the coverage within the Marschak-Machina triangle.
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3.3.2 Experimental Procedures

We implement two between-subjects treatments. We call one treatment “Pay 1-in-1”
(1-in-1) and the other “Pay 1-in-40” (1-in-40). Table 3.1 summarizes our experimental

design and the sample size of subjects and choices in each treatment.

Table 3.1: Default Simple Lotteries

Treatment Subjects Choices
1. Pay-1-mn-1 133 133
2. Pay-1-n-40 62 2480

In the 1-in-1 treatment, each subject faces a single choice over two lotteries. The lottery
pair presented to each subject is randomly selected from the battery of 40 lottery pairs.
The lottery chosen by the subject is then played out and the subject receives the realized
monetary outcome. There are no other salient tasks, before or after a subject’s binary
choice, that affect the outcome. Further, there is no other activity that may contribute to
learning about decision making in this context.

In the 1-in-40 treatment, each subject faces choices over all 40 lottery pairs, with the order
of the pairs randomly shuffled for each subject. After all choices have been made, one
choice is randomly selected for payment using the RLIM, with each choice having a 1-in-40
chance of being selected. The selected choice is then played out and the subject receives
the realized monetary outcome, again with no other salient tasks. This treatment is
potentially different from the 1-in-1 treatment in the absence of ROCL, since the RLIM
induces a compound lottery consisting of a 1-in-40 chance for each of the 40 chosen

lotteries to be selected for payment.
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The general procedures during an experiment session were as follows. Upon arrival at the
laboratory, each subject drew a number from a box which determined random seating
position within the laboratory. After being seated and signing the informed consent
document, subjects were given printed instructions and allowed sufficient time to read
these instructions.” Once subjects had finished reading the instructions, an experimenter at
the front of the room read aloud the instructions, word for word. Then the randomizing

0 were explained and projected onto the front screen and three large flatscreen

devices!
monitors spread throughout the laboratory. The subjects were then presented with lottery
choices, followed by a non-salient demographic questionnaire that did not affect final
payoffs. Next, each subject was approached by an experimenter who would provide dice so
for the subject to roll and determine her own payoff. If a DON stage was reached, a
subject would flip a U.S. quarter dollar coin to determine the final outcome of the lottery.
Finally, subjects then left the laboratory and were privately paid their earnings: a $7.50
participation payment in addition to the monetary outcome of the realized lottery.

We used software created in Visual Basic .NET to present lotteries to subjects and record
their choices. Figure 3.3 shows an example of the subject display of an AE-C lottery pair.
The first and second stages of the compound lottery, like the one depicted in Figure 3.2,
are presented as an initial lottery, represented by the pie on the right of Figure 3.3 that has

a DON option identified by text. The pie chart on the left of Figure 3.3 shows the AE

lottery of the paired C lottery on the right. Figure 3.4 shows an example of the subject

9Section 3.8 provides complete subject instructions.

100nly physical randomizing devices were used, and these devices were demonstrated prior to any decisions.
In the 1-in-40 treatment, two 10-sided dice were rolled by each subject until a number between 1 and 40
came up to select the relevant choice for payment. Subjects in both treatments would roll the two 10- sided
dice (a second roll in the case of the 1-in-40 treatment) to determine the outcome of the chosen lottery.
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display of a S-C lottery pair, and Figure 3.5 shows an example of the subject display of a

S-AE lottery pair.

Figure 3.3: Choices Over Compound and Actuarially-Equivalent Lotteries
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Figure 3.4: Choices Over Simple and Compound Lotteries
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Figure 3.5: Choices Over Simple and Actuarially-Equivalent Lotteries

$0 $0
Chance of winning $0 is 50% Chonce of winning $0 is 50%
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3.3.3 Evaluation of Hypotheses

If the subjects in both treatments have the same risk preferences and behavior is consistent
with ROCL, we should see the same pattern of decisions for comparable lottery pairs
across the two treatments. The same pattern should also be observed as one characterizes
heterogeneity of individual preferences towards risk, although these inferences depend on
the validity of the manner in which heterogeneity is modeled.

Nothing here assumes that behavior is characterized by EUT. The validity of EUT requires
both ROCL and CIA, and the validity of ROCL does not imply the validity of CIA. So
when we say that risk preferences should be the same in the two treatments under ROCL,
these are simply statements about the Arrow-Pratt risk premium, and not about how that
is decomposed into explanations that rely on diminishing marginal utility or probability
weighting. We later analyze the decomposition of the risk premium as well as the nature of

any violation of ROCL.
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Our method of evaluation is twofold. First, we use non-parametric tests to evaluate the
choice patterns of subjects. Our experimental design allows us to evaluate ROCL using
choice patterns in two ways: (1) directly examine choice patterns in AE-C lottery pairs
where ROCL predicts indifference; and (2) examine the choice patterns across the linked
S-C and S-AE lottery pairs. We have 15 tests, one for each linked pair of lottery pairs, as
well as a pooled test over all 15 pairs of pairs. We are agnostic as to the choice pattern
itself: if subjects have a clear preference for S over C in a given lottery pair, then under
ROCL we should see the same preference for the identical S over the AE in the linked
lottery pair.

For our second method of evaluation of ROCL, we estimate structural models of risk
preferences and test if the risk preference parameters depend on whether a C or an AE
lottery is being evaluated. This method does not assume EUT, and indeed we allow
non-EUT specifications. We specify a source dependent form of utility and probability
weighting function and test for violations of ROCL by determining if the subjects evaluate
simple and compound lotteries differently.

In both of our methods of evaluation of ROCL, we use data from the 1-in-1 treatment and
the 1- in-40 treatment which uses RLIM as the payment protocol. Of course, analysis of
the data from the 1-in- 40 treatment requires us to assume incentive compatibility with
respect to the experiment payment protocol. However, by also analyzing choices from the
1-in-1 treatment we can test if the RLIM itself creates distortions that could be confounded
with violations of ROCL. We conclude with discussion of the relative advantages and

disadvantages of the econometric tests and the choice pattern tests.
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3.4 Non-Parametric Analysis of Choice Patterns

3.4.1 Choice Patterns Where ROCL Predicts Indifference

The basic prediction of ROCL is that subjects who satisfy the axiom are indifferent
between a compound lottery and its actuarially-equivalent lottery. We analyze the
observed responses from subjects who were presented with any of the 10 pairs that
contained both a C lottery and its AE lottery. ' First, we study the responses from the 32
subjects who were presented with an AE-C pair in 1-in-1 treatment. Then, we study the
620 responses from the 62 subjects who each were presented with all of the 10 AE-C pairs
in the 1-in-40 treatment.

We analyze the data separately because, in contrast to the 1-in-40 treatment, any
conclusion drawn from the 1-in-1 treatment do not depend on the incentive compatibility
of the RLIM. We want to control for the possibility that the observed choice patterns in
the 1-in-40 treatment are affected by this payment protocol.'? By analyzing data from the
1-in-1 treatment only, we avoid any possible confounds created by the RLIM.

Our null hypothesis is that subjects behave according to ROCL. ROCL predicts that a
subject is indifferent between a C lottery and its paired AE lottery, and therefore we should
observe equiprobable response proportions between C and AE lotteries in our 10 AE-C
pairs. ROCL is violated if, for a given AE-C lottery pair, we observe that the proportion C

lottery choices is significantly different from the proportion of AE lottery choices.

"UThese are pairs 31 through 40 of Table 3.13.

12 An additional consideration is that our interface did not allow expression of indifference, so we test for
equal proportions of expressions of strict preference. Even if we had allowed direct expression of indifference,
we have no way of knowing if subjects were in fact indifferent but preferred to use their own randomizing
device (in their heads). The same issue confronts tests of mixed strategies in strategic games.
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We do not find statistical evidence to reject the basic ROCL prediction of indifference in
the 1- in-1 treatment, although we do find statistical evidence to support violations of
ROCL in the 1-in-40 treatment. Thus, giving many lottery pairs to individuals and using
the RLIM to select one choice at random for payoff create distortions in the individual

decision-making process that can be confounded with violations of ROCL.

Analysis of Data from the 1-in-1 Treatment

We use a generalized version of the Fisher Exact test to jointly test the null hypothesis
that the proportion of subjects who chose the C lottery over the AE lottery in each of the
AE-C lottery pairs are the same, as well as the Binomial Probability test to evaluate our
null hypothesis of equiprobable choice in each of the AE-C lottery pairs.

We do not observe statistically significant violations of the ROCL indifference prediction in
the 1-in-1 treatment. Table 3.2 presents the generalized Fisher Exact test for all AE-C
lottery pair choices, and the test’s p-value of 0.342 provides support for the null hypothesis.
We see from this test that the proportions are the same across pairs. We now use a series
of Binomial Probability tests to see if the proportions are different from 50%. Table 3.3
shows the Binomial Probability test applied individually to each of the AE-C lottery pairs
for which we have observations. We see no evidence to reject the null hypothesis that
subjects chose the C and the AE lotteries in equal proportions, as all p-values are
insignificant at any reasonable level of confidence. The results of both of these tests suggest

that ROCL is satisfied in the 1-in-1 treatment.
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Table 3.2: Generalized Fisher Exact Test on the Actuarially-Equivalent Lottery vs. Com-
pound Lottery Pairs

Treatment: 1-in-1

Fisher Exact p-value = 0.342

AE-C Observed # of Observed # of
Lottery Paix choices of AE choices of C Total
lotteries lotteries

31 0 1 |
32 0 3 3
33 2 5 7
36 4 1 5
37 1 1 2
38 2 1 3
39 1 4 5
40 3 3 6

Total 13 19 32

Note: due to the randomization assignment of lottery pairs to subjects, there were no ob-
servations for pairs 34 and 35.

Analysis of Data from the 1-in-40 Treatment

The strategy to test the ROCL prediction of indifference in this treatment is different from
the one used in the 1-in-1 treatment, given the repeated measures we have for each subject
in the 1-in-40 treatment. We now use the Cochran Q test to evaluate whether the
proportion of subjects who choose the C lottery is the same in each of the 10 AE-C lottery
pairs.!® A significant difference of proportions identified by this test is sufficient to reject

the null prediction of indifference.'* Of course, an insignificant difference of proportions

13The Binomial Probability test is inappropriate in this setting, as it assumes independent observations.
Obviously, observations are not independent when each subject makes 40 choices in this treatment.

1For example, suppose there were only 2 AE-C lottery pairs. If the Cochran Q test finds a significant
difference, we conclude that the proportion of subjects choosing the C lottery is not the same in the two
lottery pairs. Therefore, even if the proportion for one of the pairs was truly equal to 50%, the test result
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Table 3.3: Binomial Probability Tests on Actuarially-Equivalent Lottery vs. Compound
Lottery Pairs

Treatment: 1-in-1

N Ol red
Observed # of JserTee

AE-C Total # of choices of C PliOp.C-)J.TIOl;: ?t 7 ;‘al-ue
Lottery Pair observations lotteries choices o & o
’ lotteries (p) Hyp=05
32 3 3 1 0.25
33 7 5 0.714 0.453
36 5 1 0.2 0.375
37 2 1 0.5 1
38 3 1 0.333 1
39 5 4 0.8 0.375
40 [ 3 0.5 1

Note: due to the randomization assignment of lottery pairs to subjects there were no obser-
vations for pairs 34 and 35 and only 1 observation for pair 31.

would require us to additionally verify that the common proportion across pairs the pairs is
indeed 50% before we fail to reject the null hypothesis of indifference.

We observe an overall violation of the ROCL indifference prediction in the 1-in-40
treatment. Table 3.4 reports the results of the Cochran Q test, as well as summary
statistics of the information used to conduct the test. The Cochran Q test yields a p-value
of less than 0.0001, which strongly suggests rejection of the null hypothesis of equiprobable
proportions. We conclude, for at least for one of the AEC lottery pairs, that the proportion
of subjects who chose the C lottery is not equal to 50%. This result is a violation of ROCL
and we cannot claim that subjects satisfy ROCL and choose at random in all of the 10

AE-C lottery pairs in the 1-in-40 treatment.

would imply that the other proportion is not statistically equal to 50%, and thus indifference fails.
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Table 3.4: Cochran Q Test on the Actuarially-Equivalent Lottery vs. Compound Lottery
Pairs

Treatment 1-in-40

Cochran’s y* smtistic (9 d.f) = 86.090

pvaine < 00001
Data
Ohserred =
of chaices of C
AE-C lomeres
Lottery Far jout of 62
observations)
3 43
32 45
33 M
3 25
33 4
36 18
37 M
38 35
39 44
40 8

3.4.2 Choice Patterns Where ROCL Predicts Consistent Choices

Suppose a subject is presented with a given S-C lottery pair, and further assume that she
prefers the C lottery over the S lottery. If the subject satisfies ROCL and is separately
presented with a second pair of lotteries consisting of the same S lottery and the AE
lottery of the previously-presented C lottery, then she would prefer and should choose the
AE lottery. Similarly, of course, if she instead prefers the S lottery when presented
separately with a given S-C lottery pair, then she should choose the S lottery when
presented with the corresponding S-AE lottery pair.

Recall that each of the 15 S-C lottery pairs in Table 3.11 has a corresponding S-AE pair in



148

Table 3.12. Therefore, we can construct 15 comparisons of lottery pairs that constitute 15
consistency tests of ROCL. In the 1-in-40 treatment we again must assume that the RLIM
is incentive compatible, and we again use data from the 1-in-1 treatment to control for
possible confounds created by the RLIM. We must now assume homogeneity in risk
preferences for the analysis of behavior in the 1-in-1 treatment, since we are making
across-subject comparisons. However, in the next section we will present econometric
analysis which allows for heterogeneity in risk preferences and test if a violation of the
homogeneity assumption is confounded with a violation of ROCL.

Our hypothesis is that a given subject chooses the S lottery when presented with the S-C
lottery pair if and only if the same subject also chooses the S lottery when presented with
the corresponding SAE lottery pair.'® Therefore, ROCL is satisfied if we observe that the
proportion of subjects who choose the S lottery when presented with a S-C pair is equal to
the proportion of subjects who choose the S lottery when presented with the corresponding
S-AE pair. Conversely, ROCL is violated if we observe unequal proportions of choosing the
S lottery across a S-C pair and linked S-AE pair.

We do not find evidence to reject the consistency in patterns implied by ROCL in the 1-in-1
treatment, while we do find evidence of violations of ROCL in the 1-in-40 treatment. As in
the case of the ROCL indifference prediction, we conclude that giving many lottery pairs to
individuals and using the RLIM to select one choice at random for payoff create distortions

in the individual choice making process that can be confounded with violations of ROCL.

5Notice that this is equivalent to stating the null hypothesis using the C and AE lotteries. We chose to
work with the S lottery for simplicity.
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Analysis of Data from the 1-in-1 Treatment

We use the Cochran-Mantel-Haenszel (CMH) test to test the joint hypothesis that in all of
the 15 paired comparisons, subjects choose in the same proportion the S lottery when
presented with the S-C lottery pair and its linked S-AE lottery pair.!6 If the CMH test
rejects the null hypothesis, then we interpret this as evidence of overall ROCL-inconsistent
observed behavior. We also use the Fisher Exact test to evaluate individually the
consistency predicted by ROCL in each of the 15 linked comparisons of S-C pairs and S-AE
pairs for which we have enough data to conduct the test.

We do not reject the ROCL consistency prediction. The CMH test does not reject the joint
null hypothesis that the proportion of subjects chose the S lottery when they were
presented with any given SC pair is equal to the proportion of subjects that chose the S
lottery when they were presented with the corresponding S-AE pair. The y2-statistic for
the CMH test with the continuity correction 7 is equal to 2.393 with a corresponding
p-value of 0.122. Similarly, the Fisher Exact tests presented in Table 5 show only in one
comparison the p-value is less than 0.05. These results suggest that the ROCL consistency
prediction holds in the 1-in-1 treatment. However, as we mentioned previously, this

conclusion relies on the assumption of homogeneity in preferences.

16The proportion of subjects who choose the S lottery when presented with a S-C pair, or its paired
S-AE lottery pair, has to be equal within each paired comparison, but can differ across comparisons. More
formally, the CMH test evaluates the null hypothesis that the odds ratio of each of the 15 contingency tables
constructed from the 15 paired comparisons are jointly equal to 1.

1"We follow Li et al. (1979) and use the continuity correction to avoid possible misleading conclusions from
the test in small samples.
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Table 3.5: Fisher Exact Test on Matched Simple-Compound and Simple-Actuarially-
Equivalent Pairs

Treatment 1-in-1

Toml #of Proportion of Propaortion of
subjects in subjects that suhjects that
chose the chose the
) ~ S lottery n 35 lotiery in e
SAE EC the 5-AE pair the 3-C pair fox
Comparizon Pair  Pair () (=) H;=z=nx,
Pair 1 vs. Pair 16 3 2 1 0.3 04
Pair 3 vs. Pair 18 [ 2 0.3 1] 0454
Pair 5 vs. Pair 20 1 2 1] 1 0233
Pair & vs. Pair 21 3 4 0.67 0.5
Pair 7 vs. Fair 22 4 @ 1 056 0228
Fair & vs. Pair 23 3 4 0.33 0.5
Pair @ vs. Pair 24 3 & 0 083 0048
Pair 11 vs. Pair 245 5 9 0.5 056
Pair 12 vs. Pair 27 5 2 0.3 1
Pair 13 vs. Pair 28 4 1 0.3 1
Pair 15 vz Pair 30 3 1 1 1] 0250

Note: due to the randomization assignment of lottery pairs to subjects, the table only shows
the Fisher Exact test for 11 S-AE/S-C comparisons for which there are sufficient data to
conduct the test.

Analysis of Data from the 1-in-40 Treatment

We use the Cochran Q test coupled with the Bonferroni-Dunn (B-D) correction

procedure!® to test the hypothesis that subjects choose the S lottery in the same

18The B-D method is a post-hoc procedure that is conducted after calculating the Cochran Q test. The
first step is to conduct the Cochran Q test to evaluate the null hypothesis that the proportions of individuals
who choose the S lottery is the same in all 15 S-C and 15 S-AE linked lottery pairs. If this null is rejected
the B-D method involves calculating a critical value d that takes into account all the information of the 30
lottery pairs. The B-D method allows us to test the statistical significance of the observed difference between
proportions of subjects who choose the S lottery in any given paired comparison. Define p; as the proportion
of subjects who choose the S lottery when presented with a given S-AE lottery pair. Similarly, define py
as the proportion of subjects who chose the S lottery in the paired S-C lottery pair. The B-D method
rejects the null hypothesis that p; = ps if |p1 — p2| > d. In this case we would conclude that the observed
difference is statistically significant. This is a more powerful test than conducting individual tests for each
paired comparison because the critical value d takes into account the information of all 15 comparisons. See
Sheskin (2004, p. 871) for further details of the B-D method.
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proportion when presented with linked S-C and S-AE lottery pairs. The B-D procedure
takes into account repeated comparisons and allows us to maintain a familywise error rate
across the 15 paired comparisons of S-C and S-AE lottery pairs.

We find evidence to reject the ROCL consistency prediction. Table 3.6 shows the results of
the BD method!® for each of the 15 paired comparisons. Table 3.6 provides evidence that
with a 5% familywise error rate, subjects choose the S lottery in different proportions
across linked S-C lottery pairs and S-AE lottery pairs in two comparisons: Pair 1 vs. Pair
16 and Pair 3 vs. Pair 18. This implies that the ROCL prediction of consistency is rejected
in 2 of our 15 consistency comparisons.

We are also interested in studying the patterns of violations of ROCL. A pattern
inconsistent with ROCL would be subjects choosing the S lottery when presented with a
given S-C lottery pair, but switching to prefer the AE lottery when presented with the
matched S-AE pair. We construct 2 x 2 contingency tables that show the number of
subjects in any given matched pair who exhibit each of the four possible choice patterns:
(i) always choosing the S lottery; (ii) choosing the S lottery when presented with a S-C pair
and switching to prefer the AE lottery when presented with the matched S-AE pair; (iii)
choosing the C lottery when presented with a S-C pair and switching to prefer the S lottery
when presented with the matched S-AE; and (iv) choosing the C lottery when presented
with the S-C lottery and preferring the AE lottery when presented with the matched S-AE.
Since we have paired observations, we use the McNemar test to evaluate the null

hypothesis of equiprobable occurrences of discordant choice patterns (ii) and (iii) within

9The Cochran Q test rejected its statistical null hypothesis x? statistic 448.55, 29 degrees of freedom and
p-value<0.0001.
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Table 3.6: Bonferroni-Dunn Method on Matched Simple-Compound and Simple-Actuarially-

Equivalent Pairs

Treztment: 1-in-40

Proportion of subjects

Proportion of subjects
that chose the 3 lottery in

Matching that chose the § lottery in the S.C pait (o) [ - 2|
the S-AE pair (p) = e
Pair 1 vs. Pair 16 0871 0387 0454
Pair 2 vs. Pair 17 0084 0952 0.032
Pair 3 vs. Pair 13 0887 0a29 0.258
Fair 4 v Pair 19 B 210 0.016
Pair 5 vs. Pair 20 0403 0290 0113
Fair & vs. Pair 21 0.742 0661 .081
Fair 7 vs. Pair 22 0877 0548 0129
Pair 8 7. Pair 23 0.543 0548 0.000
Fair 9 vs. Pair 24 0253 0206 0043
Pair 10vs. Pair 25 0019 0774 0145
Pair 11 vs. Pair 26 0581 0613 0032
Pair 12 vs. Pair 27 0.563 0643 0.081
Pair 13 vs. Pair 28 0871 0726 0.145
Pair 14 vs. Pair 20 0742 0877 0.063
Pair 15vs. Pair 30 0.387 oo 0.032

Note: the test rejects the null hypothesis of p; = ps if |p1 — pa| > d. The calculation of the
critical value d requires that one first define ex ante a familywise Type I error rate (g ).
For apy = 10% the corresponding critical value is 0.133, and for apy = 5% the critical

value is 0.159.

each set of matched pairs. We find a statistically significant difference in the number of (ii)

and (iii) choice patterns within 4 of the 15 matched pairs. Table 3.7 reports the exact

p-values for the McNemar test. The McNemar test results in p-values less than 0.05 in four

comparisons: Pair 1 vs. Pair 16, Pair 3 vs. Pair 18, Pair 10 vs. Pair 25 and Pair 13 vs.

Pair 28.2° Moreover, the odds ratios of the McNemar tests suggest that the predominant

switching pattern is choice pattern (iii): subjects tend to switch from the S lottery in the

20These violations of ROCL are also supported by the B-D procedure if the familywise error rate is set to

10%.
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S-AE pair to the C lottery in the S-C pair. The detailed contingency tables for these 4
matched pairs show that the number of choices consistent with pattern (iii) is considerably

greater than the number of choices consistent with (ii).

Table 3.7: McNemar Test on Matched Simple-Compound and Simple-Actuarially-Equivalent
Pairs

Treatment: 1-in-40

Matching Exact p-valne Odds Bane
Pair 1 ws. Pair 16 =(.0001 0.0625
Pair 2 ws. Pair 17 0.625 0.3333
Pair 3 vs. Pair 15 00001 0.0588
Pair 4 vs. Pair 19 1.000 0.8571
Pair 3 vs. Pair 20 01671 04615
Pair 6 ws. Pair 21 0.3323 0.5454
Paicr 7 ws. Pair 22 01516 0.5000
Paic 8 ws. Pair 23 1.000
Pair 8 ws. Pair 24 0.6072 0.6667
Pair 10 ws. Pair 25 00352 0.2500
Pair 11 vs. Pair 26 03238 1222
Pair 12 vs. Pair 27 04045 1.555
Pair 13 vs. Pair 25 00117 0.100
Pair 14 vs. Pair 29 05034 0.6667
Pair 15 ws. Pair 30 08383 1.1818

3.5 Estimated Preferences from Observed Choices

We now estimate preferences from observed choices, and evaluate whether behavior is
consistent with ROCL. Additionally, we test for a treatment effect to determine the impact

of RLIM on preferences.



154

3.5.1 Econometric Specification

Assume that utility of income is defined by
Ulz) =297 /(1 = 7) (3.1)

where z is the lottery prize and r # 1 is a parameter to be estimated. For » = 1 assume
U(z) = In(z) if needed. Thus r is the coefficient of CRRA: r = 0 corresponds to risk
neutrality, » < 0 to risk loving, and r > 0 to risk aversion. Let there be J possible
outcomes in a lottery, and denote outcome j € J as z;. Under EUT the probabilities for
each outcome x;, p(x;), are those that are induced by the experimenter, so expected utility

is simply the probability weighted utility of each outcome in each lottery i:

EU; = Y [p(x;) x U(a;)] (3.2)
The EU for each lottery pair is calculated for a candidate estimate of r, and the index
VEU = EUg — EUY, (3.3)

is calculated, where EUy is the “left” lottery and EUg is the “right” lottery as presented
to subjects. This latent index, based on latent preferences, is then linked to observed
choices using a standard cumulative normal distribution function ®(VEU). This “probit”

function takes any argument between oo and transforms it into a number between 0 and
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1. Thus we have the probit link function,

prob(choose lottery R) = ®(VEU) (3.4)

Even though this “link function” is common in econometrics texts, it forms the critical
statistical link between observed binary choices, the latent structure generating the index
VEU, and the probability of that index being observed. The index defined by equation 3.3
is linked to the observed choices by specifying that the R lottery is chosen when

®(VEU) > 0.5, which is implied by equation 3.4.

The likelihood of the observed responses, conditional on the EUT and CRRA specifications
being true, depends on the estimates of r given the above statistical specification and the
observed choices. The “statistical specification” here includes assuming some functional

form for the cumulative density function (CDF). The conditional log-likelihood is then

InL(riy, X) = > [(In®(VEU) x I(y; = 1)) + (In(1 = ®(VEU)) x I(; = —1))] ~ (3.5)

where I(.) is the indicator function, y; = 1(—1) denotes the choice of the right (left) lottery
in risk aversion task i, and X is a vector of individual characteristics reflecting age, sex,
race, and so on.

Harrison and Rutstrém (2008, Appendix F) review procedures that can be used to estimate
structural models of this kind, as well as more complex non-EUT models, with the goal of
illustrating how to write explicit maximum likelihood (ML) routines that are specific to

different structural choice models. It is a simple matter to correct for multiple responses
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from the same subject (“clustering”), if needed.

It is also a simple matter to generalize this ML analysis to allow the core parameter r to be
a linear function of observable characteristics of the individual or task. We extend the
model to be r = rg + R x X, where ry is a fixed parameter and R is a vector of effects
associated with each characteristic in the variable vector X. In effect, the unconditional
model assumes r = ry and estimates ry. This extension significantly enhances the
attraction of structural ML estimation, particularly for responses pooled over different
subjects and treatments, since one can condition estimates on observable characteristics of
the task or subject.

In our case we also extend the structural parameter to take on different values for the
lotteries presented as compound lotteries. That is, equation 3.1 applies to the evaluation of
utility for all simple lotteries and a different CRRA risk aversion coefficient r + rc applies
to compound lotteries, where rc captures the additive effect of evaluating a compound

lottery. Hence, for compound lotteries, the decision maker employs the utility function

U(x|compound lottery) = 23" /(1 — r — r¢) (3.6)

instead of equation 3.1, and we would restate it as

U(x|simple lottery) = 24" /(1 —r) (3.7)

for completeness. Specifying preferences in this manner provide us with a structural test

for ROCL. If r¢ = 0 then this implies that compound lotteries are evaluated identically to
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simple lotteries, which is consistent with ROCL. However, if rc # 0, as conjectured by
Smith (1969) for objective and subjective compound lotteries, then, decision-makers violate
ROCL in a certain source-dependent manner, where the “source” here is whether the
lottery is simple or compound.?! As stressed by Smith (1969), rc # 0 for subjective
lotteries provides a direct explanation for the Ellsberg Paradox, but is much more readily
tested on the domain of objective lotteries. Of course, the linear specification r + rc is a
parametric convenience, but the obvious one to examine initially.

An important extension of the core model is to allow for subjects to make some behavioral
errors. The notion of error is one that has already been encountered in the form of the
statistical assumption that the probability of choosing a lottery is not 1 when the EU of
that lottery exceeds the EU of the other lottery. This assumption is clear in the use of a
non-degenerate link function between the latent index VEU and the probability of picking
a specific lottery as given in equation 3.4. If there were no errors from the perspective of
EUT, this function would be a step function: zero for all values of VEU < 0, anywhere
between 0 and 1 for VEU = 0, and 1 for all values of VEU > 0. We employ the error

specification originally due to Fechner and popularized by Hey and Orme (1994). This

21 Abdellaoui et al. (2011) conclude that different probability weighting functions are used when subjects
face risky processes with known probabilities and uncertain processes with subjective processes. They call
this “source dependence,” where the notion of a source is relatively easy to identify in the context of an
artefactual laboratory experiment, and hence provides the tightest test of this proposition. Harrison (2011c)
shows that their conclusions are an artefact of estimation procedures that do not take account of sampling
errors. A correct statistical analysis that does account for sampling errors provides no evidence for source
dependence using their data. Of course, failure to reject a null hypothesis could just be due to samples that
are too small.
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error specification posits the latent index

VEU = (EUg — EUL) /1t (3.8)

instead of equation 3.3, where p is a structural “noise parameter” used to allow some errors
from the perspective of the deterministic EUT model. This is just one of several different
types of error story that could be used, and Wilcox (2008) provides a masterful review of
the implications of the alternatives.?? As pu — 0 this specification collapses to the
deterministic choice EUT model, where the choice is strictly determined by the EU of the
two lotteries; but as p gets larger and larger the choice essentially becomes random. When
1 =1 this specification collapses to equation 3.3, where the probability of picking one
lottery is given by the ratio of the EU of one lottery to the sum of the EU of both lotteries.
Thus ¢ can be viewed as a parameter that flattens out the link functions as it gets larger.
An important contribution to the characterization of behavioral errors is the “contextual
error” specification proposed by Wilcox (2011). It is designed to allow robust inferences

about the primitive “more stochastically risk averse than,” and posits the latent index

VEU = (EUg — EUL) /v (3.9)

instead of equation 3.8, where v is a new, normalizing term for each lottery pair L and R.

The normalizing term v is defined as the maximum utility over all prizes in this lottery

22Some specifications place the error at the final choice between one lottery or after the subject has decided
which one has the higher expected utility; some place the error earlier, on the comparison of preferences
leading to the choice; and some place the error even earlier, on the determination of the expected utility of
each lottery.
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pair minus the minimum utility over all prizes in this lottery pair. The value of v varies, in
principle, from lottery choice pair to lottery choice pair: hence it is said to be “contextual.”
For the Fechner specification, dividing by v ensures that the normalized EU difference
[((EUgr — EUL)/v] remains in the unit interval for each lottery pair. The term v does not
need to be estimated in addition to the utility function parameters and the parameter for
the behavioral error term, since it is given by the data and the assumed values of those
estimated parameters.

The specification employed here is the source-dependent CRRA utility function from
equations 3.6 and 3.7, the Fechner error specification using contextual utility from equation

3.9, and the link function using the normal CDF from 3.4. The log-likelihood is then

InL(r,re, u;y, X) = Z[(ln@(VEU) xI(y; = 1))+ (In(1—®(VEU)) x I(y; = —1))] (3.10)

and the parameters to be estimated are r, rc and given observed data on the binary
choices y and the lottery parameters in X. It is possible to consider more flexible utility
functions than the CRRA specification in equation 3.1, but that is not essential for present
purposes. We do, however, consider extensions of the EUT model to allow for
rank-dependent decision-making under Rank-Dependent Utility (RDU) models.

The RDU model extends the EUT model by allowing for decision weights on lottery
outcomes. The specification of the utility function is the same parametric specification in

3.6 and 3.6 considered for source-dependent EUT. To calculate decision weights under
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RDU one replaces expected utility defined by equation 3.2 with RDU

RDU; = [w(p(;)) x Ulxy)] = Y [w; x Ulz;)] (3.11)

j=1,J j=1,J

where

w; =w(p; + ... +ps) —wpj41 + ... +0s) (3.12)

fory=1,...,.J — 1, and

w; = w(p;) (3.13)

for j = J, with the subscript j ranking outcomes from worst to best, and w(.) is some
probability weighting function.
We adopt the simple “power” probability weighting function proposed by Quiggin (1982),

with curvature parameter :

w(p) =p’ (3.14)

So v # 1 is consistent with a deviation from the conventional EUT representation.
Convexity of the probability weighting function is said to reflect “pessimism” and
generates, if one assumes for simplicity a linear utility function, a risk premium since

w(p) < pVp and hence the “RDU EV” weighted by w(p) instead of p has to be less than the
EV weighted byp. The rest of the ML specification for the RDU model is identical to the
specification for the EUT model, but with different parameters to estimate.

It is obvious that one can extend the probability weighting specification to be
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source-dependent, just as we did for the utility function. Hence we extend the probability
weigting function to be

w(p|compound lottery) = p?*7° (3.15)

instead of equation 3.1, and we would restate it as

w(p|simple lottery) = p” (3.16)

for simple lotteries. The hypothesis of source-independence, which is consistent with

ROCL, in this case is that y¢ = 0 and rc = 0.

3.5.2 Estimates
Analysis of Data from the 1-in-1 Treatment

We focus first on the estimates obtained in the 1-in-1 treatment, since this controls for the
potentially contaminating effects of the RLIM on our inferences about ROCL. Of course,
this requires us to account for subject heterogeneity, and so we control for heterogeneity in
risk preferences. We include the effects of allowing for a series of binary demographic
variables: female is 1 for women, and 0 otherwise; senior is 1 for whether that was the
current stage of undergraduate education, and 0 otherwise; white is 1 based on
self-reported ethnic status; and gpaHI is 1 for those reporting a cumulative GPA between
3.25 and 4.0 (at least half A’s and B’s), and 0 otherwise. The econometric strategy is to

estimate our source-dependent version of EUT and RDU separately and compare the
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model estimates using the tests developed by Vuong (1989) and Clarke (2003, 2007) for
non-nested, nested and overlapping models.?® This strategy allows us first to choose the
model that best describes the data between the two competing models, and then test the
chosen model for violations of ROCL.

Controlling for heterogeneity we find that the data are best described by the
source-dependent RDU, and conditional on this model there is no evidence of violations of
ROCL. Both the Vuong test and the Clarke test provide statistical evidence that our
source-dependent version of RDU is the best model to explain the data in the 1-in-1
treatment.?* Panel A of Table 3.8 shows the estimates for the source-dependent RDU. A
joint test of the coefficient estimates for the covariates and the constant in the equation for
rc results in a p-value of 0.59 and a similar test for parameter vyc results in a p-value of
0.80. Moreover, a joint test of all the covariates and constants in the equations of rc¢ and ¢
results in a p-value equal to 0.72. If we had assumed that subjects behave according to the
source-dependent EUT we would have incorrectly concluded that there is evidence of
violations of ROCL, from the joint tests of the effect of all covariates in the rc equation
which has a p-value less than 0.001. This highlights the importance of choosing the
preference representation that best characterizes observed choice behavior.

A joint test of all covariates and constant terms, both in the equations for r and -, results

in a p-value less than 0.01. Figure 3.6 shows the distributions for estimates of the utility

23The Vuong test is parametric in the sense that it assumes normality to derive the hypothesis test statistic.
We also apply the Clarke test which a distribution-free test.

24When we control for heterogeneity, the Vuong test statistic is -1.38 in favor of the sourcedependent RDU,
with a p-value of .083. Further, the Clarke test also gives evidence in favor of the sourcedependent RDU
with a test statistic equal to 56.
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parameter r and the probability weighting parameter v,%> which have average values 0.79
and 0.33, respectively. This would imply that the typical subject exhibits diminishing
marginal returns in the utility function and probability optimism.?® Figure 3.6 also shows
the distributions for the point estimates forr 4+ rc and ~y + v¢.?"

To summarize, behavior in the 1-in-1 treatment is better characterized by RDU instead of
EUT, and we do not find evidence of violations of ROCL with the RDU preference

representation. We reach a similar conclusion if preference homogeneity is assumed.

Analysis of Data from the 1-in-40 Treatment

Controlling for heterogeneity, we again find that the data are best described by our
source-dependent version of RDU, and conditional on this model we find evidence of
violations of ROCL. Both the Vuong and Clarke tests provide support for the
source-dependent RDU as the best model to explain the data in the 1-in-40 treatment.?®
Panel A of Table 3.9 shows the estimates for this model. A statistical test for the joint null

hypothesis that all covariates in the equations for rc and ~yc are jointly equal to zero results

in a p-value less than 0.001, which provides evidence of violations of ROCL. Similarly, the

25The unobserved parameters r and are predicted for each subject by using the vector of individual
characteristics and the vector estimated parameters that capture the effect of each covariate.

26These are only descriptive statistics that may not describe in general our subjectss behavior since there
is in uncertainty around the predicted values of parameters r and . However, a series of tests which test,
for each subject, the null hypotheses of linear utility (r = 0) and linearity in probabilities ( = 1) result, for
all subjects, in p-values less than 0.01 and less than 0.05, respectively. These tests are constructed using the
standard errors around the covariates’ coefficients in the equations for parameters » and gamma.

27 Any comparison between the distributions of 4+ rc and r, but also between v + vc and +, has to take
into account the uncertainty around the distribution fitting process and the significance of the parameter
point estimates.

28The Vuong test statistic is -5.45 in favor of the source-dependent RDU, with a p-value less than .001.
Further, the Clarke test also gives evidence in favor of the source-dependent RDU with a test statistic equal
to 993
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hypothesis that all the covariates in the equations for parameters r and ~ are jointly equal
to zero also results in a p-value less than 0.001. Figure 3.7 shows the fitted distributions for
the point estimates of the utility and probability weighting parameters across subjects in
the 1-in-40 treatment. The average predicted values for r, r + rc, v and v + vyc are 0.63,
0.71, 0.95 and 0.62, respectively. This would imply that a typical subject displays
diminishing marginal returns when evaluating simple and compound lotteries and exhibits
more probability optimism when evaluating compound lotteries.?

If we would have assumed that subjects behave according to the source-dependent version
of EUT, we would have incorrectly concluded no violation of ROCL. This conclusion
derives from a joint test of the effect of all covariates in the rc equation which result in a
p-value of 0.67. Panel B of Table 3.9 shows the estimates for the source-dependent EUT
model. This highlights, yet again, the importance of choosing an appropriate preference
representation that best describes observed choice behavior.

To summarize, behavior in the 1-in-40 treatment is best characterized by the

source-dependent RDU model, and we find evidence of violations of ROCL. We reach the

same conclusion if preference homogeneity is assumed.

29 Again, these are only descriptive statistics that are meant to characterize typical behavior. A series of
tests for the null hypotheses of » = 0 and rc = 0 result in p-values less than 0.001 for all subjects. Similar
tests for the null hypothesis of v = 1 result in p-values greater than 0.05 for 51 out of 62 subjects. Further,
tests for the null hypothesis of 7 4+ y¢ = 1 result in p-values less than 0.05 for 37 out of 62 subjects.
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3.6 Conclusions

Our primary goal is to test the Reduction of Compound Lotteries axiom under objective
probabilities. Our conclusions are influenced by the experiment payment protocols used
and the assumptions about how to characterize risk attitudes.

We do not find violations of ROCL when subjects are presented with one and only one
choice that is played for money. However, when individuals are presented with many
choices, and the Random Lottery Incentive Mechanism is used to select one choice for
payoff, we do find violations of ROCL. These results are obtained whether one uses
non-parametric statistics to analyze choice patterns or structural econometrics to estimate
preferences.

The econometric analysis provides more information about the structure of individual
decision making process. In the context where individuals face only one choice for payoff
and no violations of ROCL are found, the preference representation that best characterizes
behavior is the Rank-Dependent Utility model. Similarly, when subjects face many choices,
behavior is better characterized by our sourcedependent version of the RDU model that
also accounts for violations of ROCL.

An important methodological conclusion is that the payment protocol used to pay subjects
might create distortions of behavior in experimental settings. This is especially important
for our purposes since one of the most popular payment protocols assumes ROCL itself.
This issue has been studied and documented by Harrison and Swarthout (2012) and Cox et

al. (2011). Our results provide further evidence that payment protocols can create
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confounds and therefore affect hypothesis testing about decision making under risk.
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Table 3.8: Estimates of Source-Dependent RDU and EUT Models Allowing for Heterogeneity

Parameter Covaciate

Data from the 1-in-1 treatment (N=133). Estimates of the Fechner esror parameter omitted.

Point
Estimare

A. Sauree-Dependen: RDU (LL= -73.21)

Standard
Erzoe

pevalne

05% Confidence Interval

female 0.301 0.077 =0.001 0.150 0.451
seniog 0.044 0.060 0.459 0.161 0.073
! gpaHI 0.034 0.056 0.352 0.077 0.144
white 0.141 0.095 0.136 0.326 0.044
constant 0.636 0.066 =0.001 0.507 0.764
female 0.142 0.089 0.109 0316 0.032
seniog 0.007 0.024 0.784 0.054 0.041
1 gpaHI 0.002 0.013 0.856 0.027 0.023
white 0.073 0.085 0.391 -0.240 0.094
constant 0.142 0.091 0.118 -0.036 0.319
female 0.231 0.199 0.244 -0.621 0.158
seniog 0,011 0.129 0.932 -0.264 0.242
¥ gpaHI 0.019 0.132 0.888 0.239 0.276
white 0.059 0.191 0.757 0.315 0.433
constant 0.472 0.130 =0.001 0.218 0.726
female -0.066 0.158 0.675 0.375 0.243
, seniog 0.052 0.157 0.741 0.256 0.360
! white 0.061 0.182 0.736 0.296 0.419
constant -0.082 0.119 0.492 0314 0.151
B. Sonree-Diependemy EUT (LL=-T8.07T)
female 0.468 0.185 0.011 0.106 0.830
senios 0,151 0.125 0.228 0.396 0.094
€ gpaHI 0.185 0.090 0.039 0.009 0.361
white 0.068 0.088 0.442 0.105 0.241
constant 0.224 0.188 0.233 0144 0.593
female 0,555 0.208 0.008 0.963 -0.147
senios 0.148 0.142 0.298 0.131 0.427
= gpaHl 0.217 0.104 0.036 0.420 0014
white 0.087 0.115 0.400 0323 0.129
constaat 0.733 0.212 0.001 0.317 1.149




168

Figure 3.6: Distribution of Parameter Estimates from the RDU Specification in the 1-in-1
Treatment Assuming Heterogeneity in Preferences

Distribution of the Estimated
Risk Aversion Utility Parameter under RDU

Density

T T
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——— (.} for Simple Lotteries

Distribution of the Estimated
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.75 1
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Table 3.9: Estimates of Source-Dependent RDU and EUT Models Allowing for Heterogeneity

Diata from the 1-m-40 treatment (N=2480). Estmates of the Fechner error parameter omatted.

Point Standard
Parameter Covariate Estimate Error s=valne 95% Confidence Interval
A Sowree-Dependenr RDU (LL= -1441.785)
female 0.185 0.066 0.005 -0.314 -0.053
SeLUOL 0.035 0.078 0.558 0119 0.183
£ gpafl 0.149 0.0%96 0119 -0.039 0.337
white 0.233 0.054 0.005 -0.398 -0.06%
constant 0.672 0.072 =001 0.530 0.514
female 0034 0.043 0.052 -0.001 0.170
SeLUOL 0,004 0.049 0928 -0.101 0.082
e gpafl 0071 0.041 0.085 -0.152 0.010
white 0.060 0.038 0115 0015 0.135
constant 0.061 0.051 0.232 -0.039 0161
female 0.575 0.193 0.004 0187 0.962
SerHoL 0.042 0221 0.545 0476 0.391
Y gpaFl -0.380 0.225 0.091 -0.321 0.061
white 0.312 0.255 0221 -0.187 0.811
constant 0.794 0214 =(.001 0574 1.214
female 0.311 0.122 0.011 -0.551 -0.071
SerHoL 0.097 0.126 0.443 -0.150 0.343
e gpaFl 0113 0.134 0.401 -0.150 0.375
white 0.230 0.166 0167 0557 0.095
constant -0.238 0.130 0.066 -0.493 0.016
EB. Sowrce-Dependens EUT (LL= -1504.136)
female 0.053 0.083 0.547 0119 0.225
SEEHOL 0014 0.079 0.857 -0.168 0.140
£ gpaFl 0.041 0.083 0.522 -0.203 0.122
white 0.098 0.159 0.538 -0.409 0.213
constant 0.594 0104 = (.001 0.390 0.797
female 0.007 0.041 0.865 0074 0.083
= semios 0.019 0.046 0.676 -0.071 0.110
gpaFl 0.025 0.047 0.603 0117 0.068
white 0.035 0.037 0.344 -0.038 0.109
constant 0014 0.041 0727 -0.0095 0.066
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Figure 3.7: Distribution of Parameter Estimates from the RDU Specification in the 1-in-40
Treatment Assuming Heterogeneity in Preferences
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3.7 Appendix A. Reduction of Compound Lotteries
with Subjective Probabilities: Theoretical,

Experimental and Methodological Issues

The reduction of compound lotteries has assumed a central role in the evaluation of
behavior towards risk, uncertainty and ambiguity. We discuss theoretical, experimental and
methodological issues relating to the possibility of testing its validity in domains over
subjective probabilities.

One fundamental methodological problem with tests of the reduction of compound lotteries
(ROCL) assumption, whether or not the context is objective or subjective probabilities, is
that one cannot use incentives that rely on it being valid. This means, in effect, that one
has to conduct experiments in which the subject has one, and only one, task.?® Apart from
the expense of collecting data at such a pace, this also means that all evaluations have to
be on a between-subjects.

If one finds evidence in support of ROCL with subjective probabilities, then one of the
main assumptions of the Subjective Expected Utility (SEU) approach to modeling decision
making towards subjective risk proposed by Savage (1971) is supported. That approach
allows the decision maker to have a non-degenerate subjective probability distribution over
some event, but assumes that the decision maker behaves as if that distribution is “boiled
down” to one subjective probability, the weighted average of the distribution.

A test of ROCL is of immediate relevance to preference representations that are sensitive
to ambiguity. Segal (1987, 1990) proposes that ambiguous situations can be characterize as
a compound lottery where the first stage is over the possible probabilities of the states of
nature. In his framework ambiguity sensitive preferences do not satisfy ROCL under
subjective probabilities. In fact, many models of decisions under ambiguity (Gilboa and
Schmeidler, 1989; Klibanoff et al., 2005; Ghirardato et al., 2004) share the same feature:
under uncertainty people may have multiple priors, and even if subjects are able to define a
nondegenerate subjective probability distribution over those priors, they will not behave as
if they “boil down” the distribution to the weighted average probability.

300ne alternative is to present the decision maker with several tasks at once and evaluate theportfolio
chosen, or to present the decision maker with several tasks in sequence and account for wealth effects. Neither
is immediately attractive, since they each raise possible confounds in behavior and theoretical inference. One
uninteresting alternative is not to pay the decision maker for the outcomes of the task.
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3.7.1 Theoretical Issues

Subjective Belief Distributions and Subjective Probabilities: Their Equivalence
under ROCL

Consider a decision-maker with a non-degenerate subjective probability distribution over
some event. For example, let the subjective density on the probability = = 0.6 be 0.1, the
subjective density on the probability 7 = 0.7 be 0.6, and the subjective density on the
probability 7 = 0.8 be 0.3. Figure 3.8 illustrates. The weighted average of this distribution
is =0.72.

Figure 3.8: Illustrative Subjective Beliefs

Subjective -
Density .97

.6 Az .8
Subjective Probability =

Now consider a Savage-style bet in which you receive $z > 0 if event occurs, or$0
otherwise. The structure of the subjective beliefs assumed above induce a subjective
compound lottery that pays lottery (0.6, $z;0.4,$0) with probability 0.1, lottery

(0.7, $2;0.3,%0) with probability 0.6 and lottery (0.8, $x;0.2,$0) with probability 0.3. We
can write the subjective expected utility (SEU) of this bet as

SEU =0.1 x 0.6 x U(z) +0.1 x 0.4 x U(0) + 0.6 x 0.7 x U(x) + 0.6 x 0.3 x U(0)

3.17
+0.3x0.8x U(x)+0.3 x0.2xU(0) (3:17)

where U(.) is the utility function. Under ROCL, an individual should be indifferent
between this subjective compound lottery and the actuarially-equivalent lottery
(0.72,$2;0.28,%0) which has subjective expected utility equal to

SEU = (0.1x0.6+0.6x0.740.3x0.8) x U (z)+(0.1x0.440.6 x0.34+0.3x0.2) x U(0) (3.18)
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or SEU =0.72 x U(x) + 0.28 x U(0). Thus, under ROCL, the decision maker with the
original non-degenerate subjective probability distribution would behave as if he had a
degenerate subjective probability distribution at 7 = 0.72. In other words, these two
subjective probability distributions, and an infinite number of non-degenerate distributions
that have the same weighted average 0.72, are observationally equivalent under ROCL.

A test of ROCL requires the elicitation of a subjective non-degenerate probability
distribution and a degenerate probability distribution. If ROCL is satisfied the average
probability implied by the non-degenerate distribution should be equal to the degenerate
distribution. We explain below the theory and the operational procedures we use to elicit
the distributions we need for testing ROCL.

Scoring Rules to Elicit Degenerate Probability Distributions

A binary scoring rule is defined over some binary event, which is either true or false. A
binary scoring rule asks the subject to make some report 0, and then defines how an
elicitor pays a subject depending on their report and the outcome of the event. This
framework for eliciting subjective probabilities can be formally viewed from the perspective
of a trading game between two agents: you give me a report, and I agree to pay you $X if
one outcome occurs and $Y if the other outcome occurs. The scoring rule defines the terms
of the exchange quantitatively, explaining how the elicitor converts the report from the
subject into a lottery defined over the subjective probability of the subject. We use the
terminology “report” because we want to view this formally as a mechanism, and want to
emphasize the idea that the report may or may not be the subjective probability 7 of the
subject. When the report is equal to subjective probability of the individual, we say that
the scoring rule is a direct mechanism, following standard methodology.

The popular Quadratic Scoring Rule (QSR) for binary events is defined in terms of two
positive parameters, a and 3, that determine a fixed reward the subject gets and a penalty
for error. Assume that the possible outcomes are A or B, where B is the complement of A,
that 6 is the reported probability for A, and that © is the true binary-valued outcome for
A. Hence © = 1 if A occurs, and © = 0 if it does not occur (and thus B occurs instead).
The subject is paid S(0|A occurs) = a — (0 — 0)?> = a — B(1 — 0)? if event A occurs and
S(0|B occurs) = a — 3(0 — 0)? = a — 5(0 — 0)? if B occurs. The score or payment penalizes
the subject by the squared deviation of the report from the true binary-valued outcome, ©,
which is 1 and 0 respectively for A and B occurring. An omniscient seer would obviously set
6 = ©. The fixed reward is a convenience! to ensure that subjects are willing to play this
trading game, and the penalty function accentuates the penalty from not responding what
the subject thinks an omniscient seer would respond. It can be shown that a risk neutral
decision maker will report his subjective probability truthfully. For example, assume o = 1
and 8 = 1 so that the subject could earn up to 1 or as little as 0. If they reported 1 they
earned 1 if event A occurred or 0 if event B occurred; if they reported 0.75 they earned
0.9375 or 0.4375; and if they reported 0.5 they earned 0.75 no matter what event occurred.

31Tn the language of mechanism design, it can be chosen to satisfy the participation constraint. This
requires that 6 > (.
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Scoring Rules to Elicit Non-Degenerate Probability Distributions

We can test ROCL by considering behavior by the decision maker with respect to a scoring
rule designed to elicit his subjective belief distribution. Let this decision maker be asked to
report his subjective beliefs in a discrete version of a QSR for continuous distributions,
following Mathieson and Winkler (1976). Partition the domain into [ intervals, and denote
as r; the report of the density of r in interval ¢ = 1,2, , I. These reports could be
experimental tokens that sum, for example, to 100; for simplicity below we normalize so
that the sum of all tokens is 1. For expositional simplicity assume for the moment that the
decision maker is risk neutral. If r; is the interval that the actual value lies in, then the
payoff score from Mathieson and Winkler (1976, p. 1088, equation (6)) is:

S=@2xr)=> 7 (3.19)
i=1,J

So the reward in the score is a doubling of the number of tokens allocated to the true
interval, and the penalty depends on how these tokens are distributed. The subject is
rewarded for accuracy, but if that accuracy misses the true interval the punishment is
severe. The punishment includes all possible reports, including the correct report.
Consider some examples, assuming I = 4. What if the subject has very tight subjective
beliefs and puts all of the tokens in the correct interval? Then the score is

S=2x1)—(1P+0°+0*°+0)=2-1=1>0.
But if the subject has a tight subjective belief that is wrong, the score is

S=2x0)—-(1*+0°4+0*+0*)=0-1=-1<0.

So we see that this score would have to include some additional “endowment” to ensure
that net earnings are positive.?> Assuming that the subject has a very diffuse subjective
belief and allocates 25% of the tokens to each interval, the score is

S = (20.25) — (0.25% + 0.25% + 0.25% 4+ 0.25%) = 0.50 — 0.25 = 0.25 < 1.

Risk Attitudes and Subjective Beliefs

It is intuitively obvious, and also well known in the literature (e.g., Winkler and Murphy,
1970; Kadane and Winkler, 1988), that risk attitudes will affect the incentive to report
one’s subjective probability “truthfully” in each of these scoring rules.

Consider the binary scoring rule first. A sufficiently risk averse agent is clearly going to be
drawn to a report of 0.5, and varying degrees of risk aversion will cause varying distortions
in reports from subjective probabilities. If we knew the form of the (well-behaved) utility
function of the subjects, and their degree of risk aversion, we could infer back from any
report what subjective probability they must have had. The need to do this jointly is in

32This is a point of practical behavioral significance, but is not important for the immediate theoretical
point.
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fact central to the operational definition of subjective probability provided by Savage
(1972): under certain postulates, he showed that there existed a subjective probability and a
utility function that could rationalize observable choices. Andersen et al. (2010) illustrate
how joint estimation of risk attitudes and subjective probability, using structural maximum
likelihood, can be used to make the necessary calibration to recover the latent subjective
probability.

An alternative approach is to use scoring rules combined with the Binary Lottery
Procedure (BLP) to induce linear utility in subjects. The theoretical prediction is that,
under certain conditions, this approach allows the researcher to directly elicit the
subjective probability without further statistical corrections for risk attitudes. Harrison et
al. (2012a) found evidence that the BLP mitigates the distortion in reports introduced by
risk aversion in a belief elicitation task for binary events. This implies that the BLP
provides incentives to subjects to directly report the true latent subjective probability, at
least for belief elicitation tasks that use the QSR to elicit probabilities with only two
outcomes. It is yet to be studied if the validity of this result extends to generalized scoring
rules that elicit continuous distributions; however, in the following discussion we assume
that the BLP induces risk neutrality in this type of general belief elicitation procedures.
Next section explains theoretically how the BLP can generate incentives to subjects to
directly report their non-degenerate subjective probability distributions.

Belief Elicitation with Generalized Scoring Rules and the Binary Lottery
Procedure

Assume for simplicity that I = 10, so there are only 10 possible events. For instance, in a
Bingo Cage with only red (R) or white (W) balls, the proportion of red balls could be any
of the following proportions: 5%, 15%, 256%, 35%, 45%, 55%, 65%, 75%, 85% and 95%.
The following arguments apply for any distribution with finite discrete support. A given
subject could display a subjective non-degenerate prior Pi = (75% , m15%, 725% , w35% ,
745% , 755% , 765% , w75% , w85% , m95% ), where m,y is the subjective probability that
the true proportion of red balls in the urn is equal to a%. Suppose that II = (.25, .225,
175, .1, .0417, .0417, .0417, .0417, .0417, .0417). This prior implies that on average the
proportion of red balls in the urn is equal to 30% (= .05 x .25 + .15 x .225 4+ .25 x .175 +
35 % .1+ .45 x .0417 4+ .55 x .0417 + .65 x .0417 + .75 x .0417 + .85 x .0417 + .95 x .0417).
We want to elicit the non-degenerate prior II by using the generalized scoring rule given by
the following function:

S;=a+p(2x1r;)— Z r?

i=1,10

where 7, is the subject’s report about event j and S; is the number of points the subject
wins if event j is realized indeed. Assume that o = = 50. Thus 7; is the report for the
proportion of red balls in the urn being equal to 5%, r is the report for the proportion of
red balls in the urn being equal to 15%,..., rg is the report for the proportion of red balls in
the urn being equal to 85%, and r,0 is the report for the proportion of red balls in the urn
being equal to 95%. In contrast to the binary case, a report now consists of 10 numbers
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that can be written in vector notation as r = (ry, 79,73, 74,75, 76, 7, T8, 9, 710). This report
gives the subject the following payoffs in points that are translated into objective
probabilities of getting, for instance, a high $100 prize of the binary lottery. In particular,
by reporting r, the subject is going to obtain a vector of points S =(S1(r|5%), Sa(r|15%),
Sg(’r’|25%), S4(T’|35%), S5(7’|45%), SG(T|55%), S7(7“|65%), Ss(?“|75%), Sg(?“|85%),

S10(r|95%)), where each position in the vector is defined as follows:

S1(r[5%) = 50 + 50(2r)) — 13 — 13 — 715 — 15 — 71 — 718 — 712 — 715 — T8 — T

S2(r[15%) = 50 4+ 50(2ry) — 72 —r3 — 712 — 13 — 712 — e — 12 — 18 — 12 — 1%,

S9(r|85%) = 50 4+ 50(2r9) — 12 — 15 — 15 — 1] —TE — 718 — 15 — 718 — T8 — T

S10(r|95%) = 50 + 50(2r10) — 7% — 15 — 75 — 1] — 72 — 15 — T2 — 715 — T8 — T3,

Define now the following 10 objective probabilities of winning the monetary prize $100,
induced by a report r:

ps%(r) = S1(r|5%) /100, pisy (r) = S2(r[5%) /100, ...,
Pss (1) = S9(r|5%) /100, pese (r) = S10(r[5%) /100

The task that a subject faces is to choose one among many subjective compound lotteries
induced by report r. Each induced subjective compound lottery has the following structure:

SCL(r): pays simple lottery (psy%(r), $100; 1-psy(r), $0) with subjective
probability sy ; pays simple lottery (pi5%(r), $100; 1-pi59%(r), $0) with
subjective probability m59;........ ; pays simple lottery (psso (1), $100; 1-pgse(r),
$0) with subjective probability 7sse; pays simple lottery (pgse (1), $100;
1-pose (), $0) with subjective probability 75 .

Figure 3.9 shows graphically the subjective compound lottery induced by report r as well
as its actuarially-equivalent simple lottery. A subjective expected utility maximizers
valuation of each report r is equal to:

SEU(r) =msy X psy(r) x U($100) 4+ (1 — pse(r)) x U($0)
+ 59 X p1sw(r) X U($100) 4 (1 — p1se (1)) x U($0)
+ ...
+ ...
+ a5 X Pssos (1) x U(8100) + (1 — pssu (1)) x U(30)
+ Tos% X Pases (1) x U(8100) + (1 — pose (1)) x U(30)

Normalizing U($100) = 1 and U($0) = 0, SEU(r) is reduced to:

SEU(r) = w5y X psu(r) + T1s% X p15% (1) + ... + Tes% X psso(r) + +Tos% X posw (1) = P(7)
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We rename SEU(r) as P(r) to emphasize that the subject’s valuation of the lottery
induced by r can be interpreted as the subjective average probability P of winning the high
$100 amount in the binary lottery. For the sake of the argument assume for a moment that
the state space of the report for each event j is a continuum such that r; € [0,100] and

Y iz1107i = 100. Therefore a SEU maximizer would make a report 7* that maximizes the
subje7ctive expected probability P(.) of winning the binary lottery. The solution to this
problem is given by a multivariate maximization where the first order conditions are given

by

(1] 1T59,0p5% (1) /Or1 + T159%0p15% (1) /01 + ... + Tss%,0ps5% (1) /Or1 + To50,0p95% (1) /Or1 = 0
7T5%[50(2 X (1) — 27’1)] —+ 7'('15%[50(—27"1)] + ...+ 7T85%[50(—27“1)] =+ 7T95%[50(—27"1)] = O
Ts9 — (s + T15% + Tosy + Tas% + Tasy + To5% + Tesw + Trs% + Tss% + Tosy)r1 = 0

*
5% — T'1

(2] 1T159%,0p5% (1) /Ors + T15%,0p15% (1) /Ora + ... + Te590,0Ps5%(1)/Ora + To59%,0posy (1y/0rs = 0
T15% [50(-27“2)] + T15% [50(2(1) — 2T2)] + ...+ T85% [50(-27“2)] + TT95% [50(-27“2)] = O
T15% — (5% + T159% + Tasw + Tas9% + Tass + Tss% + Tesw, + Tr5% + Tesy + Tos%)T2 = 0

*
T15% = Ty

[710] :T59%0p59% (1)) Or10 + T15%0P15% (1) /Or10 + ... + T85%0Ds85% (1) /Or10 + To5%0P95% (1) /Or19 = 0
7T5%[50(—27“10)] + T15% [50(—27"10)] 4+ ...+ T85% [50(-27"10)] + 7T95%[50(2(1) — 27“10)] = 0
Tos5% — (5% + T159% + Tas% + Tas% + Tas% + Tss% + Tesw + Tr5% + Tes% + Tos9% )10 = 0

*
T95% = T'10



Figure 3.9: Generalized Scoring Rule Using the Binary Lottery Procedure
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The conclusion is that a subject that follows SEU and is given a generalized scoring rule
with the BLP procedure to induce linear utility will optimally report his true subjective
probability distribution, i.e.r* = II. This maximization problem has a unique optimum
because the second order condition 9*SEU (r)/(dr;0r;) < 0 for all j =1,...,10. Thus a
generalized scoring rule that relies on the BLP to induce linear utility is a proper scoring
rule for a SEU maximizer. Harrison et al. (2012c) showed that in theory BLP can also
induce linear utility for certain non-EU preference representations in belief elicitation tasks
that use the QSR. These results hold trivially for the type of generalized scoring rule we
explained above.

3.7.2 Experiments
Experimental Design

Our design consist of two between-subjects treatments that are presented with the same
stimuli in any given session, but with different scoring rules and belief elicitation questions.
In treatment 2Bin subjects are presented with only one belief elicitation question that
uses the QSR for binary events. In treatment 10Bin subjects are presented with only one
belief elicitation question that uses the generalized scoring rule for non-binary events. The
scores in each treatment are denominated in points that subsequently determine the
objective probability of winning a binary lottery that pays either $50 or $0. In both
treatments subjects are first presented with some information to generate subjective
beliefs, and after that the choice is made. Subjects complete a demographic survey, but are
explicitly told that their responses to that survey do not affect earnings. Then subjects
receive monetary compensation according to a chance realization appropriate for each
treatment and depending on their report in the belief elicitation task. There are no other
salient tasks, before or after a subjects choices.

We used software we created in Visual Basic .NET to present the scoring rules we give to
subjects and record their choices. Figures 3.10, 3.11, 3.12 and 3.13 illustrate the scoring
rule interfaces we developed to implement these ideas, and generate our test of ROCL with
subjective beliefs.

Subjects in treatment 10Bin are presented with the distributional scoring rule task shown
in Figures 3.10 and 3.11. In this case we set I = 10, so that we can elicit subjective beliefs
in deciles. The question we present to our subjects is “What is the fraction of red ping-pong
balls in Bingo Cage 27" In this case the response is bounded between 0% and 100%, but
these general methods apply to beliefs about arbitrarily bounded variables as well. The
interface starts by assuming a completely diffuse belief, as in Figure 3.10.33 The subject
has 100 tokens to allocate to each decile according to his beliefs. For instance, the subject
might believe that the fraction of red balls in the Bingo Cage 2 is just below 60% but he is
not completely certain about the true fraction of red balls. Therefore a subject might
allocate the 100 tokens to several bars as shown in Figure 3.11. Payoffs to subjects depend

330ne could have started with any random allocation of the 100 tokens, but this starting point seemed
the most natural in many respects. The role of a starting point as an anchor is easily studied, and has been
studied in Andersen et al. (2010) in the context of scoring rules defined over binary events.
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on the number of points earned when the true composition of Bingo Cage 2 is revealed, and
convert into greater probability of winning the highest outcome of the final binary lottery.
Subjects in treatment 2Bin are presented with a binary scoring rule task shown in Figures
3.12 and 3.13. The question we present to our subjects in this interface is “What will be
the color of the ping-pong ball drawn from Bingo cage 27” The binary scoring rule
illustrated in Figure 3.12 and 3.13 is a variant on the “slider interface” developed by
Andersen et al. (2010), but adapted to look more like the interface for the distributional
scoring rule in Figures 3.10 and 3.11. Subjects can move one or other of two sliders, and
the other slider changes automatically so that 100 tokens are allocated.

It is important to emphasize the subtlety of the difference in the questions we ask subjects
in each treatment. In treatment 10Bin we ask subjects to place a bet on the composition of
a Bingo cage, while in treatment 2Bin we ask subjects to place bets one realization of that
Bingo cage. This is an important feature of our design, which seeks to compare a
degenerate and a non-degenerate probability distribution of the same underlying physical
process. In treatment 2Bin we elicit a number that is the best estimate of the composition
of the Bingo cage. In treatment 10Bin we elicit a full distribution that captures subjects
beliefs about the composition of the Bingo cage. Our test of ROCL under subjective
probabilities involves comparing the degenerate probability elicited in treatment 2Bin with
the (weighted) average probability implied by the non-degenerate distribution elicited in
treatment 10Bin.

One might conjecture that a concentrated, constrained version of the distributional scoring
rule, in which all 100 tokens had to be allocated to one and only one decile, would be
sufficient to elicit the weighted average subjective belief of the subject that obeyed ROCL.
This would only be true if the latent subjective belief distribution could be assumed to be
symmetric and unimodal. However, as explained earlier, ROCL implies that subjects are
indifferent between degenerate subjective probability distributions and an infinite number
of non-degenerate distributions, symmetric and unimodal or not, that have a weighted
average equal to the degenerate distributions. Hence any number of latent, non-degenerate
belief distributions could be consistent with the observed report from such a concentrated
version of the 10Bin task.

An additional methodological issue is that we cannot compare responses to the
distributional and binary scoring rules on an in-sample basis. This would necessitate the
use the 1-in-K random lottery incentive procedure, which of course presumes the validity of
ROCL over objective probabilities. Although we remain agnostic about whether ROCL
over objective probabilities implies ROCL over subjective probabilities, and vice versa, we
do not want to have to make any such assumption if we have to.3* Therefore, each of our
subjects is presented with only one choice, which allows us to avoid potential confounds
that can arise from payment protocols that assume the same hypothesis we are trying to
test.

34The evidence from Harrison et al. (2012b) suggests that ROCL is valid for objective lotteries only when
K=1.
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Experimental Procedures

The general procedures during an experimental session are as follows. Upon arrival at the
laboratory, each subject draw a number from a box which determines random seating
position within the laboratory. After being seated and signing the informed consent
document, subjects are given printed introductory instructions and allowed sufficient time
to read these instructions. Then a Verifier is selected at random among subjects solely for
the purpose of verifying that the procedures of the experiment are carried out according to
the instructions. The Verifier is paid a fixed amount for this task. Each subject is assigned
to one of two groups depending on whether the seating number was even or odd, where
each group correspond to one of the treatments. One of the groups is then asked to leave
and wait outside the room for a few minutes, always under the supervision of an
experimenter. The other group remain in the laboratory and go over the main instructions
with the experimenter. Simultaneously, subjects waiting outside are given instructions to
read individually. Then the groups swap places and the experimenter read the main
instructions designed for the other group. Once all instructions are finished, and both
groups are together in the room again, we proceeded with the rest of the experiment.

The reason for these procedures is to ensure that subjects in both treatments confront the
same stimuli, defined below. We do not want to explain group-specific instructions in the
presence of subjects of the other group and tell them not to pay attention, and vice versa.
Subjects are told the basic reason for this step:

Part of this experiment is to test different computer screens. Therefore, we
will divide you into two groups, and each group will be presented with a slightly
different instructions and computer screens. If you are sitting in a computer
station that has an odd number on it, you are part of the Odd group. If you are
sitting in a computer station that has an even number on it, you are part of the
Even group.

An important reason to assign subjects to treatments according to their station number in
the laboratory is to avoid potential confounds in the results generated by subjects in each
treatment having very different visual access to the stimuli. By mapping even or odd
station numbers to treatment 2Bin or 10Bin, we ensure that if there exist any difference in
subjects’ vantage point, this difference was the same across treatments.

We use two bingo cages: Bingo Cage 1 and Bingo Cage 2. Bingo Cage 1 is loaded with
balls numbered 1 to 99 in front of everyone.?® A numbered ball is drawn from Bingo Cage
1, but the draw takes place behind a divider. The outcome of this draw is not verified in
front of subjects until the very end of the experiment, after their decisions had been made.
The number on the chosen ball from Bingo Cage 1 is used to construct Bingo Cage 2
behind the divider. The total number of balls in Bingo Cage 2 is always 100: the number
of red balls matches the number drawn from Bingo Cage 1, and the number of white balls

35When shown in public, Bingo Cage 1 and 2, are always displayed in front of the laboratory where
everyone could see them. We also use a high resolution video camera to display the bingo cages in three flat
screen TVs distributed throughout the laboratory, and on the projection screen at the front of the room.
Our intention is that everyone has equal chance of observing the bingo cages from a good perspective.
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is 100 minus the number of red balls. Since the actual composition of Bingo Cage 2 is only
revealed and verified in front of everybody at the end of the experiment, the Verifiers role
is to confirm that the experimenter constructs Bingo Cage 2 according to the randomly
chosen numbered ball. Once Bingo Cage 2 is constructed, the experimenter puts the chosen
numbered ball in an envelope and affixes it to the front wall of the laboratory.

Bingo Cage 2 is then covered and placed on a platform in the front of the room. Bingo
Cage 2 is then uncovered for subjects to see, spun for 10 turns, and covered again. Subjects
then make their decisions about the number of red and white balls in Bingo Cage 2. After
choices are made and subjects complete a non-salient demographic survey, the
experimenter draws a ball from Bingo Cage 2. The sealed envelope is opened and the
chosen numbered ball is shown to everyone, and the experimenter publicly counts the
number of red and white balls in Bingo Cage 2. Then an experimenter approaches each
subject and records earnings according to the betting choices made and the ball drawn
from or the number of red balls in Bingo Cage 2. Then the number of points they earned in
the belief elicitation task was recorded. If subjects are part of treatment 2Bin the number
of points they earned is determined by the color of the ball drawn from Bingo cage 2. If
subjects are part of treatment 10Bin the number of points they earned is determined by the
actual number of red in Bingo cage 2. Then subjects in both treatments roll two 10-sided
dice, and if the outcome is less or equal to the number of points earned they win $50,
otherwise they earn $0 in the task. Finally, subjects leave the laboratory and are privately
paid their earnings: a $7.50 participation payment in addition to the monetary outcome of
the belief elicitation task. The Verifiers are paid a flat $25 fee plus the participation fee.

Evaluation of the Subjective ROCL Hypothesis

We want to test if ROCL is satisfied in the domain of subjective probabilities. Since we
rely on the BLP to induces linear utility in subjects, we conduct our tests directly on the
elicited reports from subjects without the need to correct for risk attitudes. In our tests we
assume that the structure of beliefs in the same in treatments 2Bin and 10Bin. Therefore
any significant treatment effect can be attributed to violations of ROCL under subjective
probabilities.

The test of our main hypothesis is, after all this preparation, surprisingly simple. We
compare the elicited reports for red balls in treatment 2Bin with the weighted average
proportion of red balls implied by the elicited distributions in treatment 10Bin. We use
non-parametric statistical tests to study differences across treatments.

An ideal test of our hypothesis involves controlling for risk attitudes to estimate the latent
subjective probabilities in both treatments and testing the equivalency implied by ROCL.
This would require econometric techniques to recover the underlying subjective
probabilities conditional on risk attitudes elicited in a different task. The tools to estimate
latent probabilities in binary scoring rules are already available in the literature, but for
the generalized scoring rule the econometric procedures are numerically challenging. We
leave these issues for future research.
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3.7.3 Conclusions

It is possible to design an operational test of ROCL in the domain of subjective beliefs.
The test involves careful attention to the theoretical issues of belief elicitation for
non-binary events, careful attention to defining elicitation tasks over the same underlying
physical process, and careful attention to avoid payment protocols for experimental
subjects that assume the validity of the axiom we are trying to test.

Figure 3.10: Distributional Scoring Rule Initialization

What is the number of red Ping-Pong balls in Bingo Cage 27

Unallocated tokens: D

Oto10 111020 211030 311040 411050 51t 60 611270 711080 81t %0 9112 100
10tokens Dtokens 10tokens Dtokens 10tokens Dtokens 10tokens Dtokens 10tokens Dtokens
payS5points  pay55poits  payS5points  pay55poits  payS5points  pay55points  payS5points  payS5poirts  pay S5points  pay 55poirts

Submit your decision or continue maki
Unallocated tokens: O y ng

choices

Figure 3.11: Illustrative Distributional Scoring Rule Response

What is the number of red Ping-Pong balls in Binge Cage 22

Unallocsted tokens: 0

79 points
80 poil

Oto 10 11to20 211030 31to40 41to50 51to60 61to 70 71to 80 81to 50 91to 100

Dickens Diokens 1Diokens 4Dtokens SDtokens Diokens Dickens Diokens Dickens Diokens
pay 29points  pay29ponts  pay 39points  pay69points  pay 79points  pay29poinis  pay 29poirts  pay 29points  pay 29points  pay 23 points

Unallocated tokens: O Submit your decision or continue making

choices
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Figure 3.12: Binary Scoring Rule Initialization

What will be the calor of the ping-peng ball drawn from Bings Cage 27
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Figure 3.13: Illustrative Binary Scoring Rule Response

What will be the calor of the ping-pong ball drawn from Binge Cage 22
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3.8 Appendix B. Instructions

3.8.1 Instructions for Treatment 1-in-1

Ip
Choices Owver Risky Prospects

This 15 a task where yon will choose between prospects with varymg prizes and chances of
winning. Yon will be presented with one pair of prospects where you will choose one of them. Yon
shonld choose the prospect you prefer to play. Yon will actually get the chance to play the prospect

you choose, and you will be paid according to the ontcome of that prospect, so yon shonld think
carefnlly abont which prospect yon prefer.

Here iz an example of what the computer display of a pair of prospects mught look like.

Left Right

$5

45

Chance of winning §5 i 40% Chance of winmning 5 is 30%

Chance of winning $15 iz &0% Chancz of waming $10 i S0%

Chance of wismning %15 iz 10%

(st g

The outcome of the prospects will be determined by the draw of a random number between

1 and 100. Each number between, and inclnding, 1 and 100 is equally likely to ocene. In fact, von will
be able to draw the nmumber yonrself nang teo 10-sided dice

In the above example the left prospect pays fve dollars (35) if the smmber drawn is between
1 and 40, and pays Bfteen dollacs ($15) if the number is between 41 and 100. The blne colos in the
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pie chart corresponds to 4075 of the area and illnstrares the chances that the mmmber drawrn will be
berween 1 and 40 and younr prize will be $5. The orange area in the pie chast cocresponds to §0% of
the area and illnstrates the chances that the number drawn will be between 41 and 100 and your
prize will be §15.

Mow lock at the pie in the chart on the sight It pays five dollars ($5) if the anmber drawn is
between 1 and 50, ten dollars ($10) if the anmber is beroeen 51 and ¥, and fifteen dollars ($15) i
the onmber is between 91 and 100. As with the prospect on the left, the pie shees represent the
fraction of the possible nnmbers which yield each payoff For exampls, the size of the $15 pie slice
15 10%% of the ol pie.

You conld also get a pair of prospects in which one of the prospects will give you the chanece
to play “Diomble or Mothing ™ For instance, the ght prospect in the following screen image pars
“Dionble or Nothing™ if the Green area is selected, which happens if the ammber drawn is between
51 and 100. The right pie chart indicates that if the anmber iz beroeen 1 and 50 yon get $10.
However, if the number 13 between 31 and 100 a coin will be tossed to determine if you get double
the amonat. If it comes np Heads you get $40, otherwise you get nothing. The prizes Lsted
underneath each pie refer to the amonnts before any “Dionble or Nothing™ coin toss.

One prospect has a Double Or Nothing option

Double or Nothing if Gresn

‘ ‘
$0 410

Chance of winnirg $0 v 50%
Chamce of WiARIRg £10 iy BO%

Chance of winning $20 is S00% Chance of winning $20 is 30%

| Selest Lefr | | Selest Right
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The pair of prospects you choose from is shown on a sezeen on the computer. On that
sereen, you shonld indicate which prospect yon prefer to play by clicking on one of the buttons
beneath the prospects.

After yon have made yonr choice, raise yonr hand and an ezpesmenter will come over. Iris
certain that yonr one choice will be played ont for real Yon will roll the two ten-sided dice to
deteroune the ontcome of the prospect yon choze, and if necessary yon will then toss a coin to
detesrmine if yon get “Donble or Nothing ™

For instance, suppose von picked the prospect on the left in the last example. If the random
ommbes was 37, yon wonld win §0; if it was 93, yon wonld get $20.

If yon picked the prospect on the right and deew the anmber 37, you wonld get $10; if it was
93, vou wonld have to toss a cown to determune if you get “Dionble or MNothing. ™ If the coin comes
up Heads then yon get $40. However, if it comes np Tails you get nothing from yons chosen
prospect.

It is also possible that you will be given a prospect in which there is a “Donble or MNothing™
option no matter what the ontcome of the andom ammber. The screen image below illnstrates this
possibility.

One prespect hos a Double Or Mothing eptien

Bouble or Nothing for any outcome
420 g0
0 $

Thenes of wisning $0 ix 50%

Cranee of winaieg $L0 1 BA%

Chanco of winning §20 s SO Chanca of winming $20 ic BO%

Sclact Left | Seloct Right |
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Thesefore, your payoff 15 determined by three things:

. by which prospect yon selected, the left or the nght;
. by the ontcome of that prospect when yon roll the two 10-sided dice; and

by the ontcome of 2 coin toss if the chosen prospect onteome i3 of the “Dionble or
Nothing™ type.

Which prospects you prefer is a matter of personal taste. The people next to yon may be
prezented with a different prozpect, and may have different preferences, so their responszes shomld
not matter to you. Flease work slently, and make yonr choices by thinking carefully abont the
prospect yon are presented with

All payoffs ace in cash, and are in addition to the $7.50 show-up fee that you receive just for
being here. The oaly other task today iz for yon to answer some demographic questions. Yong
answers to those questions will not affect your payoffs.
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3.8.2 Instructions for Treatment 1-in-40

40p
Choices Ower Risky Prospects

This 15 a task where yon will choose between prospects with varying prizes and chances of
winning. You will be presented with a senes of pairs of prospects where you will choose one of
them There ase 40 pairs in the senes. For each par of prospeets, yon shonld choose the prospect
von prefer o play. You will acmally get the chanee to play one of the prospects yon choose, and yon
will be paid according to the ontcome of that prospect, so you should think carefully abont which
prospect you prefer.

Left Right

= $5
Chance of winning 45 is 40%. Chonce of wemning &5 is 50%
Chance of winning $15 iz &0% Chance of wenning $10 is $0%.

Chonce of wening $15 i 10%

(st g

Here iz an example of whar the computer display of snch a pair of prospects mught look like.

The outcome of the prospects will be determined by the draw of 2 andom ammber between
1 and 10{. Each number between, and inchnding. 1 and 100 is equally likely to ocene. In fact, yon wll
be able to dravw the mumber yonrself nsing too 10-sided dice.

In the above example the left prospect pays fve dollass ($5) if the smmber deawn is between
1 and 40, and pays Bfteen dollacs (315) if the number is berween 41 and 100. The blne coloz in the
pie chart correspoads to 40%% of the area and idlustzares the chances that the ammber drawn will be
between 1 and 40 and yonr prize will be $5. The orange area in the pie chart corresponds to 60% of
the area and illnstrates the chances thar the ammber dravn will be bereeen 41 and 100 and yons



poize will be §15.

Now look at the pie in the chart on the right It pays five dollars (35) if the ammber deawn is
between 1 and 50, ten dollars ($10) if the nnmber is between 51 and M, and fifteen dollars ($15) if
the ommber 15 between 91 and 100, As with the prospect on the left, the pie shees represent the
fraction of the possible nnmbers which yield each payoff. For example, the size of the $15 pie slice
15 1075 of the total pie.

Each pair of prospects 15 shown on a separate screen on the compnter. On each screen, you
shonld mdicate which prospect you prefer to play by clicking on one of the buttons beneath the
prospects.

Tou conld also get a pair of prospects in which one of the prospects will give you the chance
to play “Donble or Mothing ™ For instance, the nght prospect in the following screen image pays
“Deomble or Mothune™ if the Green area is zelected, which happens if the ammber drawn iz between
31 and 100. The cight pie chart indicates that if the nnmber i3 berween 1 and 50 yon get $10.
However, if the anmber i3 between 31 and 100 a coin will be tossed to determine if you pet donble
the amonnt If it comes np Heads yon get 840, otherwise you get nothing. The prizes Lsted
nademneath each pie refer to the amonars before any “Dionble or MNothing™ coin toss.

One prospect has a Double Or Nothing option

Double or Mothing if Green

&m

T

Chance of winning §0 is BO%
Chance of winmirg $10 is B0

Chanoe of winning $20 is 50% Charce of winning $20 is 800G

Selest Laft | | Selext Right
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After yon have worked throngh all of the 40 pairs of prospects, raise yonr hand and an
expermenter will come over. You will then soll two 10-sided dice naotil 2 anmber between 1 and 40
comes up to determine which pair of prospects will be plared ont. Since these is a chanee that any of
vour 40 choices conld be played ont for real, you shomld approach each pair of prospects as if it1s
the one that you will play ont. Finally, you will roll the two ten-sided dice to determine the outcome
of the prospect von choze, and if necessary yonu will then toss a coin to determine if yon get "Diomble

or Mothing "

For instance, snppose you picked the prospect on the left i the last ezample. If the random
ommbes was 37, yon wonld win 80; if it was 93, you wonld get $20.

If you picked the prospect on the right and drew the number 37, you wonld get $10; if it was
83, vou wonld have to toss a com to determune if you get "Double or Nothing ™ If the coin comes
up Heads then you get $40. However, if it comes np Tails yon get aothing from your chosen prospect.

It is also possible that you will be given a prospect in which these 15 a "Donble or MNothung”
option no matter what the ontcome of the random number. The screen image below lnstrates this
possibility.

One prospect hos a Double Or Nothing option

Bouble or Mothing for any outcome

$0

0

Chanes af wisning $0 ix 50%
Coaree of winnieg HL0 1s BA%

P P P “hencs of wirming $20 ic BO%
“hanca of winning $20 ic 0% Chancs. of winming §20 ic BO%

[ Balact Left | Scloct Eight |
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Therefore, yons payoff is determined by fone things:

' by which prospect yon selected, the left or the nght, for each of these 40 pars;

' by which prospect pair 15 chosen to be played out in the series of 40 snch pairs nsing the
two 10-sided dice;

. by the ontcome of that prospect when vou roll the two 10-zided dice; and

. by the ontcome of 2 coin toss if the chosen prospect ontcome is of the “Donble or
MNothing™ type.

Which prospects yon prefer is a matter of personal taste. The people next to you may be
presented with different prospects, and may have different preferences, so their responses shonld
mot marter to yon. Please wodk silently, and make vonr choices by thinking carefully abont each
prospect.

Al payoffs are in cash, and are in addition to the $7.50 show-np fee that you recesre mst for
being here. The only other tazk today is for you to answer some demographic questions. Yons
answers to those gquestions will not affect yonr payoffs
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3.9 Appendix C. Parameters

To construct our battery of 40 lottery pairs, we used several criteria to choose the
compound lotteries and their actuarially-equivalent lotteries used in our experiments:

1. The lottery compounding task should be as simple as possible. The instructions used
by Halevy (2007) are a model in this respect, with careful picture illustrations of the
manner in which the stages would be drawn. We wanted to avoid having physical
displays, since we had many lotteries. We also wanted to be able to have the
computer interface vary the order for us on a between-subject basis, so we opted for a
simpler procedure that was as comparable as possible in terms of information as our
simple lottery choice interface.

2. The lottery pairs should offer reasonable coverage of the Marschak-Machina (MM)
triangle and prizes.

3. There should be choices/chords that assume parallel indifference curves, as expected
under EUT, but the slope of the indifference curve should vary, so that the battery of
lotteries can be used to test for a wide range of risk attitudes under the EUT null
hypothesis (this criteria was employed for the construction of the basic 69 simple
lotteries).

4. There should be a number of compound lotteries with their actuarially-equivalent
counterparts in the interior of the triangle. Experimental evidence suggests that
people tend to comply with the implications of EUT in the interior of the triangle
and to violate it on the borders (Conlisk, 1989; Camerer, 1992; Harless, 1992;
Gigliotti and Sopher, 1993; Starmer, 2000).

5. We were careful to choose lottery pairs with stakes and expected payoff per
individual that are comparable to those in the original battery of 69 simple lotteries,
since these had been used extensively in other samples from this population.

Our starting point was the battery of 69 lotteries in Table 3.10 used in Harrison and
Swarthout (2012), which in turn were derived from Wilcox (2010). The lotteries were
originally designed in part to satisfy the second and third criteria given above. Our
strategy was then to “reverse engineer” the initial lotteries needed to obtain compound
lotteries that would yield actuarially-equivalent prospects which already existed in the set
of 69 pairs. For instance, the first pair in our battery of 40 lotteries was derived from pair 4
in the battery of 69 (contrast pair 1 in Table 3.11 with pair 4 in Table 3.10). We want the
distribution of the “risky” lottery in the latter pair to be the actuarially-equivalent
prospect of our compound lottery. To achieve this, we have an initial lottery that pays $10
and $0 with 50% probability each, and offering “Double or Nothing” if the outcome of the
latter prospect is $10. Hence it offers equal chances of $20 or $0 if the DON stage is
reached. The $5 stake was changed to $0 because DON requires this prize to be among the
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possible outcomes of the compound lotteries.?® The actuarially-equivalent lottery of this
compound prospect pays $0 with 75% probability and $20 with 25% probability, which is
precisely the risky lottery in pair 4 of the default battery of 69 pairs. Except for the
compound lottery in pair 10 in our set of lotteries, the actuarially-equivalent lotteries play
the role of the “risky” lotteries.

Figure 3.14 shows the coverage of these lottery pairs in terms of the Marschak-Machina
triangle. Each prize context defines a different triangle, but the patterns of choice overlap
considerably. Figure 3.14 shows that there are many choices/chords that assume parallel
indifference curves, as expected under EUT, but that the slope of the indifference curve can
vary, so that the tests of EUT have reasonable power for a wide range of risk attitudes
under the EUT null hypothesis (Loomes and Sugden, 1982; Harrison et al., 2007). These
lotteries also contain a number of pairs in which the “EUT-safe” lottery has a higher EV
than the “EUT-risky” lottery: this is designed deliberately to evaluate the extent of risk
premia deriving from probability pessimism rather than diminishing marginal utility.

The majority of our compound lotteries use a conditional version of the DON device
because it allows to obtain good coverage of prizes and probabilities and keeps the
compounding representation simple. As noted in the text, one can construct diverse
compound lotteries with only two simple components: initial lotteries that either pay two
outcomes with 50:50 odds or pay a given stake with certainty, and a conditional DON which
pays double a predetermined amount with 50% probability or nothing with equal chance.
In our design, if the subject has to play the DON option she will toss a coin to decide if she
gets double the stated amount. One could use randomization devices that allow for
probability distributions different from these 50:50 odds, but we want to keep the lottery
compounding simple and familiar. Therefore, if one commits to 50:50 odds in the DON
option, using exclusively unconditional DON will only allow one to generate compound
lotteries with actuarially-equivalent prospects that assign 50% chance to getting nothing.
For instance, suppose a compound prospect with an initial lottery that pays positive
amounts $X and $Y with probability p and (1 — p), respectively, and offers DON for any
outcome. The corresponding actuarially-equivalent lottery pays $2X, $2Y and $0 with
probabilities p/2, (1 — p)/2 and 0.5, respectively.

The original 69 pairs use 10 contexts defined by three outcomes drawn from $5, $10, $20,
$35 and $70. For example, the first context consists of prospects defined over prizes $5, $10
and $20, and the tenth context consists of lotteries defined over stakes $20, $35 and $70.
As a result of using the DON device, we have to introduce $0 to the set of stakes from
which the contexts are drawn. However, some of the initial lotteries used prizes in contexts
different from the ones used for final prizes, so that we could ensure that the stakes for the
compounded lottery matched those of the simple lotteries. For example, pair 3 in Table B2
is defined over a context with stakes $0, $10 and $35. The compound lottery of this pair
offers an initial lottery that pays $5 and $17.50 with 50% chance each and a DON option
for any outcome. This allows us to have as final prizes $0, $10 and $35.

Our battery of 40 lotteries uses 6 of the original 10 contexts, but substitute the $5 stake for
$0. We do not use the other 4 contexts: for them to be distinct from our 6 contexts they

36We contemplated using “double or $5,” but this did not have the familiarity of DON.
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would have to have 4 outcomes, the original 3 outcomes plus the $0 stake required by the
DON option. We chose to use only compound lotteries with no more than 3 final outcomes,
which in turn requires initial lotteries with no more than 2 outcomes. Accordingly, the
initial lotteries of compound prospects are defined over distributions that offer either 50:50
odds of getting any of 2 outcomes or certainty of getting a particular outcome which makes
our design simple. It is worth noting that there are compound lotteries composed of initial
prospects that offer an amount $X with 100% probability and a DON option that pays $2X
and $0 with 50% chance each (see pairs 5, 6 and 14 in Table 3.11 and pairs 34 and 40 in
Table 3.13). By including this type of “trivial” compound lottery, we provide the basis for
ROCL to be tested in its simplest form.

Finally, we included compound lotteries with actuarially-equivalent counterparts in the
interior and on the border of the MM triangle, since previous experimental evidence
suggests that this is relevant to test the implications of EUT. Pairs 3, 7, 10, 11, 32, 35 and
38 have compound lotteries with their actuarially-equivalent lotteries in the interior of the
triangle.



Table 3.10: Default Simple Lotteries

Prizes “Safe” Lottery Probahilities “Risky™ Lottery Probabilities
Pair Context Low Mddle High Low hfiddle High Low hiddle High EV Safe EV Risky
1 1 £5 §10 20 0 1 0 02s 0 075 10000 $16.25
2 1 £5 §10 20 0.25 0.75 0 05 0 05 §8.75 $12.30
3 1 £5 §10 20 0 1 0 05 0 05 10000 $12.30
4 1 £5 §10 $20 05 0.5 0 07s 0 0.25 §7.50 $8.73
5 1 £5 §10 $20 0 1 0 02s 05 025 $10.00 $11.25
& 1 $5 $10 520 0.25 0.5 02s 05 0 0z $11.25 #1230
7 1 $5 $10 520 0 0.5 0.5 02s 0 0.75 $15.00 $16.25
8 1 $5 $10 520 0 0.75 02s 05 0 05 $12.50 #1250
o 1 $5 $10 520 0.25 0.75 0 075 0 025 $8.75 $8.75
10 1 $5 $10 520 0 1 0 075 0 025 510,00 $8.75
11 2 5 $10 535 0 1 0 0.5 0 05 510000 200,00
12 2 3 $10 835 0 0.75 025 025 0 0.75 $lels $27.50
13 2 3 $10 835 0.25 0.75 0 0.75 0 0.25 38.75 #1230
14 2 5 $10 §35 0 05 0.5 025 0 0.75 2250 $27.30
15 2 5 $10 §35 0 0.75 025 05 0 05 $le2s $20.00
16 2 5 $10 §35 0 1 0 075 0 025 10000 $12.30
17 3 55 $10 70 0.25 0.75 0 05 0 05 3875 $37.30
18 3 £5 $10 70 0 1 0 05 0 05 10000 $37.30
19 3 £5 $10 70 05 0.5 0 075 0 0.2s §7.50 $21.25
20 3 £5 $10 £70 0 1 0 07s 0 025 $10.00 $21.25
21 4 £5 $20 835 1 0 02s 0 75 $20.00 $27.50
22 4 $5 $20 $35 0.75 02s 02s 0 75 $23.75 $27.50

961
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Figure 3.14: Default Simple Lotteries
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Table 3.11: Simple Lotteries vs. Compound Lotteries (Pairs 1-15)

Compound Lottery

Simple Lottery Init:al Lottecy Initial Lottery
Final Prizes Probabilities Prizes Probahilities “Donble or Nothing™ EV EV
Pair Context Low Middle High Low Aliddle High Low M:iddle High Low MMiddle High option Simple Compound
1 1 $0 $10 $20 05 05 0 &0 $10 $20 0.5 05 0 DON if middle $5.00 $5.00
2 1 $0 $10 520 0 1 0 $0 $10 $20 0.5 0.5 0 DON if middle $10.00 $5.00
3 2 $0 $10 335 0 1 0 $0 §3 $17.50 0 0.5 0.5 DON for any ontcome $10.00 $11.23
4 2 $0 §10 $35 0.25 0.75 0 $0 $17.50 $35 0.5 0.5 0 DON if middle $7.30 $8.75
5 3 $0 §10 §70 0.25 0.75 0 $0 $35 $70 0 1 0 DON for any ontcome $7.50 $35.
6 3 $0 §10 §70 0 1 0 $0 $35 $70 0 1 0 DON for any outcome $10.00 $35.
7 4 $0 $20 835 0 1 0 $0 $10 $35 0 0.5 035 DON if middle $20.00 $22.50
8 4 $0 $20 335 0 0.75 0.25 $0 $17.50 $35 0 0.5 03 DON if middle $23.75 $8.75
9 5 $0 $20 §70 0 0.5 0.5 $0 $35 $70 0 0.5 035 DON if middle $45.00 $52.50
10 5 $0 $20 $70 03 0 0.5 $0 $20 $35 0 0.5 0.5 DON if high $35.00
11 5 $0 §20 §70 0 1 0 50 $20 $35 0 05 0.5 DON if high $20.00
12 5 $0 $20 $70 0 0.75 0.25 &0 $35 £70 0 05 0.5 DON if middle $32.50 $52.50
13 [ $0 §35 §70 0 1 0 $0 $35 $70 0 05 035 DON if middle $35.00 $52.50
14 6 $0 $35 §70 0 0.75 0.25 $0 $35 $70 0 1 0 DOMN for any outcome 34375 $35.00
15 [ $0 335 370 0 0.75 0.25 $0 $33 70 0 0.5 0.5 DON if middle $43.75 $52.50
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Table 3.12: Simple Lotteries vs. Actuarially-Equivalent Lotteries (Pairs 16-30)

Simple Lottery Actnarially-Equivalent EV EV

Final Poizes Probabilities Lottery Probabalities Sumple Acturagally-

Pair Context Tow Middle High Tomr Aliddle High Low Middle High Eqguivalent
1a 1 50 §10 $20 05 05 0 0.75 o 025 $5.00 §5.00
17 1 30 £10 £20 0 1 0 0.75 0 0.25 $10.00 $5.00
18 2 50 §10 §35 0 1 0 05 0.25 025 $10.00 §11.25
19 2 50 £10 §35 0.25 0.75 0 0.75 o 025 $7.50 §8.75
20 3 50 §10 £70 025 0.75 0 0.5 o 0.5 $7.50 £35.00
21 3 50 §10 §70 0 1 0 0.5 o 05 $10.00 $35.00
22 4 50 $20 $35 0 1 0 025 025 05 $20.00 $22.50
23 4 30 $20 $35 0 0.75 0.25 0.25 0 0.75 $23.75 §8.75
24 5 50 $20 $70 0 05 05 025 o 0.75 $45.00 $52.50
25 5 30 $20 £70 0.5 0 05 0.25 0.5 0.25 $35.00 $27.50
26 5 30 $£20 £70 0 1 0 023 05 025 $20.00 $27.50
27 5 50 $20 §70 0 0.75 025 025 o 075 $32.50 $52.50
28 6 30 $£35 £70 0 1 0 023 o 075 $35.00 $52.50
29 [ 50 $35 §70 0 0.75 025 0.5 o 05 $4575 $35.00
30 6 30 $35 £70 0 0.75 0.25 0.25 0 0.75 $45.75 $52.50
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Table 3.13: Actuarially-Equivalent Lotteries vs. Compound Lotteries (Pairs 31-40)

Compound Lottery

Actmarially-Equivalent Initial Lottery Initial Lottery EV EV
Final Prizes Lottery Probahilities Prizes Probabilities “Diouble or Nothing™ Actuarialky- Componnd
Pair Context Low Aiddle High Laow Aiddle High Laow Mliddle High Low Aliddle High option Equivalent
31 1 50 §10 $20 075 0 025 $0 510 $20 05 05 0 DON if middle $5.00 $5.00
32 2 50 §10 $35 0.5 0.25 0.25 $0 §5 517.50 0 5 0.5 DON for any outcome $11.25 5$11.25
33 2 50 §10 $35 075 025 $0 $17.50 $35 05 05 0 DON if middle $8.75 $8.75
34 3 50 §10 $70 0.5 0 0.5 $0 535 §70 0 1 0 DON for any outcome $35.00 535.00
33 4 50 20 $35 0.25 0.25 0.5 $0 $10 $35 0 0.5 0.5 DON if muddle §22.50 $22.50
36 4 0 £20 $35 0.25 0 0.75 S0 $17.50 $35 0 0.5 0.5 DON if middle $3.75 $8.75
37 5 50 520 $70 0.25 0 0.75 50 535 §70 0 0.5 0.5 DON of muddle §52.50 552,50
48 5 0 £20 £70 0.25 05 025 $0 $20 $35 0 0.5 0.5 DON if high £27.50 $27.50
30 6 50 §35 $70 0.25 0 0.75 50 535 §70 0 0.5 0.5 DON of muddle §52.50 552,50
40 6 0 §35 £70 0.5 0 0.5 $0 835 £70 0 1 0 DON for any ontcome £35.00 $35.00

¢0¢
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3.10 Appendix D. Related Literature

Cubitt et al. (1998b) studied the Reduction of Compound Lotteries Axiom [ROCL] in a
1-in-1 design that gave each subject one and only one problem for real stakes and was
conceived to test principles of dynamic choice. Also, Starmer and Sugden (1991), Beattie
and Loomes (1997) and Cubitt et al. (1998a) have studied the Random Lottery Incentive
Method (RLIM), and as a by-product have tested the ROCL axiom. We focus on the
results related to the ROCL axiom: Harrison and Swarthout (2012) review the results
related to RLIM.

Cubitt et al. (1998b) gave to one group of subjects one problem that involved compound
lotteries and gave to another group the reduced compound version of the same problem. If
ROCL is satisfied, one should see the same pattern of choice in both groups. They cannot
find statistically significant violations of ROCL in their design.

Starmer and Sugden (1991) gave their subjects two pairs of lotteries that were designed to
test common consequence violations of EUT. In each pair i there was a risky (Ri) option
and a safe (Si) option. They recruited 160 subjects that were divided into four groups of
equal number. Two groups faced one of the two pairs in 1-in-1 treatments, while the other
two groups were given both pairs to make a choice over using the RLIM to choose the pair
for final payoff. We focus on the latter two groups since RLIM induces four possible
compound lotteries: i) (0.5, R1; 0.5, R2), ii) (0.5, R1; 0.5, S2), iii) (0.5, R2; 0.5, S1) and iv)
(0.5, S1; 0.5, S2). The lottery parameters were chosen to make compound lotteries ii) and
iii) have equal actuarially-equivalent prospects.

They hypothesize that if a reduction principle holds, and if any of the induced compound
lotteries ii) and iii) above is preferred by a subject, then the other one must be preferred.?”
The rejection of this hypothesis is a violation of ROCL, since this axiom implies that two
compound lotteries with the same actuarially-equivalent prospects should be equally
preferred. Therefore, the null hypothesis in Starmer and Sugden (1991, p. 976) is that “the
choice between these two responses to be made at random; as a result, these responses
should have the same expected frequency.” From the 80 subjects that faced the 1-in-2
treatments, 32.5% of the individuals chose (0.5, R1; 0.5, S2) and 15% chose (0.5, R2; 0.5,
S1), thus Starmer and Sugden reject the null hypothesis of equal frequency in choices based
on a one-tail test with a binomial distribution and p-value=0.017. This pattern is very
similar in each of the 1-in-2 treatments; in one of them the proportions are 30% and 15%,
whereas in the other they are 35% and 15%. A two-sided Fisher Exact test yields a p-value
of 0.934, which suggest that these patterns of choices are very similar in both 1-in-2
treatments. Therefore, there is no statistical evidence to support ROCL in their
experiment.

Beattie and Loomes (1997) examined 4 lottery choice tasks. The first 3 tasks involved a
binary choice between two lotteries, and the fourth task involved the subject selecting one

3TFollowing Holt (1986), Starmer and Sugden (1991, p. 972) define the reduction principle to be when
“compound lotteries are reduced to simple ones by the calculus of probabilities and that choices are deter-
mined by the subject’s preferences over such reduced lotteries.” This is what we call ROCL, in addition to
some axioms that are maintained for present purpose.
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of four possible lotteries, two of which were compound lotteries.?® They recruited 289
subjects that were randomly assigned to six groups. The first group faced a hypothetical
treatment and was paid a flat fee for completing all four tasks. The second group was given
a 1-in-4 treatment, and each of the other four groups faced one of the four tasks in 1-in-1
treatments. Sample sizes were 49 for the hypothetical treatment and the 1-in-4 treatment,
and a total of 191 in the four 1-in-1 treatments.

Beattie and Loomes (1997, p. 164) find that “there is no support for the idea that two
problems involving the same ‘reduced form’ alternatives and therefore involving the same
difference between expected values will be treated equivalently.” On this basis, their
Question 3 in the 1-in-4 treatment would be actuarially-equivalent to their Question 1 in
the 1-in-1 treatment. They found that the pattern of choices in both treatments are so
different that a chi-square test rejects with a very great confidence (p< .001) the
hypothesis that they are treated equivalently (p. 164). The p-value< 0.001 of the Fisher
Exact test provides further support for this violation of ROCL.

Their Question 4 is a task that is similar to the method developed by Binswanger (1980):
subjects are offered an ordered set of choices that increase the average payoff while
increasing variance. The difference with the Binswanger procedure is that two of the four
choices involved compound lotteries: one paid a given amount of money if two Heads in a
row were flipped, and the other paid a higher amount if three Heads in a row were flipped.
For responses in Question 4, Beattie and Loomes (1997, p. 162)

...conjecture that the REAL [1-in-1] treatment might stimulate the greatest
effort to picture the full sequential process [of coin flipping in the compound
prospects| and, as a part of that, to anticipate feelings at each stage in the
sequence; whereas the HYPO [hypothetical] treatment would be most
conducive to thinking of the alternatives in their reduced form as a set of simple
lotteries... The RPSP [1-in-4 treatment] might then, both formally and
psychologically, represent an intermediate position, making the process less
readily imaginable by adding a further stage (the random selection of the
problem) to the beginning of the sequence, and reducing but not eliminating
the incentive to expend the necessary imaginative effort.

On this basis, they predict that, when answering Question 4, subjects in the hypothetical
treatment are more likely to think in reduced form probability distributions. Beattie and
Loomes consider that this might enhance the salience of the high-payoff option, and thus
the compound lotteries are expected to be chosen more frequently in the hypothetical
treatment than in the 1-in-1 and 1-in-4 treatments.

Beattie and Loomes (1997, p. 165) found support for these conjectures: Their subjects tend
to choose the compound lotteries more often in the hypothetical treatment than in the ones

38Beattie and Loomes (1997) use nine prospects: A= (0.2, £15; 0.8, £0), B= (0.25, £10; 0.75, £0), C=
(0.8, £0; 0.2, £30), D= (0.8, £5; 0.2, £0), E=(0.8, £15; 0.2, £0), F = (1, £10), G=(1, £4), H=(0.5,£10;
0.5,£0), I=(£25 if two Heads in a row are flipped; otherwise nothing) and J=(£62.50 if three Heads in a row
are flipped; otherwise nothing). Questions 1 through 3 are binary choices that offer, respectively, A or B, C
or D and E or F. In Question 4, the subject must choose the prospect that she prefers the most among G,
H, I or J. Options I and J are compound lotteries with 2 and 3 stages, respectively.
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with economic incentives (i.e., 1-in-1 and 1-in-4 treatments). They found that under the
hypothetical treatment more than 1 in 3 of the sample opted for the compound lotteries;
this proportion was reduced in the 1-in-4 treatment to just over 1 in 5; and in the 1-in-1
treatment the proportion fell to 1 in 12. A chi-square test rejects (p-value < 0.01) the
hypothesis that there is no difference in patterns across treatments. The Fisher Exact test
is consistent with this result. 3%

Cubitt et al. (1998a) use common consequence and common ratio pairs of pairs in three
experiments. We focus in the first two since the third experiment has no treatments
relevant to test ROCL. In the first experiment they compare 1-in-1 choices with 1-in-2
choices. Their comparison rests on subjects not having extreme risk-loving preferences over
the pairs of lotteries in the 1-in-2 treatment designed to capture this behavior. Given that
this a priori assumption is true, and it is generally supported by their data, the lottery
pairs in each of the 1-in-2 treatments were chosen to generate compound prospects with
actuarially-equivalent lotteries equal to the prospects in each of the 1-in-1 treatments.

If ROCL is satisfied, the distribution of responses between risky and safe lotteries should
be the same in both treatments. The p-value from the Fisher Exact test in one of the
1-in-1 and 1-in-2 treatment comparisons®’ is 0.14, which suggests that ROCL is most likely
violated.

Similarly, in the second experiment the 1-in-2 treatment induced compound lotteries with
actuarially-equivalent prospects equal to the lottery choices in one of their 1-in-1
treatment. In the latter, 52% of the 46 subjects chose the risky lottery, whereas 38% of the
53 subjects in the 1-in-2 treatment chose the risky prospect. These choice patterns suggest
that ROCL does not hold in the second experiment.*?

39We test the similarity between treatments of the proportions of subjects that chose each of the four
prospects in Question 4. The two-sided Fisher Exact test applied to the hypothetical and the 1-in-1 treat-
ments rejects the hypothesis of no difference in choice patterns (p-value = 0.001). The p-value for the
comparison of the same four choices between the hypothetical and the 1-in-4 treatments is 0.473.

40Groups 1.1 and 1.3 in their notation.

41The proportions of subjects that chose the risky prospect in the other 1-in-1 and 1-in-2 treatments
(groups 1.2 and 1.4 in their notation) are close: 50% and 55%, respectively. However, we cannot perform the
Fisher Exact test for this 1-in-1 and 1-in-2 comparison, since the compound lotteries induced by the 1-in-2
treatment have actuarially-equivalent prospects equal to the ones in the 1-in-1 treatment only if the subjects
do not exhibit extreme risk-loving preferences. Since 8% of the subjects in this 1-in-2 treatment exhibited
risk-loving preferences, one cannot perform the Fisher test because this contaminates the comparison between
the compound lotteries and their actuarially-equivalent counterparts.

42Gince one of the subjects in the 1-in-2 treatment (group 2.3) exhibited risk-loving preferences, we cannot
perform the Fisher Exact test for the reasons explained earlier.
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Appendix E. Nonparametric Tests

A Choice Parreras Where ROCL Predicr Indgference

Eesearch Hynorberin Subjects are indifferent between a componnd (C) lottery and s pared
acmarially-eqnivalent (AE) lortery, and therefose the choice betwreen both lotternes i= made at
random in any of onz 10 AE-C pairs in Table 3.13. As a resnlt we shonld ohserve equiprobable
response proportions between C and AE lotteries. ROCL 15 rejected if we can provide statistical
evidence that the proportion of observations m which subjects chose a C lottery over its AE lottery
15 different from the proportion of choices in which subjects chose the AE lottery over the C lottery.

Seruerwre of dara sers: We analyze the observed responses from snbjects who were presented
with any of the 10 pairs deseribed in Table 3.13 2nd which contain both 2 C lottery and it= AE
lottery. First, we smdy the responzes from 32 subjects who were presented with one and only one of
the AE-C pairs in 1-in-1 treatment We also smdy the 620 responses from the 62 subjects that wese
presented with all of the 10 AE-C pairs in the 1-in-40 treatment In terms of the statistical litesatnge,
the responses to each of the AE-C pairs in the 1-in-1 constimte an “independent”™ sample. This
means that snhjects are presented with one and only one choice, thns one obierration does not
affect any other ohservation 1n the sample. Conversely, the responses to the AE-C pairs m the 1-in-
40 constrmte 10 “dependent™ samples since each of the 62 snbjects responded to each of the 10 AE-
C pairs.

We analyze the data separately becanse, in contrast to the 1-in-40 treatment which nzes the
random lottery incentive mechanizm (BIIA) as payment protocol, any conclusion drawn from the
1-in-1 treatment does not depend i the mdependence aziom assnmed by the RLIL. We want to
control for the possibility that the observed choice patterns in the 1-in-40 treatment ase affected by
thiz parment protocal. This means thar any failnre to see indifference betoreen a C lottery and its
and AFE lottery in onr data conld be explained by confonnds created by the payment protocol By
analyzing data from the 1-in-1 teatment only, we avoid posuble confounds created by the RLIAL

1-in-1 Trearment

We apply the Binomial probahility test to each of the AE-C pair for which there 15 snfficient
data to condnet the test. The latter allows s to test individnally for each AE-C pair if snbjects
choose the C lottery and the AE lottery in equal propoions. We also nse a generalized version of
the Fisher Exact test that allows ns to jomady test the statistical amll hypothesis that the proportions
of subjects that chose the C lottery over the AE lottery m each of the AE-C lottery pairs ase the
same. Both test can provide statistical evidence of the overall performance of the ROCL
mdifference prediction.

Srativtical Null Hyporbesis of the Binoanial Probakiify Terr: For a groen AE-C lottery pair, the
propormion of subjects that choose the C lotrery is 50 % %% This is equivalent to test the claim that
subjects choose the AE lomery and the C lottery in equal propoctions when they age presented with a
given AE-C lotreries.

If thus statistical nmll hypothesis is not rejected then we conclnde that there 15 emdence o
support the claim that, for a given AE-C pair, subjects choose the AE and the C lotteries in eqnal
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propomioas. If the anll hypothesis of the test 13 rejected, then we conclnded that subjeces choose the
AFE and the C lotteries in different proportions. The rejection (acceptance) of the statistical amll
brpothesis implies that the research hypothesis 15 rejected (accepted) and we conclnde that there 15
emidence to support the clum that the basic ROCL indifference prediction is violated (satisfied) in a
given AE-C pair.

This 15 an appropriate test 1o nse for this treatment becanse it allows ns to test the equaliey of
propomioas implied by the ROCL prediction. More importanty, the basic assnmpuons: of the test
are satisfied by the data. As descobed by Sheskm (2004, p. 245), the assnmptions are: (i) each of the
r ohserrations are independent (1.e, the ontcome of one obzervation i= not affecred by the ontcome
of another obserraton), (i) each observation is randomly selected from a population, and (L) each
ohservation can be classified only two into mumally exclnsive categories. Assnmption (1) is satisfied
becanse each subject makes one and only one choice. Assnmption (1) is also satisfied becanse each
subject 15 randomly recmuted from the extensmre snbject pool of the EXCEN laboratory at Georpia
Smate Unrversiy. Finally (i) 45 also sausfied becanze subjects can oaly choose either the C lottery o
the AE lotrery i each of the 10 AE-C pairs.

Srarierical WNedl Hyporbesis of the Generalized Fisher Excar Tesr: The proportion of individnals
choosing the C lotteries is the same for all the AE-C lottery pairs.

The contingency table nsed in the test has the following stmemee:

Chaoice
Paxr AE Lottery C Lottery Total
AE-C pair 1 ald ni2 nif + wi2
AE-C pair 2 n27 n22 527 + n22
AE-Cpairs wrl wra wri + w2
Totl Yi12 o () | Kl 2 e (w2 B2, g (i +0i2)

The nnmbers in each cell is defined as follows. The symbol nll sepresents the aumber of
mdiridnals that chose the AE lottery when they were presented with the AE-C lottery pair 1. The
symbol 012 represents the nmmmber of individnals that chose the C lottery when they were presented
with the same AE-C pair 1. The snm nl1+n132 represents the total anmber of mbjects that were
presented with the AE-C lottery pair 1. The interpretation of nil and nd? fori=2 3, . r, can be
smilarly derived. The genesalized Fisher Exact test tests the amll hypothesis that the proportion of
subjects that choose the C lotery is smusucally the same for all of the £ AE-C lotery pairs nsed in
the table. Formally, the statistical amll hypothesis 1s Ho: 27 = 27= =g, where o = m? /(nil +

o) fori=1,2, 3, ., L

We nse this test in comjuaction with the Binomial probahility test appled indwvidually to
each of the AE-C lottery pairs to make stronger claims of the ovesll performance of ROCL. If the
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Binonual probability test does not reject its statistical onll hypothesis for each of the AE-C lottery
pairs and if the stansucal anll hypothess of the generalized Fisher Exact test 15 not rejected, we can
conclnde that the proportion of subjects that chose the C lottery 15 statistically the same for all AE-C
and therefore the ROCL indifference prediction 15 supported. If we can geject the statistical amll
hypothess of the generalized Fizsher Exact test, we can conclnde that at least in two of the AE-C
pairs the proportions of subjects that chose the C lottery are different. For example, suppose there
were only 2 AE-C lottery pairs. If the Fizher Exacr test rejects the nnll hypothess, we conclnde that
the proportions of subjects choosing the C lottery are not the same in the roo lottery pairs.
Therefore, even if one of the propormions was equal to 50%%, as ROCL predicts for any paven AE-C
lottery pair, the rejection of the statnstical aull wonld mmply that the other proportion 15 not
statistically equal to 30%. Consequently, we wonld reject the research hypothesis that subjects satisfy
ROCL and choose at random berween the AE and the C lottery in all of the AE-C lotrery pairs.

The generalized Fisher Exact test 15 appropanate to test the joint hypothesis that the
proporton of subjects that chose the C lottery 15 the same in all of the AE-C lottery pairs. The basic
asnmpuon: of the test are satshed by the dam. As descobed by Sheskin (2004, p. 424 and 306), the
assnmptions are: (1) each of the » ohservations are independent (1Le., the ontcome of one
abzerration is not affected by the ontcome of anather obzervation), (i) each obzesration is
randomly selected from a population, (i) each observation can be classufied only mro mnmally
exclnsive categonies, (v) the Fisher Exact test is recommended when the size of the sample 15 small,
and (v) many sonrces note that an additional assnmption 15 that the snm of the rows and colnmns of
the contngency table nsed in the Fisher Exact test are predetesmined by the reseascher.
Asmmptions (1)-(ir) are satisfied for the same reasons we explained mn the Binomaal probability test.
The Fisher Exact test i3 commonly nsed for small samples like ones instead of the Chi-square test of
homogenerty, which relies on larpe zamples to work appropoately. Finally, the last assnmption is not
met by onr data, howeves, Sheskin (2004, p. 506) claim that this 15 rarely met in pracrice and,
consequently, the test i3 nsed in contingency tables when “one or neither of the marginal snms is
determined by the reseascher ™

1-in-40 Treaument

The strategy to test the bazic prediction of indifference in the “Pay-1-in-40 componnd is
different from the one nsed m the “Pay-1-in-1-componnd.” The reason is that the stmetmre of the
data in each of the treatments is different. In the case of the 1-in-1 treatment, each of the 10 AE-C
lottery pairs genesated, nang the terminology of the statistical literatnee, an “independent”™ sample 1n
the sense thar there was no subject that made chosces over more than one AE-C lotrery pair. On the
contrary, in the 1-in-40 treatment we have mulnple “dependent™ samples. This means that several
subjects made choices over each of onr 10 AE-C lottery pairs, and therefore, we obtain 10
“dependent” samples. This snbtle difference has relevant implications for the trpe of nonparametric
test that one shonld nse to test any hypothess with the stmemee of the data we descobed. We nze
the Cochran () test to test the base ROCL predicton of indifference in the 1-m-40 trearment.

Sranirrical INuil Hysorbesis of the Cochran O Terr The proportion of subjects that choose the C is
the same in each of the 10 AE-C lotrery pairs.

The mformation needed to perform this test 1s captnred in a table of the following type:
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AE-C pair 1 AE-C par 2 AE-C pair 9 | AE-C pair 10
Subject 1 & o
Snbject 2 & £
Subject n Lpi o fos LA
Totl di43 a I'- | Ei.-.;__ alizg Ei.1 2 ol E.-l,l_. x :'-'n-'-'::'

The anmber in each cell is defined as follows. The symbaol -, , is a dichotomons vagable that
can be either 0 or 1 and records the chorce that was made when of snbject 1 was presented with the
AE-C lottery pairs. If snbject 1 chooses the AE lottery, ., is equal to O; but if the subject chooses
the C lottery instead, ¢, 1s equal to 1. the represents the number of individnals that chose the AE
lottery when 'Lherweze presented with the AE-C lottery pair 1. The symbals .oand ., age
sumilarly defined and record subject 1's choices in AE-C pairs 2 theongh 10, Sm:ula.tl‘r the 5'rmbn:rls ‘
2 G 30d g record the choices that snbject 1 made in each of the 10 AE-C lottery pairs. The sum
D Iepresents the total ammber of subjects, ont of the o mbjects, that chosze the C lotery
when they were presented with the AE-C lotrery paic /. The Cochran Q) test tests if the proporton of
subjects that chose the C lottery in each of the 10 AE-C lottery pairs are the same. Thus the
statistical ool hypothess 15 He s 2 =55 o Shig, where 5, = T,_, alng) fofor =12, 3, 10, The
acmal stanstic of the Cochran Q test involves information of these proportions, a3 well as
miormation per subject.

This yoine hypothesis is enongh to reject the indifference prediction. For example, snppoze
there were only 2 AE-C lottery pairs. If the Cochran () test repects the anll hypothesis, we conclnde
that the proportions of snlyjects choosing the C lottery are not the same in the two lottery pairs.
Therefore, even if one of the proportions i equal to 5075 as ROCL predicted, the test provides
evidence that the other proportion 15 not equal to 30%%. Conseqnently, we wonld reject the reseasch
bypothesis that subjects satisfy ROCL and choose at random berween the AE and the C lottery in
amy of the AE-C lottery pairs. In the text we prowide confidence intervals on the ammber of subjects
{omt of the 62 in onr sample) thar chosze the 5 lottery in each of the AE-C lottery. If for a grven AE-
C lottery pair the number 31 is not contained i the confidence interval, it implies thar with 93%
probabdity the proporion of the 62 subjects that choze the C lottery will not be 50%. We conld
have apply the Binomial probahility test to each of the 10 AE-C pairs i the 1-in-40 treatment.
Howrewer, this wonld not be appropoiate since the Binomial test assames “independence™ in the
sample in the stansucal sense which i3 not satsfied in the present treatment.

The Cochran () test is an appropriate test in this treatment becanse it allows ns o joindy
reject the mll hypothesis that smbjects choose the C lomery and the AF lottery in equal proportions
when the data set is composed by multiple dependent samples. The basic assnmplims of the test are
satishied by the data. As described by Sheskin (2004, p. 245), the assnmptions are: (i) each of the
subjects mspmd to each of the 10 AE-C lotner'r pairs, (i) one has to control for order effects and
(11) each ohserraton can be classified only into mmmally exclesive categories. Assnmptions (1) 13
satisfied since in the 1-in-40 treatment each snbjects respond to all 40 lottery pairs, which inclnde the
10 AE-C pairs. Assnmption (1) 15 also satisfied becanse i onr experiments each subject 15 presented
with the 40 lotreries in andom order. Assnmption (1) i35 tovially satisfied since in each of the AE-C



E. Chaive Parterns Wiere ROCL. Predices Consivient Choicer

Research Nudl Hysorbesin Snbjects choose the 5 lottery when presented with the 5-C lottery
pair if and only if they also choose the 5 lottery when presented with the coresponding 5-AE lottery
paie. This is eqnivalent to state the anll hypothesis nsing the C and AE lotteries but we chose to
work with the 3 lottery for smplicity. Therefore, RIOCL is satisfied if we can provide statisteal
evidence that the proportion of subjects that choose the 5 lottery when presented with a 5-C pair is
equal to the proportion of snbjects that choose al:o the 5 lottery when presented with the paired 5-
AFE pair.

Seruerre of dava serr We nse data from the 62 subjects m the 1-in-40 treatment who were
presented with each of the 30 lottery pairs in Tables 3.11 and 3.12. Each of the 13 5-C lottery pairs
m Table 3.11 has a cozresponding 3-AE pair in Table 3.12. Therefore, we can constmet 15
comparsons of pairs that constitute 15 consistency tests of ROCL. In the 1-in-40 we again have to
asznme that the independence amom holds. Therefore, we also nse data from the 1-in-1 treatment to
control for possible confonnds created by the RITAM. However, we have to assnme homogenesty in
sk preferences for the analysis of this partienlar treatment. The reason is that the response of any
subject to a partienlar 5-C lottery pair, is going to be compared with the response of another subject
to the paired 5-AF lottery pair. In terms of the stanistical literatmnre, the responses to each of the 5-C
or 5-AE pairs in the 1-in-1 constimte an “independent™ sample. Conversely, the responses to each
of the 5-C or 5-AE pairs in the 1-in-40 constimnte 30 “dependent™ samples since each of the 62
subjects responded to each of the 15 5-C and the 15 5-AE. Also, each of the 15 companisons is
constmeted by matching a 5-C pair with its corresponding 5-AF pair.

Analvsis of data from the 1-in-1 treatment

We nse the Fisher Exact test to evalnate the consistency predicted by BOCL in each of the
paired comparizons of 5-C pairs and 5-AFE pairs for which we have enongh data to condnet the test.
We also nse the Cochran-Idantel-Haenszel (CAH) as a joint test of the 15 paired compansons to
evalnate the overall performance of the ROCL conustency prediction.

Starierical INull Hysorbesis of the Firher Eseacr Tesr: For any given paired comparison, sabjects
choose the 5 lottery in the same proportion when presented with a 5-C pair and with irs
corresponding 5-AF lottery padr.

The table shows statistical tests on contingency tables of the followmng form:
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Chaoice
5 AE/C Total
5-AFE pair ] b atl
5-C paur s d c+d
Total ate itd atitetd

The posinons m each cell are defined as follows. The letter o represents the ammber of
mdiridnal: that chose the umple lottery when they wese presented with a 3-AE pair. The lerter ¢
represents the number of individnals that chose the simple lottery when they were presented with
the corresponding 5-C pair. The letter [ represents the anmber of sbjects that chose the AE lottery
when they were presented with the 3-AF lotrery pair. Similasrdy, the letter & represents the number of
subjects that chose the C lottery when they were presented with the comresponding 5-C lottery pair.
In the notaton of the previons note, the proportions nsed in the Fisher Exact test are defined as 7,
= g/ faté and =, =¢/ (cHdl

The Fisher Exact test for 2 % 2 contingency tables is appropoiate to test individnally i each
of the 15 marched pairs the hypothesis thar the proportion of mbjects that chose the 5 lottery iz the
same when they are presented with the 5-C or its corresponding 5-AF pair. The basic assnmprions
of the test are satnsfied by the data. As descobed by Sheskin (2004, p. 424 and 306), the assnmprions
age: (1} each of the » observations ase independent (1.e., the ontcome of one ohservation 1s not
affecred by the ontcome of another observaton), (i) each obserration iz randomly selected from a
population, (i) each ohserration can be classified oaly into mmmally exclnsive categones, (i) the
Fisher Exact test is recommended when the size of the sample is small, and (v) many soncces note
that an additional assnmption is that the snm of the rows and columns of the contingeney table nzed
m the Fisher Exact test are predetermined by the reseascher. Assnmptions (1)-(iv) are sansfied for the
same reazons we explained in the in the case of the gpenesalized Fisher exact test. Finally, as we
explained before assnmption (v) 15 not sansfied in onr data.

Srarirrical el Hysorbesis of the Cochran-Mawre-Haewrzel rerm In all of the 15 paired compansons
subjects choose in the same proportion the 5 lottery when presented with the 5-C lottery pair and its
paired 5-AE lottery pairs. More formally, the odds ratio of each of the 15 contingency tables
constmeted from the 15 paired compansons are jointy eqnal 1o 1.

If the CAMH test rejects the nnll hypothesiz, then we interpret this as evidence of ROCL-
nconsistent observed behawior. However, if we cannot reject the amll, we conclnde that snbjects
make choices according to the ROCL consistency predictions in the 15 pair comparisons even if we
find that the Fisher Exact tests rejects itz null hypothesis for some of the paired comparisons.

The CAMH s the appropoiate jount test to apply since it allows ns o pool the data of mnluple
contungency tables that satsfy the asmmptions needed for the Fisher Exact test and test jodndy the
homogenerty of the mhbles.
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Amnalysis of data from the 1-in-40 treatment

We nse the Cochran () test conpled with the Bonfersoni-Dinnn (B-IY) method to test the
statistical hypothess that snbjects choose the 5 lottery in the same proportion when presented with a
5-C lottery pair and with the corresponding 5-AFE lottery pair. The B-D method allows us to test if,
in each of the 15 paired comparisons of 5-C and 5-AFE lottery pairs, the obzerved difference in the
proporion of subjects that chose the 5 lottery is statistically sipmificant.

The B-D method 15 a_perr-bor procednre that 1s conducted after calenlating the Cochran O
test. The first step is to condnet the latter test to reject or not reject the mnll hypothesis that the
proportons of individnals that choose the 5 lottery are the same m all 15 5-C and 15 5-AE lottery
pairs. If thas nmll 13 rejected the B-D method involves calenlating a eritical value & (see Sheskan, 2004,
p- 871) for the definirion) that allows to evalnate the statistical significance of the difference in
propormions and that takes into acconat all the informanon of the 30 lottery pairs and a confidence
level of =

Srarieeienl Null Hyparbesis in each gf rhe Pair Comoarizons wsing 1he B-I) merbod: Define 5, as the
proportion of subjects that choose the 5 lomery when presented with a grven 5-AF lotrery pair.
Smilarly, define 5, as the proportion of subjects that chose the 5 lottery in the paired 5-C lotrery
pair. The statistical mmll hypothesis is that, for 3 given paired comparison, =5

The B-D method rejects the statsucal anll hypothesis of |2-2:|= o. In tdus caze we wonld
conclnde that the ohserved difference in proportions in a grven paired companison 1s statistically
sipnificant. This is 2 moge powerfnl test than condneting individnal tests for each paired companison
becanse the corical valne o takes into acconat the information of all of the 15 companisons. See
Sheskin (2004, p. §71) for forther details of the B-D method.

The Cochran ©) test conpled with the B-I method are appropoate to test in thes treatment
the anll bypothews thar sabjects choose the 5 lottery in the :ame propomion when presented with a
given 3-C pair and with its corresponding 5-AFE lottery, and the data set 15 composed by multiple
dependent samgples in the sense we expluned above. The basic assnmptions of the Cochran Q) test
are satisfied by the data. As descrnibed by Sheskn (2004, p. 243), the assnmpnons are: (1) each of the
subjects respond to each of the 15 5-C lottery pairs and the 15 5-AE lottery pairs, (it) one has 1o
control for ordes effects and (1) each observation can be classified only into mntmally excluzwe
categories. Asinmptions (1) is satisfied since m the 1-in-40 weatment each subjects respond to all 40
lottery pairs, which inclnde the 15 3-C pairs and the 13 5-AE pairs. Assnmption () 15 also sausfied
hecanse in onr experiments each subject 13 presented with the 40 lottenies in random order.
Azmmption (i) i3 termially satisfied since in each of the AE-C pairs the mbjects have to make a
dichotomaons choice. The B-D) method applied to the Cochran Q) test does not reqnire any extra
assnmptions. However, the calenlation of the cotical valne to make the comparnisons requires to
define a family wise Type I ecror rate (xpy). Sheskin (2004, p. 871) claims that “[w]hen a imited
ommber of companisons are planned prior to collecting the data, most sonsces ke the posmion that
a zesearcher i3 not obliped to control the valne of a . In mch a case, the per companson Type I
error rate () will be equal to the prespecified valne of alpha [the confidence level].”

We are also mrerested mn smdming the parterns in the miolation of ROCL. We want to test the
statistical validity of differences in switching behavior. A pattern inconsistent with ROCL would be
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subjects choosing the 5 lottery when presented with a grven 5-C lottery pair, but switching to prefes
the AE lottery when presented with the matched 5-AE pair. We constmet 2 ¥ 2 contingency tables
that show the number of snbjects in any given matched pair who exhibit each of the fonr possible
choice parterns: (1) always chooung the 5 lottery; (i) choosing the 5 lottery when presenred with a 5-
C pair and switching to prefer the AE lottery when presented with the matched 5-AE pair; (1)
choosing the C lottery when prezented with a 5-C pair and switching to prefer the 5 lottery when
presented with the matched 5-AF; and (iv) choosing the C lottery when presented with the 5-C
lottery and preferning the AE lottery when presented with the matched 5-AE. We nse the IMcNemar
test to evaluate the statistical sipnificance of patterns in the wolations of ROCL.

Srarirrieal INuli Hyporbesis gf the McNemrar Tem Subpects exhibit the discordant choice patterns
(11} and (it1) in equal proportons withm each set of matched pairs.

If the statistical aull hypothesis is rejected then we can claim thar there is an statistical
difference in the two possble patterns of switching behavior that molate ROCL.

The test reqnires to constmet a continpeney tables of the following foom:

Simple Lottery vs. Acmanally-
Equivalent
Laft Right Total
Lottery Lottery

Left lotery 2 i ath

Simple Lottery ] , .
_— Ripht lottery £ g cthd

Compound Lottery Total atr Ft+d atitetd

The posinons m each cell are defined as followrs. The lemter o represents the smmber of
mdiridnals that chose the left lottery both when they wese presented with a pair of a simple lotery
and a componnd lottery (5-C) and a corresponding pair that has the same simple lottery and the
acmarially-eqnivalent lottery (5-AE) of the componad lottery. The simple lottesies, and therefore the
componad and therr acmarially equivalent lotteries, age always mn the same posmion across. For the
purpose of the smtstical tests, the simple lottenies ace always the left lottenies; the componnd and
their acmarially-equivalent lotteries are abways the right lottedes. Therefore, o is the nnmber of
mdiridnals that chose the simple lottery when the were presented with a given pair of 3-C and s
corresponding pair of 5-AE. The letter - represents the number of individnals that chosze the simple
lottery when they were presented with a given pair of 5-AE but that chose the componad lottery
when they were presented with corresponding pair of S-C.

The McMNemar test is an appropriate test to apply in this context. The assnmptions of the test
aze (See Sheskin, 2004, p. 634): (1) the sample of n subjects has been randomly selected from the
populaton, (i) each of the n onservations mn the contingency table is independent of other
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observations, (i) each observation can be classified oaly into mmmally exclnsire catepories, and (iv)
the test should not be nsed with extremely small samples. Asmmptions (1) and () are satisfied for
reazons we explained before. Even thongh there is no agreement of what an small sample iz for the
MeMemar test, we follow the recommendation of the iteramse and prowide in onr resnlts the exact
probabiity of the test. Asmmption (i) is not satsfied snce each subject respond makes choice over
more than one pair. However, the test sull allows ns to doaw conclnsions abont the discordant
switching patterns but does not allow to make cansal inferences, which 15 enongh for our purposes.
In fact it will allows ns to conclnde if there 15 an statistical difference between the too possible
choice patterns that contradiet ROCL Nevertheless, it will not allow ns to conclnde anything abont
the sonrce of this difference (see Sheskin, 2004, p. 639]).
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3.12 Appendix F. Additional Econometric Analysis

3.12.1 Analysis of Data from the 1-in-1 Treatment

Assuming homogeneity in preferences, we find that the model that best describes the data
is the one that allows for the source-dependent version of RDU, and conditional on this
model there is no evidence of violations of ROCL. Both the Vuong test and the Clarke test
provide statistical evidence that the model that allows for the source-dependent version of
the RDU is the best model to explain the data in the 1-in-1 treatment.** Table 3.14 shows
the parameter estimates of the two models we consider. In particular, panel A shows the
estimates for the model that allows for the source-dependent version of RDU. We find that
the estimates for parameters r, rc, v and vc are 0.62, 0.14, 0.77 and -0.19, respectively. A
test of the joint null hypothesis that rc = y¢ = 0 results in a p-value of .29. This implies
that there is no statistical evidence for source-dependency both in the utility and the
probability weighting functions, and therefore no evidence of violations of ROCL when
homogeneity is assumed. If we had assumed that subjects behave according to the
sourcedependent EUT, we would have incorrectly concluded that there is evidence of
violations of ROCL as suggested by the estimate of rc equal to 0.27 which has a p-value of
0.008 (see panel B of Table 3.14). A joint test of 7 and rc results in a p-value less than
0.0001. This highlights the importance of choosing the preference representation that best
characterizes the way in which individuals make choices.

Although the model that best characterizes behavior in the 1-in-1 treatment is the
sourcedependent version of the RDU model, there is evidence of marginal diminishing
returns but no evidence of probability weighting.** The parameter estimates forr and ~ are
equal to 0.62 and 0.77. Figure 3.15 shows the functions implied by these estimates and are
plotted in the relevant domains. A test for the hypothesis that v = 1 results in a p-value of
0.23, which provides no evidence of probability weighting.

3.12.2 Analysis of Data from the 1-in-40 Treatment

Assuming homogeneity, we find that the model that best describes the data is the one that
allows for the source-dependence version of RDU, and conditional on this model we find
evidence of violations of ROCL. Both the Vuong test and the Clarke test provide evidence
to support the source-dependent RDU as the best model to explain the data in the 1-in-40
treatment.*® An statistical test for the joint null hypothesis that rc = y¢ = 0 results in a
p-value less than 0.0001.

43When we assume homogeneity in risk attitudes, the Vuong test statistic is -1.45 in favor of the source-
dependent RDU, with a p-value of .073. Further, the Clarke test also gives evidence in favor of the source-
dependent RDU with a test statistic equal to 44.

4The Vuong and the Clarke tests provide evidence to choose the model that bests characterize data
between two models but are agnostic about the statistical significance of the winning model.

45When we assume homogeneity in risk attitudes, the Vuong test statistic is -5.16 in favor of the source-
dependent RDU, with a p-value less than 0.001. Further, the Clarke test also gives evidence in favor of the
source-dependent RDU with a test statistic equal to 935.
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Table 3.14: Estimates of Source-Dependent RDU and EUT Model Allowing for Heterogeneity

Data from the 1-in-1 treatment (N=133). Estmates from the Fechner essor parameter amitted

A Songee-Dependent BDTNITL=-51.82)

| Coef. std. Err. z P | 2] |95% Conf. Interval)
e | 6is2909 0669022  9.24 0.000  .4871648  .7494169
r_rocl I 1410226 LO922965 1.53 0.127 -.DI9ETIE 3219204
I L TE99E4 8 2193429 .98 0.000 < 390E70E 1.14%0199
L | -. 1955013  .1819329 -1.07 0.2B3 -.5520B32 - 1610606
(Ha: re = ¢ = 0; p-value = 0.2E48)
(Ha: r =y = 07 p~value < O.00DL)
B. Sonsce-Dependent Version of EUT (I1.=-34 24
| Robus €
| Coet. std. Err. F3 P | 2| [95% Cont. Interdal)]
r | s7aesaz 0731694  7.93  0.000  .4365438  .7233626
rc I 2717936 - 1D2E005 2.64 D.DDE .O703083 -4T32TEY

[He: rerc=0: p-value < 0.0001)

Table 3.15 shows the estimates for r, rc, v and e are 0.57, 0.11, 1.09 and -0.40,
respectively. This implies that the nature of the violation has two components. First, the
estimates suggests that when a typical individual is presented with a compound lottery he
behaves as if the utility function was more concave. The linear combination of parameters
r 4 rc results in an estimated coefficient of 0.68 with a p-value less than 0.0001 and a test
of the null hypothesis of r» + rc¢ = 0.57 results in a p-value equal to 0.0001. Thus a typical
subject would increase his utility risk aversion parameter from 0.57 to 0.68 when presented
with a compound lottery. Second, there is no evidence of probability weighting when
subjects are presented with simple lotteries but there is evidence of probability optimism
when subjects evaluate compound lotteries. A test on the probability weighting parameter
for v = 1 results in a p-value equal to 0.28 and the linear combination v + ¢ results in an
estimated parameter equal to 0.69 with a p-value less than 0.001. Hence, when presented
with a simple lottery a typical subject displays no probability weighting but does exhibits
diminishing marginal returns; however, when facing a compound lottery, a typical subject
behaves as if the utility function was more concave and the probability weighting function
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displays probability optimism. Figure 3.16 shows how the concavity of the utility function
and the probability weighting function differ when individuals are presented with a simple
or a compound lottery.

Table 3.15: Estimates of Source-Dependent RDU and EUT Model Allowing for Heterogeneity
Data from the 1-in-40 treatment (IN=2480= 62 Subjects * 40 choices). Estmates from the Fechner

errof parameter omitted

A. Sonrce-Dependent RDU (T1L=-1460.5T)

Rsbut &

I Coet. std. Erfr. F3 P | 2| [95% Cont. Interdal)]
;_“ -T a SEFEIS;}E,____?EEEESE Ei. 35 I:I.ﬁli-}[:l EE; 51 i .514550;
rc I . 1090157 -0231279 4.71  O.0DD .DBEIGESE 1543456

|I 1.088315 . 081601 13.34  0.000 -92B3B02 1.24825
e |I -. 3057716 0587485 -6.74  0.000 -.5109165  -.2BDG26E

(Ho: rc = y& = 0; o-value<. 0L
(Ho: F = ¢y = 0; g-value=]. 00001}

B. Version of EUT (IT.=-1512.45)

| Robus €

| Coef. cstd. ErrF. z P | 2] |95% Conf. Interval)
——— e - - —— - -
r I 5906206 0352857 16.74 0. 0] 5214708 .G59TEE3

|

-.007LESS 0194071 -0.37  0.711 - 52233 .0308514

[ g
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Figure 3.15: Estimated Functions from the RDU Specification in the 1-in-1 Treatment As-
suming Homogeneity in Preferences

Utility Function Estimated from
the RDU Model Specification
(r=0.62)

35
Lottery Prizes in Dollars (x)

Probability Weighting Function Estimated from
the RDU Model Specification
(v=0.77)

0 2 4 .6 .8 1
Probability (p)

—_— = - =0.77
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Figure 3.16: Estimated Functions from the RDU Specification in the 1-in-1 Treatment As-
suming Homogeneity in Preferences

Utility Function Estimated from
the RDU Model Specification
(r=0.57 and r+rc=0.68)

10 12 14 16
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Lottery Prizes in Dollars (x)

u(.) for Compound Lotteries  ————- u(.) for Simple Lotteries

Probability Weighting Function Estimated from
the RDU Model Specification
(v=1.09 and y+yc=0.69)
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Probability (p)
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----------- (.) for Simple Lotteries




3.13 Appendix G. Detailed Binomial Test Results

The following tests are conducted over the actuarially-equivalent and compound lottery

pairs in Table 3.13 (Pairs 31-40).

3.13.1 Binomial tests for treatment 1-in-1

220

We do not report the test for pairs 31, 35 and 35 because for the first one there was only
one observation and for the last two there were no observations at all.
Note: In the following Binomial tests “N” is the total size of the sample for each lottery

pair and “Observed k” is the number of subjects (out of the N subjects) that chose the

compound lottery.

Pair 32

Variable

Pair 33

chotce_aed~3

Prik »= §)
Prik == 5J
Prik <= 2 or
Pair 36
Variable

chotce_aed~6

Prik »= 1)
Prik == 1)
Prik <= 1 or
Pair 37
Variable

chotce_aed~7

1)
13

Prik =
Prik <
Prik =

1 ork

Obzerved k

Expected k

Aszumed p

Observed p

0. 125000
1. 00003}
0. 250000

Obzerved k

(one-sided test)
(one-sided test)
(two-sided test)

Expected k

0. 50003

Aszumed p

1.00000

Observed p

5l

0.226563
0.93750)
0.453125

Obzerved k

(one-sided test)
(one-sided test)
(two-sided test)

Expected k

0. 50000

Aszumed p

Observed p

41

0.96E750
0. 187500
0. 375000

Obzerved k

(one-sided test)
{one-sided test)
(two-sided test)

Expected k

0. 50000

Azzumed p

0.20000

Obzerved p

1)

0. 750000
0.7 50000
1. 00003}

(one-sided test)
(one-sided test)
(two-sided test)

0. 50000

0.50000



Fair 38
Variable N Observed k  Expected k  Assumed p  Observed p
choice_asd-s | ' T s 0.50000 0.33333
Prik == 1) = 0,875000 (one-sided test)
Prik == 13 = 0,500000 Cone-sided test)

Prik == 1 or k == 2) 1000000 (two-sided test)

Fair 39
Variable N Observed k  Expected k  Assumed p  Observed p
choice_aed-s | 5 s 2.5 0.50000 0.80000
Prik == 4) = 0, 187500 (one-sided test)
Prik == 42 = 0.,966750 (one-sided test)

Prik == 1 or k »= 4) 0.375000 (two-sided test)

Fair 40
Variable N Observed k  Expected k  Assumed p  Observed p
choice_as-10 | & 3 3 0.50000 0.50000
Prik == 32 = 0,656250 C(one-sided test)
Prik == 32 = 0.,856250 (one-sided test)

Prik == 3 or k »= 3) 1000000 (two-sided test)

221
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3.14 Appendix H. Detailed Fisher Exact Test Results

The following tests are conducted by matching each of the 15 simple and compound lottery
pairs in Table 3.13 (Pairs 1-15) with a corresponding pair in the set of the 15 simple and
actuarially-equivalent lottery pairs in Table 3.13 (Pairs 16-30).

Pair 1 ws. Pair 1&

| Choice
Paire | 5 C/RE | Total
B e e
S5-AE Pair 16| 3 o | 3
§-C Pair 1 | 1 1 | 2
o e e e
Total | 4 1 | 5
Figher'"a exact = 0.400
l-gided Fisher's exackt = 0.400
Pair 3 ws. Pair 18
| Choice
Pairs | g C/RE | Total
g e
S-AE Pair 18| 3 3 | &
§-C Pair 3 | [i] 2| 2
o o e
Total | 3 4 | 8
Figher"sa exact = 0.464
l-zided Fisher's exact = 0.357
Pair § ws. Pair 20
| Choice
Paire | 5 C/RE | Total
e o e =
S5-AE Pair 18| [i] 1 1
5-C Pair 5 | 2 o | 2
o e e e
Total | 2 1 | 3
Figher'a exact = 0.333
l-gided Fisher's exact = 0.333



Pair & wg. Pair 21

| Choice
Pairse | 5 C/RE |
———————————— ettt
S-AE Pair 21| 2 1|
§-C Pair & | 2 z |
——————————— Hmmmmmmmmmmmmmm—em—eoo--4
Total | 4 3 |

Figher's exact =
l-sided Fisher's exact =

Pair 7 wvs. Pair 22

| Choice
Pairs | 5 C/RE |
------------ e e L P
S-AE Pair 22| 4 o |
§-C Pair 7 | 5 g |
———————————— e ettt
Total | 9 4 |

Figher's exact
l-sided Fisher's exact

Pair @ Pair 23
| Choice
Pairse | 5 C/RE |
———————————— B e e 3
S-AE Pair 23| 1 2
5-C Pair 8 | 2 z |
———————————— B e e
Total | 3 4 |
Figher's exact =
l-sgided Fisher's exact =
Pair 9 wg. Pair 24
| Choice
Pairs | g C/RAE |
———————————— B e e 3
5-AE Pair 24| a 3
5-C Pair 9 | = 1 |
———————————— B T 3
Total | g 4 |

Figher's exact
l-sided Fisher's exact
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1.000
0.629

0.228
0.17&

1.000
0.629

0.048
0.048



Pair 11 wve. Pair 2&

| Choice
Pairs | 5 C/AE |
———————————— o m e ey
S-AE Pair 26| 3 2 |
§-C Pair 11 | 5 g |
———————————— B T it
Total | B &

Fisher's exackt =
l-gided Fisher's exact =

Pair 12 we. Pair 27

| Choice
Paire | g C/RE |
———————————— B i et
S-AE Pair 27| 4 1 |
5-C Pair 11 | 2 o |
———————————— B
Total | [ 1
Figher's exact =
l-gided Fisher's exact =
Pair 13 Pair 28
| Choice
Pairs | 5 C/AE |
———————————— B et
S-AE Pair 28| 2 2|
5-C Pair 13 | 1 o |
------------ B s
Total | 3 2

Figher's exact =
l-sided Fisher's exact =

Pair 15 we. Pair 30

| Choice
Paire | g C/RE |
———————————— e e
S-AE Pair 30| 3 0|
5-C Pair 15 | o 1
———————————— e et e
Total | 3 1

Figher's exact
l-sided Fisher's exact
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1.000
0.657

1.000
0.714

1.000
0.600

0.250
0.250
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3.15 Appendix I. Detailed McNemar Test Results

Cases | Exposed Unexposed | Total
_________________ e
Exposed | 147 97 | 44
Unexposed | 182 204 | 186
_________________ o
Total | 629 oL | 230
McHemar's chi2({l)} = 25.90 Prob > chi2 = 0.0000
Exact McHemar significance probability = 0.0000
Froportion with factor
Cases .5B454562
Controls .ETE344]1 [95% Conf. Interwvall
difference -.0913978 -.1271815 -.0556142
ratic .B54B6485 .B177913 .9146481
rel. diff. -.282392 -.405559 -_1592251
odds ratio 532967 .41218939 .EBE5842 [exact)

Note: the contingency table abowve was constructed by summing each of
the positions in the 15 contingency tables below. For example, the
number in the first position (column 1, row 1) in the table abowe was
calculated by summing the numbers in the first position in each of the
15 contingency tables below.

Pair 1 wg. Pair l&

| Controls |
Cases | Exposed  Unexposed | Total
_________________ o o e e
Expoeed | 22 2 | 24
Unsxposed | 3z & | 38
_________________ e
Total | 4 8 | 62
McHemar's chi2{l)] = 26.47 Prob > chi2 = 0.0000
Exact McNemar significance probability = 0.0000
Proportion with factor
Cases .3BT709&8
Controls ~BTO96TT [95% Conf. Interwvall
difference -.483871 -.63953B5 -_.3282034
ratic .4444444 .3235546& 6105024
rel. diff. -3.75 -&.B63468 -.6365323

odds ratio L0E25 .0072572 .24409784 [exact)



Pair 2 wg. Pair 17

| Controls
Cases | Exposed
_________________ o mm e
Exposed | E8
Unsxposed | 3
_________________ o e
Total | 61
McHemar's chil2{l)} = 1.00

Exact McNemar significance probability

Proportion with factor
Cases .8516125
Controls -983871

difference -.0322581

ratio .8672131

rel. diff. -2

odds ratio .3333333

Pair 3 ws. Pair 18

| Controls

Cases | Exposed
_________________ P

Expoeed | £l

Unsxposed | 17
_________________ S

Total | 55

McHemar's chi2({l)} = 14 .22

Exact McNemar significance probability =

Proportion with factor
Cases .6290323
Controls .BBTO09&8

difference -.2580&645

ratio .7090809
rel. diff. -2.2B5714
odda ratio .0588235

Unexposed | Total
____________ fommmmm e
1| =5
o | 3
____________ P
1| 62
Prob > chi2 = 0.3173
= 0.6250
[95% Conf. Interwvall
-.11109498 . 0455837
.9060347 1.032522
-8.789514 4.789514
L00E3485 4.151441
|
Unexposed | Total
____________ P
1| 19
& | 23
____________ e e e
7 62

Prob > chi2 = 0.0002

0.0001

[95% Conf. Interwvall
-.3819297 -.1241993
.5828527 . 8485489
-4.438998 -.1324308
.0014075 . 3754091

(exact)

[exact)
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Fair 4 wvs. Pair 19
| Controls
Caseas | Exposed Unexposed Total
_________________ S
Exposed | 7 & 13
Unexposed | 7 42 40
_________________ S S
Total | 14 48 62
McHemar's chi2{l) = 0.08 Prob > chi2 = 0.7B815
Exact McMNemar significance probability = 1.0000
Proportion with factor
Cases 2096774
Controls . 2258085 [95% Conf. Interwvall
difference -.016129 -.1461672 -1139091
ratic .9285714 .549548¢E 1.56T8E4
rel. diff. -.0208333 -.169583 -1279163
odds ratio .B571429 .2379799 2.978588 [exact)
Pair § ws. Pair 20
| Controls
Cases | Expoaed Unexposed Total
_________________ U S
Exposed | 12 [ 18
Unexposed | 13 31 44
_________________ S
Total | 25 37 62
McHemar's chi2({l} = 2.58 Prob » chi2 = 0.1083
Exact McHNemar significance probability = 0.1671
Proportion with factor
Cases 2803226
Controls .4032258 [95% Conf. Interwvall
difference -.1129%032 -.2639309 .0381244
ratic .72 .481312& 1.07T055
rel. diff. -.1891892 -.4409851 .0&6260E87
odds ratio .4615385 .1438515 1.301504 [exact)
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Pair & ws. Pair 21
| Controls |
Cases | Exposed  Unexposed | Total
_________________ P SO
Exposed | 5 & | 41
Unexposed | 11 10 | 21
_________________ TP
Total | 46 16 | 2
McHemar's chi2{l} = 1.47 Prob » chi2 = 0.2253
Exact McHemar significance probability = 0.3323
Proportion with factor
Cases 6612803
Controls . 7419355 [95% Comf. Interwvall
difference -.0B06452 -.2255601 .DE642697
ratic .B913043 .T309666 1.073554
rel. diff. -.3125 -.8911317 2681317
odda ratio (5454545 .1656336 1.609034 [exact)
Pair 7T Pair 22
| Controls |
Cases | Exposed  Unexposed | Total
_________________ P SO
Exposed | 26 B8 | 34
Tnexposed | 16 1z | 28
_________________ T
Total | 42 20 | &2
McHemar's chi2{l} = 2.67 Frob » chi2 = 0.1025
Exact McHemar significance probability = 0.151&
Proportion with factor
Cases 5483871
Controls 67741594 [95% Comf. Interwvall
difference -.1290323 -.2966623 .0385978
ratioc .BDS5238H .62THR3IT 1.04371
rel. diff. -.4 -.9680515 .1680515
odda ratio .5 .1B525B& 1.238238& [exact)
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Pair 8 wg. Pair 23
| Controls |
Cases | Exposed  Unexpossd | Total
_________________ S S
Exposed | 23 11 | 34
Unexposed | 11 17| 28
_________________ e
Total | 34 28 | &2
McHemar's chi2{l) = 0.00 Prob > chi2 = 1.0000
Exact McHNemar significance probability = 1.0000
Proportion with factor
Cases 5483871
Controls -5483B71 [95% Conf. Interwall
difference 0 -.164404 164404
ratic 1 .T630B66E 1.3104&7
rel. diff. 0 -.3283231 .3283231
odds ratio 1 .3831661 2.543454 [exact)
Pair 9 Pair 2
| Controls |
Cases | Exposed  Unexposed | Total
_________________ S S
Exposed | E & | 43
Unsxposed | 9 10 | 19
_________________ S S
Total | 46 16 | 62
McHemar's chi2{l) = 0.60 Prob = chi2 = 0.4386
Exact McNemar significance probability = 0.6072
Proportion with factor
Cases 6035484
Controls . 74159355 [95% Conf. Interwall]
difference -.0483871 -.1BE3563 .0B95821
ratic 0347826 . TBB1077 1.108755
rel. diff. -.1875 -. 7045 L3285
odds ratio .GEEEEET .1952634 2.097224 [exact)
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Pair 8 wg. Pair 23
| Controls |
Cases | Exposed  Unexpossd | Total
_________________ S S
Exposed | 23 11 | 34
Unexposed | 11 17| 28
_________________ e
Total | 34 28 | &2
McHemar's chi2{l) = 0.00 Prob > chi2 = 1.0000
Exact McHNemar significance probability = 1.0000
Proportion with factor
Cases 5483871
Controls -5483B71 [95% Conf. Interwall
difference 0 -.164404 164404
ratic 1 .T630B66E 1.3104&7
rel. diff. 0 -.3283231 .3283231
odds ratio 1 .3831661 2.543454 [exact)
Pair 9 Pair 2
| Controls |
Cases | Exposed  Unexposed | Total
_________________ S S
Exposed | E & | 43
Unsxposed | 9 10 | 19
_________________ S S
Total | 46 16 | 62
McHemar's chi2{l) = 0.60 Prob = chi2 = 0.4386
Exact McNemar significance probability = 0.6072
Proportion with factor
Cases 6035484
Controls . 74159355 [95% Conf. Interwall]
difference -.0483871 -.1BE3563 .0B95821
ratic 0347826 . TBB1077 1.108755
rel. diff. -.1875 -. 7045 L3285
odds ratio .GEEEEET .1952634 2.097224 [exact)
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FPair 10 wes. Pair 25

| Controls |
Cases | Exposed  Unexposed | Total
_________________ U S
Expoeed | 45 3 | 48
Unexposed | 12 2 | 14
_________________ e
Total | BT 5 | 62
McHemar's chi2{l)] = 5.40 Frob » chi2 = 0.0201
Exact McHNemar significance probability = 0.0352
Proportion with factor
Cases .7741835
Controls -9193548 [95% Conf. Interwvall
difference -.1451613 -.2782711 -.0120515
ratic .B421053 .T283504 .9736266
rel. diff. -1.8 -4.340404 7404037
odds ratio .25 .0452729 . 9283782 [exact)
Pair 11 Pair 26
| Controls |
Cases | Exposed  Unexposed | Total
_________________ U S
Expoeed | 27 11 | 38
Unsxposed | 9 15 | 24
_________________ U S
Total | 36 26 | 62
McHemar's chi2{l) = 0.20 Frob » chi2 = 0.6547
Exact McNemar significance probability = 0.B238
Proportion with factor
Cases 6125032
Controls .SBDE452 [95% Conf. Interwvall
difference .0322581 -.1250174 .1B95335
ratic 1.055556 .B32B37 1.337834
rel. diff. .0T765%231 -.2489752 4008214

odds ratio 1.222222 460447 3.336029 [exact)



Pair 12 ws. Pair 27
| Controls
Casea | Exposed
_________________ e
Exposed | 26
Unexposed | g
_________________ e —
Total | is
McHemar's chi2({l)} = 1.09

Exact McHemar significance probability

Proportion with factor

Cases 6451613
Controls 5645161
difference .0BOG452
ratio 1.142B57
rel. diff. .1BS51B5Z2
odda ratio 1.555556
Pair 13 wvs. Pair 28
| Controls
Cases | Exposed
_________________ Fommmmmmmm e
Exposed | 44
Unsxposed | 10
_________________ e m e e
Total | 54
McHemar's chi2{l) = 7.36

Exact McNemar significance probability

Proportion with factor
Cases .T258065
Controls .BT09&77

difference -.1451613

ratio .B333333
rel. diff. -1.125
odds ratio L1

Unexposed | Total
____________ S
14 | 40
13 | 232
____________ e ————-
27 | &2
Prob » chi2 = 0.2971
= 0.4049
[95% Conf. Interwvall
-.0B5TSE4 2470467
.BERETE 1.465244
-.1290666 4994359
.B271247 4.074174
|
Unexposed | Total
____________ o mmmm e mem
1| 45
7 17
____________ o mmm e
B | 62
Prob » chi2 = 0.00&7
= 0.0117
[95% Conf. Interwvall
-.2597136 -.030605
. T3038B02 9507986
-2.305487 .05940E89
.0023043 .T02939

[exact)

[exact)



Unexposed

Pair 14 ws. Pair 29
| Controls
Casas | Exposed
_________________ -
Exposed | 34
Unsxposed | 12
_________________ o m e e
Total | 46
McocHemar's chi2 (1} = 0.80

Prob > chi2 =

Exact McNemar significance probability

[95% ConfE.

-.2211047
.T4T79736
-.B6248B7

.2363844

Unexposed

Proportion with factor
Cases 67741594
Controls . 7419355
difference -.06451&1
ratic .9130435
rel. diff. -.25
odda ratio .666666T
Pair 15 Pair 30
| Controls
Cases | Exposed
_________________ o e
Exposed | 13
Tnexposed | 11
_________________ P
Total | 4
McHemar's chi2{l} = 0.17

Prob > chi2

Exact McHemar significance probability

Proportion with factor

Cases
Controls

.4193548
.3B709&8

difference
ratic

rel. diff.

odda ratio

.0322581
1.083333
0526316

1.181818

[95% ConE.

-.1385308
.T376116
-.193308&

.4885581

0.3711
0.5034

Intervall

.0920725
1.1145432
3624887

1.773587

0.6831
0.8388

Intervall

2030489
1.59109&
.2985718

2.013432

[exact)

[exact)



3.16 Appendix J. Detailed Wald Test Results for Predictions

l-in-1 Treatment: Wald tests for the aull hypothesis ofr = 0
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Chapter 4

Inducing Risk Neutral Preferences
with Binary Lotteries: A

Reconsideration

by Glenn W. Harrison, Jimmy Martinez-Correa and Todd J. Swarthout

Abstract

We evaluate the binary lottery procedure for inducing risk neutral behavior. We
strip the experimental implementation down to bare bones, taking care to avoid any
potentially confounding assumption about behavior having to be made. In particular,
our evaluation does not rely on the assumed validity of any strategic equilibrium
behavior, or even the customary independence axiom. We show that subjects sampled
from our population are generally risk averse when lotteries are defined over monetary
outcomes, and that the binary lottery procedure does indeed induce a statistically
significant shift towards risk neutrality. This striking result generalizes to the case in
which subjects make several lottery choices and one is selected for payment.
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4.1 Introduction

Experimental economists would love to have a procedure to induce linear utility functions.
Many inferences in economics depend on risk premia and the extent of diminishing
marginal utility.! In fact, the settings in which these do not play a confounding role are the
special case. Procedures to induce linear utility functions have a long history, with the
major contributions being Smith (1961), Roth and Malouf (1979) and Berg et al. (1986).
Unfortunately, these “lottery procedures” have come under attack on behavioral grounds:
the consensus appears to be that they may be fine in theory, but simply do not work as
advertized.

We review that evidence. The first point to note is that the consensus is simply an
oft-repated falsehood. There are several instances where the lottery procedures have indeed
shifted choices in the predicted direction, and simple explanations provided to explain why
others have generated negative findings (e.g., Rietz, 1993). The second point is the most
important for us: none of the prior tests have been pure tests of the lottery procedure.

Every previous test requires one or more of three auxiliary assumptions:

e That the utility functions defined over money, or other consequences, are in fact
non-linear, so that there is a behavioral problem to be solved with the lottery

procedure;

e That behavior is characterized according to some strategic equilibrium concept, such

'Risk attitudes are only synonymous with diminishing marginal utility under expected utility theory.
But diminishing marginal utility also plays a confounding role under many of the prominent alternatives to
expected utility theory, such as rank-dependent utility theory and prospect theory.
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as Nash Equilibrium; and/or

e That the independence axiom holds when subjects in experiments are paid for 1 in K

choices, where K>1.

Selten et al. (1999, Table 1) pointed out the existence of the first two confounds in the
previous literature. Their own test employed the third assumption as an auxiliary
assumption, and found no evidence to support the use of the lottery procedure. We
propose tests that avoid all three assumptions.

Our procedures are very simple. First, we ask subjects in one treatment to make a single
choice over a pair of lotteries defined over money and objective probabilities. They make
no other choices, hence we do not need to rely on the Random Lottery Incentive Method
(RLIM) and the Independence Axiom (IA); these terms are defined more formally later.
This treatment constitutes a theoretical and behavioral baseline, to allow us to establish
that the typical decision maker in our population exhibits a concave utility function over
these prizes.?

Second, we ask subjects in another treatment to make the same choices but where they
earn points instead of money, and these points convert into increased probability of
winning some later, binary lottery. The choices are the same in the sense that they have
the same numerical relationship between consequences (e.g., if one lottery had prizes of $70
or $35, the variant would have prizes of 70 or 35 points), and the same objective

probabilities. The subjects are also drawn at random from the same population as the

2This is also true if we estimate a structural model with rank-dependent probability weighting. All of our
choices involve the gain domain, so the traditional form of loss aversion in prospect theory does not apply.
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control treatment. Between-subjects tests are necessary, of course, if one is to avoid the
RLIM procedure and having to assume the TA.

At this point there are two ways to evaluate the lottery procedure. One is to see if behavior
in the points tasks matches the theoretical prediction of choosing whichever lottery had the
highest Expected Value (EV). The other is to see if it induces significantly less concave
utility functions than the baseline task, and indeed generates statistical estimates consistent
with a linear utility function. We apply both approaches, which have relative strengths and
weaknesses, and find that the lottery procedure works virtually exactly as advertized.

In section 4.2.1 we review the literature on the lottery procedure, in section 4.3 we review
the theory underlying the procedure, in section 4.4 we present our experimental design,
and in section 4.5 we evaluate the results. Section 4.2.1 makes the point that the procedure
has an impressive lineage in statistics, and that all of the previous tests in economics
require auxiliary assumptions. Section 4.3 clarifies the axiomatic basis of behavior and the
distinct roles in the experiment for the Independence Axiom and a special binary version of
the Reduction of Compound Lotteries (ROCL) axiom. It also explains the relationship
between the lottery procedure and non-standard models of decision making under risk:
does the lottery procedure help induce risk neutrality under rank-dependent models and

)

prospect theory? The answer is “yes,” under some weak conditions.
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4.2 Literature

4.2.1 Literature in Statistics

Smith (1961) appears to have been the first to explicitly pose the lottery procedure as a
way of inducing risk neutral behavior. He considers the issue of two individuals placing
bets over some binary event. The person whose subjective probability we seek to elicit is
Bob, and the experimenter is Charles. There is a third person, an Umpire, who is the
funding agency providing the subject fees. Choices over Savage-type lotteries are elicited
from Bob, and inferences then made about his subjective probabilities. But the reward
can, of course, affect the utilities of Bob, so how does one control for that confound when
inferring Bob’s subjective probabilities?

Stated differently, is there some way to make sure that the choices over bets do not depend
on the reward, but only on the subjective probability of the event? Smith (1961, p. 13)

proposes a solution:

To avoid these difficulties it is helpful to use the following device, adapted
from Savage [1954]. Instead of presenting cash to Bob and Charles, the Umpire
takes 1 kilogram of beeswax (of negligible value) and hides within it at random
a very small but valuable diamond. He divides the wax into two parts,
presenting one to each player, and instructs them to use it for stakes. After all
bets have been settled, the wax is melted down and whoever has the diamond
keeps it. Effectively this means that if, say, Bob gives Charles y grams of wax,
he increases Charles’s chance of winning the diamond by y/1000. [..] Hence
using beeswax or “probability currency” the acceptability of a bet depends on
the odds [...], and not on the stake ...

It should be noted that this solution does two things, each of which play a role in the later

economics literature. Not only can we infer Bob’s subjective probabilities from his choices
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over the bets without knowing (much about) his utility function, but the same is true with
respect to Charles. Thus, in the hands of Roth and Malouf (1979), we can evaluate the
expected utility of two bargaining agents with this device.> We are interested here just in
the first part of this, the knowledge it provides of Bob’s utility scale over these two prizes.
Of course, the reference to Savage (1954) is tantalizing, but that is a large and dense book!
There are three places in which the concept appears to be implied. The first, of course, is
the core axiom (P5), introduced in §3.2, and its use in many proofs. This axiom requires
that there be at least two consequences such that the decision-maker strictly prefers one
consequence to the other.* The formal mathematical use of this axiom in settings in which
there are three or more consequences makes it clear that probabilities defined over any such
pair can be used to define utilities that can be scaled by some utility function when other
axioms deal with the other consequences. Of course, this formal use is far from the
operational lottery procedure, but is suggestive.

The second is the related discussion in §5.5 of the application of axiom (P5) in a “small
world” setting in which there are in fact many consequences. Specifically, he offers the
metaphor of tickets in distinct lotteries for nothing, a sedan, a convertible, or a thousand
dollars. The decision maker selects one of these four lotteries, and wins one of these four

consequences with some (subjective) probability.> So the lottery is between the status quo

3Strictly speaking there is one change from the betting metaphor developed by Smith (1961, p. 4). He
has the Umpire pose subjective probabilities, not Charles. In bargaining games, Bob and Charles directly
negotiate on these probabilities under some protocol.

4The need for (P5), however minimal, is why we referred in the previous paragraph to the lottery procedure
not requiring that we know much about the utility function of the decision maker. It does require that (P5)
apply for the two prizes, so that we can assign distinct real values to them.

5The consequence “nothing” is used in context to locate this small world experiment in the grand world
that the decision maker inhabits. Thus “nothing” means nothing from the experimental task, or the main-
tenance of the grand world status quo. Little would be lost in our context by replacing “nothing” with “one
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and the status quo plus the single consequence associated with the lottery ticket type
chosen.

The third is more explicit, and pertains to the discussion of controlling for the utility of the
decision maker in applications of the minimax rule in §13.4. He proposed (p. 202) three
solutions to this issue, the first of which defines what he is after (a linear utility scale) and

the third of which presents the lottery procedure:

Three special circumstances are known to me under which escape from this
dilemma is possible. First, there are problems in which some straightforward
commodity, such as money, lives, man hours, hospital bed days, or submarines
sighted, is obviously so nearly proportional to utility as to be substitutable for
it. [...] Third, there are many important problems, not necessarily lacking in
richness of structure, in which there are exactly two consequences, typified by
overall success or failure in a venture. In such a problem, as I have heard J. von
Neumann stress, the utility can, without loss of generality, be set equal to 0 on
the less desired and equal to 1 on the more desired of the two consequences.

Yet another tantalizing bibliographic thread!

4.2.2 Literature in Economics

Roth and Malouf (1979) (RM) independently introduced the Smith (1961) procedure into
the economics literature. The procedure is simple, and has been employed by several
experimenters. Their experiment involved two subjects bargaining over some pie. Since
most of the cooperative game theoretic solution concepts require that subjects bargain
directly over utilities or expected utilities, RM devised a procedure for ensuring that this
was the case if subjects obeyed the axioms of expected utility theory. Their idea was to

provide each subject i with a high prize M; and a low prize m;, where M; > m, for each

penny.”
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subject i. Although not essential, let these prizes be money. Each subject was then to
engage in a bargaining process to divide 100 lottery tickets between the two subjects.
Each lottery ticket that the subject received from the bargaining process resulted in them
having a 1 percentage point chance of receiving the high prize instead of the low prize.
Thus, if subject i received 83 of the lottery tickets, he would receive the high prize with
probability 0.83 and the low prize with residual probability 0.17. Since utility functions are
arbitrary up to a linear transformation, one could set the utility value of the high prize to 1
for each player and the utility value of the low prize to 0 for each player. Thus bargaining
over the division of 100 lottery tickets means that the subjects are bargaining over the
expected utility to themselves and the other player.

There are several remarkable and related features of this elegant design. First, no player
has to know the value of the prizes available to the other player in order to bargain over
expected utility uniquely. Whether the other person’s high prize is the same or double my
high prize, I can set his utility of receiving that prize to 1. All that is required are the
assumptions of non-satiation in the prize and the invariance of equivalent utility
representations. Second, and related to this first point but separable, the prizes can differ.
Third, the subject does not even have to know the value of the monetary prizes to himself,
just that there will be “more of it” if he wins the lottery and that “it” is something in
which he is not satiated.

The experiments of RM also revealed some important behavioral features of applying this
procedure in experiments. When subjects bargained, in a relatively unstructured manner,

in a setting in which they did not know the value of the prizes to the other player, they
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generally tended to bargain to equal-split outcomes of the lottery tickets, which translate
into equal splits of expected utility to each player. But when subjects received more
information than received (cooperative) theory typically required, specifically the value of
the monetary prizes to the other subjects, outcomes converged even more clearly to the
equal-split outcome when the prizes were identical. But when the prizes were not identical,
there were two outcomes, reflected in a bi-modality of the data. One mode involved
subjects bargaining to an equal-split of tickets, and the other mode involved subjects
bargaining to an unequal-split of tickets that tended to equalize the expected monetary
gain to each player. In other words, the subjects behaved as if using the information on the
value of the prizes, and the interpersonal comparability of the utility® of those prizes, to
arrive at an outcome that was fair in terms of expected monetary gain. Of course, this fair
outcome in terms of expected monetary gain coincided with the fair outcome in terms of
expected utility when subjects were told the value of monetary prizes and that they were
the same for both players.

There are two important insights from their results for our purposes. First, it is feasible to
modify an experimental game to ensure that the payoffs of subjects are defined in terms of
utility and expected utility. We review procedures employed by several experimenters
interested in noncooperative games below. Second, the provision of information that allows
subjects to make interpersonal comparisons of utility can add a possible confound. That is,
the provision of “more information than theory assumes is needed for subjects to know

utility payoffs” can lead to subjects employing fairness rules or norms that rely on

6A dollar note given to me is the same dollar note that could have been given to you, and the transform
from money to utility is unique.
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interpersonal comparability of utility.”

The RM procedure was generalized by Berg et al. (1986), albeit in the context of games
against Nature. Their idea was that subjects would make choices over lotteries defined in
terms of points instead of pennies, and that their accumulated points earnings would be
then converted to money using an exchange rate function. If this function was linear, then
risk neutrality would be induced. If this function was convex (concave), risk-loving (risk
averse) preferences would be induced. By varying the function one could, in principle,
induce any specific risk attitude.

Unfortunately, the Berg et al. (1986) procedure came under fire immediately from Cox et
al. (1985). They applied the procedure in two treatments in which they also had identical,
paired treatments that did not use the procedure. The context of their test was an
experiment in which four subjects bid for a single object using first-price sealed-bid rules,
and values were induced randomly in an independent and private manner. In one treatment
they generated random values over 20 periods, and paid subjects their monetary profits; in
the paired treatment they used the same 80 random valuations, applied in the same order
but to a different pool of subjects, but used the lottery procedure to generate risk-neutral
bidding. They found no support for the hypothesis that the lottery procedure generated
risk neutral bidding. Related tests of the lottery procedure, conditional on assumptions

about bidding behavior in auctions, were provided by Walker et al. (1990) and Cox and

"RM point this out quite clearly, and proceed to develop an alternative to the standard cooperative bar-
gaining solution concept that allows subjects to make such interpersonal comparisons. These differences are
of some significance for policy. For example, Harrison and Rutstrém (1991) apply the two concepts developed
by RM to predict outcomes of international trade negotiations, showing how comparable information on the
U.S. dollar -equivalent of the “equivalent variation” of alternative trade policies can be used to influence
negotiated outcomes.
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Oaxaca (1995). One important feature of the experimental tests of Walker et al. (1990)] is
that 5 of their 15 experiments used subjects that had demonstrated, in past experiments,
“tight consistency” with Nash Equilibrium bidding predictions. Thus the use of those
subjects could be viewed a priori as recognizing, and mitigating, the confounding effects of
those auxiliary assumptions on tests of the lottery procedure. Rietz (1993) provides a
careful statement of the detailed procedural features of these earlier, discouraging tests of
the lottery procedure, and their role in it’s efficacy; we review his main findings below.

The controversy over the use of the risk-inducement technique led many experimental
economists at the time to abandon it. Although not often stated, the folklore was clear:
since it had not been advocated as necessary to use, why bother? Moreover, the procedures
for inducing risk aversion or risk loving behavior did add a cognitive layer of complexity to
procedures that one might want to avoid unless necessary.

Several experimenters did use the lottery procedure in tandem with experiments that did
not attempt to control for risk aversion: in effect, staying directly out of the debate over
the validity of the procedure but checking if it made any difference.® For example, Harrison
(1989) ran his first-price sealed bid auction with and without the lottery procedure to
induce risk neutrality, and managed to generate enough debate on other grounds that
nobody cared if the procedure had any effect! Similarly, Harrison and McCabe (1992) ran
their alternating-offer, non-cooperative bargaining experiments “both ways,” and found no

difference in behavior.?

8Braunstein and Schotter (1982) employed an early “with and without” design, in the context of individual
choice experiments examining job search.

90n the other hand, the weight of experimental procedure was against the use of such procedures, leading
Harrison and McCabe (1996, p. 315) to cave in and offer an invalid rationalization of their choice not to
use the lottery procedure: “We elected not to use the lottery procedure of Roth and Malouf (1979) to
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Ochs and Roth (1989) is an important study because it was the first foray of Alvin Roth,

the “R” in RM, into non-cooperative experimental games, and did not employ the binary

13

lottery procedure developed by RM. They explicitly make “... the assumption that the

bargainer’s utility is measured by their monetary payoffs” (p. 359), but have nothing else
to say on the matter. This methodological discontinuity between RM and Ochs and Roth
(1989) is an interesting puzzle, and may have been prompted by the acrimonious debate
generated by Cox et al. (1985) and the fact that none of the prior non-cooperative
bargaining experiments that Ochs and Roth (1989) were generalizing had worried about
the possible difference.

There have been several experiments in which the lottery procedure has been employed
exclusively, most notably Cooper et al. (1989, 1990, 1992, 1993).19 They had a very clear

sense of why some such procedure was needed, and implemented it in a simple manner:

Each games was defined to be one of complete information, because each
player’s payoff matrix was common knowledge, and the numerical payoffs
represented a player’s utility if the corresponding strategies were chosen. To
accomplish this, we induced payoffs in terms of utility using the procedure of
[RM...]. With this procedure, each player’s payoff is given in points; these
points determine the probability of the player winning a monetary prize. At the
end of each period of each game, we conducted a lottery in which ‘winning”
players received $1.00 or $2.00, depending on the session, and “losing” players
received $0.00. The probability of winning was given by dividing the points the
player had earned by 1,000. Since expected utility is invariant with respect to
linear transformations, this procedure ensures that, when players maximize

induce risk-neutral behaviour. None of the previous studies of Ultimatum bargaining have used it, and risk
attitudes should not matter for the standard game-theoretic prediction that we are testing.” The final phrase
is technically correct, but only because the subgame perfect Nash equilibrium prediction calls for one player
to offer essentially nothing to the other player, and to take essentially all of the pie for himself. Thus one
does not need to know what utility function each player has, since the prediction calls for the players to get
utility outcomes that can always be normalized to “essentially zero” and “essentially one.”

0Harrison (1994) employed it in tests of a non-strategic setting, where the predictions of expected utility
theory depended on risk attitudes. He recognized that the experiment therefore became a test of the joint
hypothesis that the risk inducement procedure worked and that expected utility theory applied to the lottery
choices under study.
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their expected utility, they maximize the expected number of points in each
game, regardless of their attitude to risk. [1993; p.1307, footnotes omitted]

Their experiments involved simple normal form games in which the points payoffs ranged
from 0 up to 1000, with many around the 300 to 600 range, and subject participated
sequentially in 30 games against different opponents. One important feature of their
implementation is that the players could engage in interpersonal comparisons of utility,
since they knew that the prizes each subject faced were the same.

Rietz (1993) examines the lottery procedure in the context of auxiliary assumptions about
equilibrium bidding behavior in first-price sealed bid auctions, as in Harrison (1989), but
uncovers some interesting and neglected behavioral properties of the procedure.!! First, if
subjects are exposed to the task with monetary prizes, it is difficult to change their
behavior with the lottery procedure. Thus there is a behavioral hysteresis or order effect.
Second, if subjects have not been previously exposed to the task with monetary prizes, then
the lottery procedure works as advertized. Finally, if one “trains subjects up” in the lottery
procedure in a dominant-strategy context (e.g., a second-price sealed bid auction), then it’s
performance “travels” to a different setting and it works as advertized in a strategic
context in which there is no dominant strategy (e.g., a first-price sealed bid auction).

On the other hand, Cox and Oaxaca (1995) criticize the estimator used by Rietz (1993).
He used a Least-Absolute-Deviations (LAD) estimator that was applied to data that had
already been normalized by dividing observed bids by item values for the bidder, in

contract to the earlier use of Ordinary Least Squares (OLS) on untransformed data by

' These properties were identified in an attempt to explain the different conclusions drawn from the same
general environment by Cox et al. (1985) and Walker et al. (1990).
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Walker et al. (1990). Cox and Oaxaca (1995) argue that OLS is not obviously inferior to
LAD in this context, and that there are tradeoffs to one over the other (e.g., if
heteroskedasticity is not eliminated, which of OLS or LAD is easier to evaluate for
heteroskeasticity, and which has better out-of-sample predictive accuracy?). It is apparent
that both OLS and LAD are decidedly second-best if one could estimate a structural model
that directly respects the underlying theory, as in Harrison and Rutstrom (2008, §3.6).
Cox and Oaxaca (1995) also point out that the lottery procedure implies both a “zero
intercept” and a “unit slope” in behavior compared to the risk-neutral Nash equilibrium
bid predictions, and that Rietz (1993) only tested for the latter. Hence his tests are
incomplete as a conceptual matter, even if one puts aside questions about the “best”
estimator for these tests.

Berg et al. (2008) collect and review all of the studies testing the lottery procedure, and
argue that the evidence against it’s efficacy is not so clear as many have claimed.

Selten et al. (1999) is the first study to stress that all previous tests of the lottery
procedure have involved confounding assumptions, even if there had been attempts in
some, such as Walker et al. (1990), to mitigate them. They presented subjects with 36
paired lottery choices, and 14 lottery valuation tasks. The latter valuation tasks employed
the Becker- DeGroot-Marschak elicitation procedure, which has poor behavioral incentives
even if it is theoretically incentive compatible (Harrison, 1992).'? They calculate a statistic
for each subject over all 50 tasks: the difference between the maximum EV over all 50

choices minus the actual EV for the observed choices. If the lottery procedure is generating

12Given these concerns, and the detailed listing of data by Selten et al. (1999, Appendix B), it would be
useful to re-evaluate their conclusions by just looking at the 36 binary choices.
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risk neutral behavior then it should lead to a reduction in this statistic, compared to
treatments using monetary prizes directly. Focusing on their treatments in which statistical
measures about the lotteries were not made available, they had 48 subjects in each
treatment. They find that the subjects in the lottery procedure actually had larger losses
relative to the maximum if they had been following a strategy of choosing in a risk neutral
manner. These differences were statistically evaluated using non-parametric two-sample
Wilcoxon- Mann-Whitney tests of the null hypothesis that they were drawn from the same
distribution; the onesided p-value was lower than 0.05. Not only is the lottery procedure

failing to induce risk neutrality, it appears to be moving subjects in the wrong direction!

4.3 Theory

The Reduction of Compound Lotteries (ROCL) axiom states that a decision-maker is
indifferent between a compound lottery and the actuarially-equivalent simple lottery in
which the probabilities of the two stages of the compound lottery have been multiplied out.
To use the language of Samuelson (1952, p. 671), the former generates a compound
income-probability-situation, and the latter defines an associated
income-probability-situation, and that “...only algebra, not human behavior, is involved in
this definition.”

To state this more explicitly, let X, Y and Z denote simple lotteries, A and B denote
compound lotteries, > express strict preference, and ~ express indifference. Then the

ROCL axiom says that A ~ X if the probabilities in X are the actuarially-equivalent
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probabilities from A. Thus let the initial lottery pay $10 if a coin flip is a head and $0 if
the coin flip is a tail. Then if A is the compound lottery that pays double the outcome of
the coin-flip lottery if a die roll is a 1 or a 2; triple the outcome of the coin-flip lottery if a
die roll is a 3 or 4; and quadruple the outcome of the coin-flip lottery if a die roll is a 5 or
6. In this case X would be the lottery that pays $20 with probability (1/2) x (1/3) = 1/6,
$30 with probability 1/6, $40 with probability 1/6, and nothing with probability 1/2.

The Binary ROCL axiom restricts the application of ROCL to compound binary lotteries
and the actuarially-equivalent, simple, binary lottery. In the words of Selten et al. (1999,

p. 221ff)

It is sufficient to assume that the following two conditions are satisfied. [...]
Monotonicity. The decision makers utility for simple binary lotteries involving
the same high prize with a probability of p and the same low prize with the
complementary probability 1-p is monotonically increasing in p. [...] Reduction
of compound binary lotteries. The decision maker is indifferent between a
compound binary lottery and a simple binary lottery involving the same prizes
and the same probability of winning the high prize. Both postulates refer to
binary lotteries only. Reduction of compound binary lotteries is a much weaker
requirement than an analogous axiom for compound lotteries in general.

To use the earlier example, with the Binary ROCL axiom we would have to restrict the
compound lottery A to consist of only two final prizes, rather than four prizes ($20, $30,
$40 or $0). Thus the initial stage of compound lottery A might pay 70 points if a 6-sided
die roll comes up 1 or 2 or 3, 30 points if the die roll comes up 4, and 15 points if the die
roll comes up 5 or 6, and the second stage might then pay $16 or $5 depending on the
points earned in the initial lottery. For example, if a subject earns 15 points and a
100-sided die with faces 1 though 100 comes up 15 or lower then she would earn $16, and

$5 otherwise. There are only two final prizes to this binary compound lottery, $16 or $5,
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and the actuarially equivalent lottery X pays $16 with probability 0.45 (=1/2 x 0.7 + 1/6
x 0.3 + 1/3 x 0.15) and $5 with probability 0.55 (=1/2 x 0.3 + 1/6 x 0.7 + 1/3 x 0.85).
The binary lottery procedure generates risk neutral behavior even if the decision maker
violates EUT in the “probabilistically sophisticated manner” as defined by Machina and
Schmeidler (1992, 1995). For example, assume that the decision maker uses a
Rank-Dependent Utility model with a simple, monotonically increasing probability
weighting function, such as w(p) = p” for v # 1. Then the higher prize receives decision
weight w(p), where p is the probability of the higher prize, and the lower prize receives
decision weight 1 — w(p). EUT is violated in this case, but neither of the axioms needed for

the binary lottery procedure to induce risk neutrality are violated.!3

4.4 Experiment

Table 4.1 summarizes our experimental design, and the sample size of subjects and choices
in each treatment. All sessions were conducted in 2011 at the ExCEN experimental lab of
Georgia State University (http://excen.gsu.edu/Laboratory.html). Subjects were recruited
from a database of volunteers from classes in all undergraduate colleges at Georgia State
University initiated at the beginning of the 2010-2011 academic year.

In treatment A we have subjects undertake one binary choice, where the one pair they

face is drawn at random from a set of 24 lottery pairs shown in Table 4.3 of section 4.8.

13Berg et al. (2008) argue that the lottery procedure requires a model of decision making under risk that
assumes linearity in probabilities. This is incorrect as a theoretical matter, if the objective is solely to induce
risk neutrality. Their remarks are valid if the objective is to induce a specific risk attitude other than risk
neutrality, following Berg et al. (1986).
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Table 4.1: Experimental Design

All choices drawn from the same battery of 24 lottery pairs at random.
All subjects receive a $7.50 show-up fee.
Subjects were told that there would be no other salient task in the experiment.

Subjects
Treatment (Choices)
A Monetary prizes with only one binary choice (Figure 1) 55
(55)
B. Binary lottery points with only one binary choice (Figure 2) 69
(69)
C. Monetary prizes with one binary choice out of K1 selected for 208
payment (Figure 1) (2104)
D. Binary lottery points with one binary choice out of IK»1 selected for 39
payment (Figure 2) (936)
E. Binary lottery points with only one binary choice and with EV 34
mformation provided for each lottery (Figure 3) (34)
F. Buary lottery pomts with only one binary choice and with EV 38
mformation provided for each lottery (Figure 3), as well as “cheap (38)
talkk” mstructions

Figure 4.1 shows the interface used, showing the probabilities of each monetary prize.

The lottery pairs span five monetary prize amounts, $5, $10, $20, $35 and $70, and five
probabilities, 0, 0.25, 0.5, 0.75 and 1. They are based on a subset of a battery of lottery
pairs developed by Wilcox (2010) for the purpose of robust estimation of RDU models.
These lotteries contain some pairs in which the “EUT-safe” lottery has a higher EV than
the “EUT-risky” lottery: this is designed deliberately to evaluate the extent of risk premia
deriving from probability pessimism rather than diminishing marginal utility. None of the
lottery pairs have prospects with equal EV, and the range of EV differences is wide. Each

lottery in treatment A is a simple lottery, with no compounding.

4The original battery includes repetition of some choices, to help identify the “error rate” and hence the
behavioral error parameter, defined later. In addition, the original battery was designed to be administered
in its entirety to every subject.
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Figure 4.1: Default Binary Choice Interface

Left Right

$15 $10

$5 $5
Chance of winning $5 is 40% Chance of winning $5 is 50%
Chance of winning $15 is 60% Chance of winning $10 is 40%

Chanee of winning $15 is 10%

Select Left Select Right

In Treatment A we do not have to assume that the Independence Axiom applies for the
payment protocol in order for observed choices to reflect risk preferences under EUT or

RDU.' In effect, it represents the behavioral Gold Standard benchmark, against which the

5 Following Segal (1988b, 1990, 1992), the Mixture Independence Axiom (MIA) says that the preference
ordering of two simple lotteries must be the same as the actuarially-equivalent simple lottery formed by
adding a common outcome in a compound lottery of each of the simple lotteries, where the common outcome
has the same value and the same (compound lottery) probability. Let X, Y and Z denote simple lotteries
and > express strict preference. The MIA says that X > Y iff the actuarially-equivalent simple lottery
of @ X 4+ (1-a)Z is strictly preferred to the actuarially-equivalent simple lottery of aY + (1-a)Z, Va €
(0,1). The verbose language used to state the axiom makes it clear that MIA embeds ROCL into the usual
independence axiom construction with a common prize Z and a common probability (1-«) for that prize.
When choices only involve simple lotteries, as in Treatment A, a weaker version of the independence axiom,
called the Compound Independence Axiom, can be applied to justify the use of the RLIM. In general, we will
be considering choices over compound lotteries when we apply the BLP, so the MIA is needed to justify the
use of the RLIM when we extend Treatment A to allow for several lottery choices in Treatment C. Treatment
A, to repeat, does not need the RLIM. Although we say “Independence Axiom” in the text, the context
should make clear which version of the axiom is involved.
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other payment protocols are to be evaluated, following Starmer and Sugden (1991), Beattie
and Loomes (1997), Cubitt et al. (1998a), Cox et al. (2011) and Harrison and Swarthout
(2012). For our purposes the critical feature of our design is that we do not test the binary
lottery procedure conditional on some needlessly restrictive axiom being valid.

The standard language in the instructions for treatment A that describe the lotteries sets

the stage for the variants in other treatments:

The outcome of the prospects will be determined by the draw of a random
number between 1 and 100. Each number between, and including, 1 and 100 is
equally likely to occur. In fact, you will be able to draw the number yourself
using two 10-sided dice.

In the above example the left prospect pays five dollars ($5) if the number
drawn is between 1 and 40, and pays fifteen dollars ($15) if the number is
between 41 and 100. The blue color in the pie chart corresponds to 40% of the
area and illustrates the chances that the number drawn will be between 1 and
40 and your prize will be $5. The orange area in the pie chart corresponds to
60% of the area and illustrates the chances that the number drawn will be
between 41 and 100 and your prize will be $15.

Now look at the pie in the chart on the right. It pays five dollars ($5) if the
number drawn is between 1 and 50, ten dollars ($10) if the number is between
51 and 90, and fifteen dollars ($15) if the number is between 91 and 100. As
with the prospect on the left, the pie slices represent the fraction of the possible
numbers which yield each payoff. For example, the size of the $15 pie slice is
10% of the total pie.

This language is changed in as simple a manner as possible to introduce the lotteries
defined over points in the following treatments.

Treatment B introduces the binary lottery procedure in which the initial lottery choice is
over prizes defined in points, matching the monetary prizes used in treatment A. We use
same lotteries in treatment A to construct the initial lotteries in treatment B, but with the

interim prizes defined in terms of points as shown in Figure 4.2.
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Figure 4.2: Choice Interface for Points

Mare points increase your chance of winning $ 100

70 points

SO paints

20 points

5 points

5 points

Chance of winning 5 paints iz 25% Chance of winning 3 paints iz 50%
Chonce of winning 20 paints is 50%

Chance of winning 70 paints is 25% Chonce of winning 70 points is S50%

We construct the lotteries in our Treatment B battery by interpreting the dollar amounts
as points that define the probability of getting the highest prize of $100. For example,
consider the lottery pair from Treatment A where the left lottery is ($20, 0%; $35, 75%;
$70, 25%) and the right lottery is ($20, 25%; $35, 0%; $70, 75%). We then construct a
lottery pair that the subject sees in Treatment B by defining the monetary prizes as points:
so the left lottery becomes (20 points, 0%; 35 points, 75%; 70 points, 25%) and the right
lottery becomes (20 points, 25%; 35 points, 0%; 70 points, 75%). The outcomes of these

lotteries are points that determine the probability of winning the highest prize.
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Therefore, these initial lotteries defined in terms of points are in fact binary compound
lotteries in Treatment B, mapping into the two final monetary prizes of $100 and $0.'6 The
left lottery is a compound lottery that gives the subject 75% chance of playing the lottery
($100, 35%; $0, 65%) and 25% probability of playing ($100, 70%; $0, 30%). Similarly, the
right lottery is a compound lottery that offers the subject 25% chance of playing ($100,
20%; $0, 80%) and 75% chance of playing ($100, 70%; $0, 30%). The actuarially-equivalent
simple lotteries of these compound lotteries are ($100, 43.75%; $0, 56.25%) and ($100,
57.50%; $0, 42.50%), respectively, but these actuariallyequivalent simple lotteries are
obviously not presented to subjects as such.

The relevant part of the instructions mimics the information given for treatment A, but

with respect to points, and then explains how points are converted to monetary prizes:

You earn points in this task. We explain below how points are converted to
cash payoffs.

The outcome of the prospects will be determined by the draw of two
random numbers between 1 and 100. The first random number drawn
determines the number of points you earn in the chosen prospect, and the
second random number determines whether you win the high or the low amount
according to the points earned. The high amount is $100 and the low amount is
$0. Each random number between, and including, 1 and 100 is equally likely to
occur. In fact, you will be able to draw the two random numbers yourself by
rolling two 10-sided dice twice.

The payoffs in each prospect are points that give you the chance of winning
the $100 high amount. The more points you earn, the greater your chance of
winning $100. In the left prospect of the above example you earn five points (5)
if the outcome of the first dice roll is between 1 and 25, twenty points (20) if
the outcome of the dice roll is between 26 and 75, and seventy points (70) if the
outcome of the roll is between 76 and 100. The blue color in the pie chart
corresponds to 25% of the area and illustrates the chances that the number
drawn will be between 1 and 25 and your prize will be 5 points. The orange
area in the pie chart corresponds to 50% of the area and illustrates the chances

16To be verbose, to anticipate the extension to Treatment D, each of the lotteries in points are simple
lotteries, and each of the lotteries in money are now compound lotteries. Thus the MIA would be needed to
justify the RLIM in Treatment D; the RLIM is not needed in Treatment B.
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that the number drawn will be between 26 and 75 and your prize will be 20
points. Finally, the green area in the pie chart corresponds to the remaining
25% of the area and illustrates that the number drawn will be between 76 and
100 and your prize is 70 points.

Now look at the pie in the chart on the right. You earn five points (5) if the
first number drawn is between 1 and 50 and seventy points (70) if the number is
between 51 and 100. As with the prospect on the left, the pie slices represent
the fraction of the possible numbers which yield each payoff. For example, the
size of the 5 points pie slice is 50% of the total pie.

Every point that you earn gives you greater chance of being paid for this
task. If you earn 70 points then you have a 70% chance of being paid $100. If
you earn 20 points then you have a 20% chance of being paid $100. After you
determine the number of points that you earn by rolling the two 10-sided dice
once, you will then roll the same dice for a second time to determine if you get
$100 or $0. If your second roll is a number that is less than or equal to the
number of points that you earned, you win $100. If the second roll is a number
that is greater than the number of points that you earned, you get $0. If you do
not win $100 you receive nothing from this task, but of course you get to keep
your show-up fee. Again, the more points you earn the greater your chance of
winning $100 in this task.

Treatment C extends Treatment A by asking subjects to make K>1 binary lottery
choices over prizes defined by monetary prizes and then selecting one of the K at random
for resolution and payment.'” This is the case that is most widely used in the experimental
literature, and relies on the RLIM procedure for the choice patterns to be comparable to
those in Treatment A. In turn, the RLIM procedure rests on the validity of the TA, as
noted earlier.

Treatment D extends Treatment B and applies the lottery procedure to the situation in
which the subject makes K>1 binary lottery choices over prizes defined initially by

points.'® Hence it also relies on the validity of the RLIM procedure for choices in

1"K=30 or 40 in all tasks in Treatment C. Lottery pairs were selected from a wider range than those used
in Treatments B and D, but only lottery pairs that match those found in Treatments B and D are reported
to ensure comparability.

18K=24 in all tasks in Treatment D.
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Treatment D and Treatment B to be the same. The test of the binary lottery procedure
that is generated by comparing Treatments C and D is therefore a joint test of the Binary
ROCL axiom and the TA.

Treatment E extends Treatment B by adding information on the expected value of each
lottery in the choice display. The only change in the interface is to add the text atop each
lottery shown in Figure 4.3. We deliberately introduce the notion of expectation using a
natural frequency representation, as in the statement, “If this prospect were played 1000
times, on average the payoff would be 37.5 points.” The instructions augmented those for

Treatment B with just this extra paragraph:

Above each prospect you will be told what the average payoff would be if
this prospect was played 1000 times. You will only play the prospect once if
you choose it.

No other changes in procedures were employed compared to Treatment B.
Finally, Treatment F added some “cheap talk” explanation as to why it might be in the

best interest of the decision maker to choose lotteries so as to maximize expected points:

You maximize your chance of winning $100 by choosing the prospect that
gives you on average the highest number of points. However, this may not be
perfectly clear, so we will now explain why this is true.

Continue with the example above, and suppose you choose the prospect on
the left. You can expect to win 28.8 points on average if you played it enough
times. This means that your probability of winning $100 would be 28.8% on
average. However, if you choose the prospect on the right you can expect to win
more points on average: the expected number of points is 37.5. Therefore, you
can expect to win $100 with 37.5% probability on average.

You can see in the example above that by choosing the prospect on the left
you would win on average less points than in the prospect on the right.
Therefore, your chances of winning $100 in the prospect on left are lower on
average than your chances of winning $100 in the prospect on the right.

Therefore, you maximize your chances of winning $100 by choosing the
prospect that offers the highest expected number of points.
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Figure 4.3: Choice Interface for Points with Expected Value Information

More points increase your chance of winning $100

If this prospect were played 1000 times, on average If this prospect were played 1000 fimes, on average
the payoff would be 28.8 points the payoff would be 37.5 paints

70 points

70 points

20 points

paints

5 points
Chance of winning 5 points is 25% Chance of winning 5 points is 50%
Chance of winning 20 peints is 50%
Chance of winning 70 peints is 25% Chance of winning 70 paints is 50%

Select Left Select Right

These instructions necessarily build on the notion of the expected value, so it would not be
natural to try to generate a treatment with cheap talk without providing the EV
information.

We acknowledge openly that these normative variants might end up working in the desired
direction but for the wrong reason. Providing the EV might simply “anchor” behavior
directly, and both might generate linear utility because of “demand effects.” In one sense,
we do not care what the explanation is, as long as the procedures reliably generate
behavior consistent with linear utility functions. In another sense, we do care, because the

observed behavior might not be reliable for normative evaluation of behavior.!

19The issue is subtle, but should not be glossed. It is akin to evaluating preferences revealed by choices
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4.5 Results

The basic results can be presented in terms of choice patterns that are consistent or not
with the prediction that subjects will pick the lottery with the greatest EV. We then
extend the analysis to allow for a cardinal measure of the extent of deviation from EV
maximization, as well as structural models of behavior, to better evaluate the effect of the
treatments. Evaluating choice patterns has the advantage that one can remain agnostic
about the particular model of decision making under risk being used, but it has the
disadvantage that one does not use all of the information in the stimuli. The information
that is not used is the difference in EV between the two lotteries: intuitively, a deviation
from EV maximization should be more serious if the EV difference is large than when it is
minuscule. Of course, to use that information one has to make some assumptions about
what determines the probability of any predicted choice.

A structural model of behavior, using Expected Utility Theory for example, allows one to
use information on the size of errors from the perspective of the null hypothesis. For
example, choices that are inconsistent with the null hypothesis but that involve statistically
insignificant errors from the perspective of that hypothesis are not treated with the same
weight as statistically significant errors. One setting in which this could arise is if we had
some subjects that were approximately risk neutral over monetary prizes, and some who
were decidedly risk averse. In a statistical sense, we should care more about the validity of

the choices of the latter subjects: a structural model allows that, conditional of course on

after individuals have been exposed to advertizing. We add this rhetorical warning, since modern behaviorists
are fond of casually referring to “constructed preferences” as if the concept had some operational meaning.
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“the assumed structure,” but the evaluation of choice patterns treats these choices equally.
In addition, it is relatively easy to extend the structural model to allow for varying degrees
of heterogeneity of preferences, which is essential for between-subject tests of the lottery
procedure.

In the end, we draw essentially the same conclusions from evaluating choice patterns and

structural estimates of preferences.

4.5.1 Do Subjects Pick the Lottery With the Higher Expected

Value?

The primary hypothesis is crisp: that the binary lottery procedure generates more choices
that are consistent with risk neutral behavior. We calculate the EV for each lottery, and
then simply tabulate how many choices were consistent with that prediction. Table 4.2
contains these results.

The fraction of choices consistent with risk neutrality in Table 4.2 starts out in the control
Treatment A at 60.0%, and increases to 73.9% in Treatment B. This difference is
statistically significant, and in the predicted direction. A Fisher Exact test rejects the
hypothesis that treatments A and B generate the same choice patterns with a (one-sided)
p-value of 0.073. Because the binary lottery procedure predicts the direction of differences
in choices, a one-sided test is the appropriate one to use.

Turning to the comparison of choice patterns in Treatments C and D, one observes the
same trend. The fraction of choices consistent with risk neutrality increases from 63.5% in

Treatment C increases to 68.7% in Treatment D. Even though this is a smaller increment
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Table 4.2: Observed Choice Patterns

Risk Other All
Treatment neutral choices choices
choices
A. Monetary prizes with one choice (Figure 1) 33 22 55
(60%) (40%) (100%)
B. Binary lottery points with one choice (Figure 2) 51 18 69
(74%) (26%) (100%)
C. Monetary prizes with K»1 choices (Figure 1) ,336 768 2,104
(63%) (37%) (100%)
D. Binary lottery points with K1 choices (Figure 2) 643 293 936
(699"’0) (3 1 C:"’o) (1 000,'/0)
E. Bmary lottery points with one choice and EV 24 10 34
mformation (Figure 3) (71%) (29%) (100%)
F. Binary lottery pomts with one choice and EV 30 3 38
mnformation (Figure 3), plus “cheap talk” (79%) (21%) (100%)
instructions

in percentage points than for Treatments A and B, the sample sizes are significantly larger:
by design, K times larger per subject. If we momentarily ignore the fact that each subject
contributed several choices to these data, we can again apply a one-sided Fisher Exact test
and reject the hypothesis that Treatments C and D generate the same choice patterns with
a p-value of 0.003. However, we do need to correct for this clustering at the level of the
individual, and an appropriate test statistic in this case is the Pearson y? statistic adjusted
for clustering with the second-order correction of Rao and Scott (1984). This test leads one
to reject the null hypothesis with a one-sided p-value of 0.031.

Treatments E and F add normative tweaks to the binary lottery procedure, to see if one
can nudge the fraction of risk neutral choices even higher than in Treatment B. The effects
are mixed, although parallel to the effect of Treatment B compared to Treatment A.

4

Adding information on the EV does not make much of a difference to the “vanilla” binary
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lottery procedure, nor does adding “cheap talk.” Of course, this is completely consistent
with the hypothesis that the subjects that moved towards risk neutral choices already
understood how to guesstimate or calculate the EV, and that this would be how they
maximize their chance of winning the $100. Pooling Treatments B, E and F together, and
comparing to Treatment A, we can reject the null hypothesis of no change compared to

Treatment A using a Fisher Exact test and a p-value of 0.036.

4.5.2 Effect on Expected Value Maximization

As noted earlier, Selten et al. (1999) developed a statistic to test the strength of the
deviation from risk neutrality and EV maximization. For all choices by a subject, it simply
takes the difference between the maximum EV that could have been earned and the EV
that was chosen. A risk neutral subject would have a statistic value of zero, and a risk
averse subject would generally have a positive statistic value. So the null hypothesis is that
the lottery procedure moves the value of this statistic to zero, or at least in that direction,
compared to the treatment with direct monetary prizes. This statistic aggregates all
choices by a given subject, so can be calculated in a similar manner for all of our
treatments. Statistical significance is then tested by conducting nonparametric tests of the
hypothesis that the distribution of these statistics is the same across treatments.

The average values for this statistic for Treatments A, B, C, D, E and F are $2.57, 1.87
points, $2.79, 2.31 points, 1.29 points and 1.28 points, respectively. So there is movement
in the predicted direction for the binary lottery treatments B, E and F when compared to

Treatment A, and for Treatment D compared to Treatment C. For the treatments with
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only one choice task, we find overall that the statistic moves in the right direction, and
significantly. Pooling over Treatments B, E and F, the average statistic is 1.57 points,
compared to $2.57 for Treatment A. This difference in means is statistically significant in a
t-test with a one-sided alternative hypothesis test and a p-value of 0.066, assuming unequal
variances. Using the Wilcoxon-Mann-Whitney two-sample test of rank sums, we also
conclude that the distributions are different, with a one-sided p-value of only 0.025. For
Treatments C and D we find that the statistic again moves in the right direction and that
the differences are statistically significant, using either the rank sum test of the

distributions or the t-test and p-values less than 0.01.

4.5.3 Effect on Expected Value Maximization

Section 4.9 outlines a simple specification of a structural model to estimate risk
preferences, assuming Expected Utility Theory (EUT). The specification is by now quite
standard, and is explained in detail by Harrison and Rutstrém (2008). We generally
assume a Constant Relative Risk Aversion (CRRA) utility function with coefficient r, such
that » = 0 denotes risk neutrality and r > 0 denotes risk aversion under EUT.

The estimates are striking. Initially assume that differences in risk preferences were
randomized across treatments, so that the average effect of the treatment can be reliably
estimated without controlling for heterogeneity of preferences. Under Treatment A we
estimate r to be 0.981, with a 95% confidence interval between 0.54 and 1.42, and the effect
of Treatment B is to lower that by 0.912 such that the estimated r for Treatment B is only

0.069 with a 95% confidence interval between -0.45 and 0.59. The p-value on the test that
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the Treatment B risk aversion coefficient is different from zero is 0.793, so we cannot reject
the hypothesis that the lottery procedure worked as advertized.

The effect of the lottery procedure is not so sharp when we consider the designs of
Treatments C and D that employ the RLIM payment protocol. In this case the risk
aversion coefficient r for Treatment C is estimated to be 0.725 with a 95% confidence
interval between 0.66 and 0.79, and the effect of the lottery procedure is to lower that by
0.45. Hence the estimated risk aversion coefficient under Treatment D is 0.161, with a 95%
confidence interval between 0.15 and 0.17, and a p-value on the one-sided hypothesis of risk
neutrality of only 0.032. So we observe clear movement in the direction of risk neutrality,
but not the attainment of risk neutrality. The estimated effect of the lottery procedure,
-0.45, has a 95% confidence interval between -0.75 and -0.15.

We can extend these structural models to provide some allowance for subject heterogeneity.
Because the data for each subject in Treatments A and B consist of just one observation,
one loses degrees of freedom rapidly with too many demographic characteristics. For
example, in samples of 55, how many Asian females are Seniors? Larger samples would
obviously mitigate this issue, but for present purposes a simpler solution is to merge in
data from comparable tasks and samples drawn at random from the same population. In
this case we were able to use data for Treatment A using lotteries that use the same prizes
and probabilities, but in different combinations than the 24 we focus on in the comparisons
of choice patterns.?’ This increases the sample size for estimation from 55 to 149 under

Treatment A.2! This is not appropriate when one is comparing choice patterns, since the

20The additional lotteries are documented in Harrison and Swarthout (2012).
21The fraction of choices consistent with risk neutrality drops slightly, from 60.0% to 58.4%., with the
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stimuli are different in nature, but is appropriate when one is estimating risk preferences.
Allowing for subject heterogeneity confirms our qualitative conclusions from assuming that
randomization to treatment led to the same distribution of preferences across treatments.
Detailed estimation results are provided in section 4.9, and control for a number of binary
characteristics: blp is 1 for choices in Treatment B or Treatment D; female is 1 for
women, and 0 otherwise; sophomore and senior are 1 for whether that was the current
stage of undergraduate education at GSU, and 0 otherwise; and asian and white are 1
based on self-reported ethnic status, and 0 otherwise.

Controlling for observable characteristics in this manner, for Treatments A and B we
estimate the coefficient on the lottery procedure dummy to be -0.70, with a p-value of
0.034, and the constant term for Treatment A to be 0.74 with a p-value of less than 0.001.
The net effect, the estimated coefficient for Treatment B after controlling for the
demographic covariates, is -0.042 with a p-value of 0.90, so we again cannot reject the null
hypothesis that the lottery procedure induces risk neutral behavior. Predicting risk
attitudes using these estimates, the average r for Treatment A is 0.63, and for Treatment B
is -0.077. Figure 4.4 displays kernel densities of the predicted risk attitudes over all
subjects, demonstrating the dramatic effect of the binary lottery procedure. These
conclusions stay the same if we pool in the choices from Treatments E and F; again, the
normative variants in the binary lottery procedure displays and instructions do not, by
themselves, make much of a difference.

For Treatments C and D we estimate the effect of the lottery procedure on the risk

enhanced sample.
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aversion coefficient to be -0.48 with a p-value of 0.003, compared to the constant term of
0.67 with a p-value also less than 0.001. So the net effect, demographics aside, is for the
lottery procedure to lower the estimated risk aversion to 0.20 with a 95% confidence
interval between -0.14 and 0.53 and a p-value of 0.25. Figure 4.5 shows the distribution of
estimated risk attitudes from predicted values that account for heterogeneity of
preferences. The average predicted risk aversion in Treatment C is 0.73 and in Treatment
D is 0.26. The effect is not as complete as estimated for Treatments A and B, but clearly

in the predicted direction.

Figure 4.4: Estimated Risk Attitudes in Treatments A and B
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Figure 4.5: Estimated Risk Attitudes in Treatments C and D
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4.6 Conclusions

Our results clearly show that the binary lottery procedure works for samples of university
level students in the simplest possible environment, where we can be certain that there are
no contaminating factors and the theory to be tested requires no auxiliary assumptions.
This does not automatically make the lottery procedure useful for samples from different
populations. Nor does it automatically mean that it applies in all settings, since it is often
the “contaminating factor,” such as strategic behavior, that is precisely the domain where
we would like it to work. But there are many circumstances where one can implement the
environment considered here.

We find that the lottery procedure works robustly to induce risk neutrality when subjects

are given one task, and that it works well when subjects are given more than one task. The
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extent to which the procedure works is certainly diminished as one moves from
environments with one task to environments with many tasks, but there is always a
statistically significant reduction in risk aversion, and in neither case can one reject the
hypothesis that the procedure induced risk neutral behavior as advertized.

Our results should encourage efforts to actively try to find procedures that can identify and
increase the sub-sample of subjects for whom the lottery procedure does induce linear
utility, and the populations for which it appears to work reliably.?? Even with a given
population, it is logically possible that the procedure “works as advertized” for some
subjects, just not all, or even for a majority. There can still be value in identifying those
subjects. Moreover, if simple treatments can increase that fraction, or just improve the
statistical identification of that fraction, then we might discover a “best practice” variant
of the basic lottery procedure. Although the variants we considered in our design did not
increase the faction of risk neutral choices significantly, they could play a behavioral role in

other populations.

22For example, Hossain and Okui (2011) evaluate the procedure in the context of eliciting the probability
of a binary event.
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4.7 Appendix A. Instructions

Treatment A
Choices Over Risky Prospects

Thus is a task where you will choose between prospects with varying prizes and chances of
winning. You will be presented with one pair of prospects where you will choose one of them. You
should choose the prospect you prefer to play. You will actually get the chance to play the prospect
you choose, and you will be paid according to the outcome of that prospect, so you should think
carefully about which prospect you prefer.

Here is an example of what the computer display of a pair of prospects will look like.

Left Right
510
15
$5 45
Chance of winning $5 is 40% Chance of winning $5 is 50%

Select Left Select Right

The outcome of the prospects will be determined by the draw of a random number between
1 and 100. Each number between, and mcluding, 1 and 100 1s equally likely to occur. In fact, you will
be able to draw the number yourself using two 10-sided dice.

In the above example the left prospect pays five dollars (35) if the number drawn 1s between
1 and 40, and pays fifteen dollars (315) if the number is between 41 and 100. The blue color in the pie



chart corresponds to 40% of the area and illustrates the chances that the number drawn will be
between 1 and 40 and your prize will be $5. The orange area in the pie chart corresponds to 60% of
the area and illustrates the chances that the number drawn will be between 41 and 100 and your prize

will be §15.

Now look at the pie in the chart on the right. It pays five dollars (33) if the number drawn 1s
between 1 and 50, ten dollars (310) 1f the number is between 51 and 90, and fifteen dollars (S15) 1f
the number is between 91 and 100. As with the prospect on the left, the pie slices represent the
fraction of the possible numbers which yield each payoff. For example, the size of the $15 pie slice is
10% of the total pie.

The pair of prospects you choose from is shown on a screen on the computer. On that
screen, you should indicate which prospect you prefer to play by clicking on one of the buttons
beneath the prospects.

After you have made your choice, raise your hand and an expenmenter will come over. It is
certain that your one choice will be played out for real. You will roll the two ten-sided dice to
determine the outcome of the prospect you chose.

For instance, suppose you picked the prospect on the left in the above example. If the
random number was 37, vou would win $3; if it was 93, you would get $15. If you picked the
prospect on the right and drew the number 37, you would get $5; if it was 93, vou would get $15.

Therefore, your payoff is determined by two things:

. by which prospect you selected, the left or the right; and
. by the outcome of that prospect when you roll the two 10-sided dice.

Which prospects you prefer is a matter of personal taste. The people next to you may be presented
with a different prospect, and may have different preferences, so their responses should not matter to
you. Please work silently, and make your choices by thinking carefully about the prospect you are
presented with.

All pavotfs are m cash, and are in addition to the $7.50 show-up fee that you receive just for
being here. The only other task today is for you to answer some demographic questions. Your
answers to those questions will not affect your payoffs.

Treatment B

Choices Over Risky Prospects

This is a task where you will choose between prospects with varying chances of winning
either a high amount or a low amount. You will be presented with one pair of prospects where you
will choose one of them. You should choose the prospect you prefer to play. You will actually get the
chance to play the prospect you choose, and you will be paid according to the final outcome of that
prospect, so you should thunk carefully about which prospect you prefer.
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Here is an example of what the computer display of a pair of prospects will look Like.

More points increase your chance of winning $100

70 points

20 points

2 peints

5 points
Chance of winning 5 points 1s 25% Chance of winning 3 paints is 50%
Chance of winning 20 points is 50%
Chance of winning 70 points is 25% Chance of winning 7O points is 50%

You earn points in this task. We explain below how points are converted to cash payoffs.

The outcome of the prospects will be determined by the draw of two random numbers
between 1 and 100. The first random number drawn determines the number of points you earn in the
chosen prospect, and the second random number determines whether you win the high or the low
amount according to the points eamned. The high amount is $100 and the low amount is $0. Each
random number between, and including, 1 and 100 is equally likely to occur. In fact, you will be able
to draw the two random numbers yourself by rolling two 10-sided dice twice.

The payoffs m each prospect are points that give you the chance of winning the $100 high
amount. The more points you earn, the greater vour chance of winning $100. In the left prospect of
the above example you earn five points (5) if the outcome of the first dice roll is between 1 and 25,
twenty points (20) if the outcome of the dice roll 1s between 26 and 75, and seventy points (70) if the
outcome of the roll is between 76 and 100. The blue color in the pie chart corresponds to 25% of the
area and illustrates the chances that the number drawn will be between 1 and 25 and your prize will
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be 5 points. The orange area in the pie chart corresponds to 50% of the area and illustrates the
chances that the number drawn will be between 26 and 75 and your prize will be 20 points. Finally,
the green area i the pie chart corresponds to the remaimng 25% of the area and illustrates that the
number drawn will be between 76 and 100 and your prize is 70 points.

Now lock at the pie i the chart on the nght. You eamn five pomts (3) if the first number
drawn is between 1 and 50 and seventy peints (70) it the number is between 51 and 100. As with the
prospect on the left, the pie slices represent the fraction of the possible numbers which yield each
pavoft. For example, the size of the 5 points pie slice is 50% of the total pie.

Every point that you earn gives you greater chance of being paid for this task. If you earn 70
points then you have a 70% chance of being paid $100. If you earn 20 points then you have a 20%

chance of being paid $100. After you determine the number of points that you earn by rolling the two

10-sided dice once, you will then roll the same dice for a second time to determine if you get $100 or
$0. If your second roll is a mumber that is less than or equal to the number of points that you earned,
vou win $100. If the second roll is a number that is greater than the number of points that you
earned, you get 50. If you do not win $100 you receive nothing from this task, but of course you get
to keep vour show-up fee. Again, the more points you earn the greater your chance of winning $100
in this task.

The pair of prospects you choose from is shown on a screen on the computer. On that
screen, you should indicate which prospect you prefer to play by clicking on one of the buttons
beneath the prospects.

After you have made your choice, raise your hand and an expenimenter will come over. It 1s
certain that vour one choice will be played out for real. You will then roll the two ten-sided dice
twice: first to determine the number of points you win, and then to determine whether you win $100
or 30 according to the points earned.

For instance, suppose you picked the prospect on the left in the above example. If the
outcome of the first dice roll was 17, you would win 5 points. This means that your chance of
WINNING $100 is 5%. Now, if the outcome of the second dice roll was 1, which is less than the
number of pomts you earned, you would win $100. If the second roll was 75 mstead, you would earn
nothing becanse the outcome of this roll is greater than the number of peints you earned.

Here 1s another example. If you picked the prospect on the right and the outcome of the first
dice roll was 60, then you would earn 70 points. This means that your probability of winning $100
would be 70%. If the outcome of the second dice roll was 1, then vou would earn $100; but if the
second roll was 75 instead you would earn 30 in this task.

Therefore, your payoff is determined by three things:

. the prospect you selected, the left or the right;

. the outcome of the first roll of the two 10-sided dice which determines the number of points
your earn 1n your chosen prospect; and

. the outcome of the second roll of the two 10-sided dice which will be compared with vour
carned points to determine whether you earn $0 or $100.
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Which prospect you prefer is a matter of personal taste. The people next to you may be presented
with a different pair of prospects, so their responses should not matter to you. Please work silently,
and make your choices by thinking carefully about the pair of prospects you are presented with.

All payoffs are in cash, and are in addition to the §7.50 show-up fee that you receive just for
being here. The only other task today is for you to answer some demographic questions. Your
answers to those questions will not atfect your pavotts.

Treatment C
Choices Over Risky Prospects

Thus 1s a task where you will choose between prospects with varying prizes and chances of
winning. You will be presented with a series of pairs of prospects where you will choose one of them.
There are 30 pairs 1n the series. For each pair of prospects, you should choose the prospect you

! I ‘ I Prospects, ye Prosg ) )
prefer to play. You will actually get the chance to play one of the prospects you choose, and you will
be paid according to the outcome of that prospect, so you should think carefully about which
prospect you prefer.

Here is an example of what the computer display of such a pair of prospects will look like.
SAME DISPLAY AS FOR TREATMENT A

The outcome of the prospects will be determined by the draw of a random number between
1 and 100. Each number between, and including, 1 and 100 is equally likely to occur. In fact, you will
be able to draw the number yourself using two 10-sided dice.

In the above example the left prospect pays five dollars ($5) if the number drawn 1s between
1 and 40, and pays fitteen dollars ($15) if the number 1s between 41 and 100. The blue color in the pie
chart corresponds to 40% of the area and lustrates the chances that the number drawn will be
between 1 and 40 and your prize will be §5. The orange area in the pie chart corresponds to 60% of
the area and illustrates the chances that the number drawn will be between 41 and 100 and your prize
will be $15.

Now look at the pie in the chart on the right. It pays five dollars (§$5) if the number drawn is
between 1 and 50, ten dollars ($10) if the number is between 51 and 90, and fifteen dollars ($15) if
the number is between 91 and 100. As with the prospect on the left, the pie slices represent the
fraction of the possible numbers which yield each payoft. For example, the size of the $15 pie slice is
10% of the total pie.

Each pair of prospects is shown on a separate screen on the computer. On each screen, you
should indicate which prospect you prefer to play by clicking on one of the buttons beneath the

prospects.

After you have worked through all of the pairs of prospects, raise your hand and an
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experimenter will come over. You will then roll a 30-sided die to determine which pair of prospects
will be played out. Since there is a chance that any of your 30 choices could be played out for real,
you should approach each pair of prospects as if it is the one that you will play out. Finally, you will
roll the two ten-sided dice to determine the outcome of the prospect you chose.

For instance, suppose you pin:ked the prospect on the left in the above example. If the
random number was 37, you would win $5; if 1t was 93, you would get $15. If you picked the
prospect on the right and drew the number 37, you would get $5; if it was 93, you would get $15.

Therefore, your payotf is determined by three things:

. by which prospect you selected, the left or the right, for each of these 30 pairs;
. by which prospect pair 1s chosen to be played out i the series of 30 such pairs using the
30-sided die; and

. by the outcome of that prospect when you roll the two 10-sided dice.

Which prospects you prefer is a matter of personal taste. The people next to you may be presented
with ditterent prospects, and may have difterent preferences, so their responses should not matter to
you. Please work silently, and make your choices by thinking carefully about each prospect.

All payofts are in cash, and are in addition to the $7.50 show-up fee that you receive just for
being here. The only other task today is for you to answer some demographic questions. Your
answers to those questions will not affect your payotts.

Treatient D
Choices Over Risky Prospects

Thus 1s a task where you will choose between prospects with varying chances of winning
either a high amount or a low amount. You will be presented with a series of pairs of prospects where
you will choose one of them. There are 24 pairs in the series. For each pair of prospects, you should
choose the prospect you prefer to play. You will actually get the chance to play one of the prospects
you choose, and you will be paid according to the final outcome of that prospect, so you should think

carefully about which prospect you prefer.

Here is an example of what the computer display of a pair of prospects will look like.
SAME DISPLAY AS FOR TREATMENT B
You earn points in this task. We explain below how points are converted to cash payoffs.

The outcome of the prospects will be determined by the draw of two random numbers
between 1 and 100. The first random number drawn determines the number of points you earn in the
chosen prospect, and the second random number determines whether you win the high or the low
amount according to the points earned. The high amount is $100 and the low amount is $0. Each
random number between, and including, 1 and 100 is equally likely to occur. In fact, you will be able
to draw the two random numbers yourself by rolling two 10-sided dice twice.
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The payofts in each prospect are points that give you the chance of winning the $100 high
amount. The more points you earn, the greater your chance of winning $100. In the left prospect of
the above example you earn five points (5) if the outcome of the first dice roll is between 1 and 25,
twenty points (20) if the outcome of the dice roll 1s between 26 and 75, and seventy points (70) if the
outcome of the roll 1s between 76 and 100. The blue color in the pie chart corresponds to 25% of the
area and illustrates the chances that the number drawn will be between 1 and 25 and your prize will
be 5 points. The orange area in the pie chart corresponds to 50% of the area and illustrates the
chances that the number drawn will be between 26 and 75 and your prize will be 20 points. Finally,
the green area in the pie chart corresponds to the remaining 25% of the area and illustrates that the
number drawn will be between 76 and 100 and your prize is 70 points.

Now look at the pie in the chart on the right. You earn five points (5) if the first number
drawn is between 1 and 50 and seventy points (70) if the number is between 51 and 100. As with the
prospect on the left, the pie slices represent the fraction of the possible numbers which yield each
pavott. For example, the size of the 5 points pie slice is 50% of the total pie.

Every point that you earn gives you greater chance of being paid for this task. If you earn 70
points then you have a 70% chance of being paid $100. If you earn 20 points then you have a 20%
chance of being paid $100. Atter you determine the number of points that you earn by rolling the two
10-sided dice once, you will then roll the same dice for a second time to determine if you get $100 or
$0. If your second roll is a number that is less or equal to the number of points that you earned, you
win $100. If the second roll is a number that is greater than the number of points that you eamed
you get $0. If you do not win $100 you receive nothing from this task, but of course you get to keep
your show-up fee. Again, the more points you earn the greater your chance of winning $100 in this
task.

Each pair of prospects is shown on a separate screen on the computer. On each screen, you
should indicate which prospect you prefer to play by clicking on one of the buttons beneath the
prospects.

After you have worked through all of the pairs of prospects, raise your hand and an
experimenter will come over. You will then roll a 30-sided die until a number between 1 and 24
comes up to determine which pair of prospects will be played out for real. Since there 1s a chance that
any of your 24 choices could be played out for real, you should approach each pair of prospects as it
it is the one that you will play out. Finally, you will then roll the two ten-sided dice twice: first to
determine the number of points you win, and then to determine whether you win $100 or $0
according to the points earned.

For instance, suppose you picked the proqpect on the left in the above example. If the
outcome of the tusr dice roll was 17, you would win 5 points. This means that your chance of
winning $100 is 5%. Now, if the outcome of the second dice roll was 1, which is less than the
number of points you earned, you would win $100. If the second roll was 75 mstead, you would earn
nothing because the outcome of this roll is greater than the number of points you earned.

Here is another example. If you picked the prospect on the right and the outcome of the first
dice roll was 60, then you would earn 70 points. This means that your probability of winning $100
would be 70%. If the outcome of the second dice roll was 1, then you would earn $100; but if the
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second roll was 75 instead you would earn $0 in this task.

Therefore, your payoff is determined by four things:

. the prospect you selected, the left or the right, for each of these 24 pairs;

. the prospect pair that 1s chosen to be played out 1 the series of 24 such pairs using the
30-sided die;

. the outcome of the first roll of the two 10-sided dice which determines the number of points
your earn in your chosen prospect; and

. the outcome of the second roll of the two 10-sided dice which will be compared with your

earned points to determine whether you earn $0 or $100.

Which prospect you prefer is a matter of personal taste. The people next to you may be presented
with different prospects, so their responses should not matter to you. Please work silently, and make
your choices by thinking caretully about the pair of prospects you are presented with.

All pavofts are in cash, and are in addition to the $7.50 show-up fee that you receive just for
being here. The only other task today is for you to answer some demographic questions. Your
answers to those questions will not affect your payofts.

Treatment E

SAME INSTRUCTIONS AS FOR TREATMENT B, WITH ADDITIONS PRESENTED
IN THE TEXT AND USING DISPLAY IN FIGURE 3.

Treatuent F

SAME INSTRUCTIONS AS FOR TREATMENT E, WITH ADDITIONS PRESENTED
IN THE TEXT AND USING DISPLAY IN FIGURE 3.



4.8 Appendix B. Parameters of Experiments

Table 4.3: Battery of Monetary Lotteries
Prizes “Sate” Lottery Probabilities “Risky” Lottery Probabilities
Pair Context Low Middle High Low Middle High Low Middle High EV safe  EV Risky
1 B $5 $20 $70 0 0.75 0.25 0.25 0 0.75 $32.50 $53.75
2 3 $5 $20 $70 0.25 0.5 0.25 0.5 0 0.5 $28.75 $37.50
3 3 $5 $20 $70 0 0.5 0.5 0.25 0 0.75 $45.00 $53.75
4 6 $5 $35 $70 0 1 0 0.25 0 0.75 $35.00 $33.75
5 6 $5 $35 $70 0.25 0.75 0 0.5 0 0.5 $27.50 $37.50
6 6 $5 $§35 $70 0 0.75 0.25 0.25 0 0.75 $43.75 §53.75
7 6 $5 $35 $70 0 0.5 0.5 0.25 0 0.75 $52.50 $53.75
8 6 $5 $35 $70 0 0.75 0.25 0.5 0 0.5 §43.75 $37.50
9 9 $10 $35 $70 0 1 0 0.25 0 0.75 $35.00 $55.00
10 9 $10 $35 $70 0.25 0.75 0 0.5 0 0.5 $28.75 $40.00
11 9 $10 $35 $70 0 0.5 0.5 0.25 0 0.75 $52.50 $55.00
12 9 $10 $§35 $70 0 0.75 0.25 0.5 0 0.5 $43.75 $40.00
13 10 $20 $35 $70 0 1 0 0.25 0 0.75 $35.00 $57.50
14 10 $20 $35 $70 0.25 0.75 0 0.5 0 0.5 $31.25 $45.00
15 10 $20 $35 $70 0 0.75 0.25 0.25 0 0.75 $43.75 $57.50
16 10 $20 $35 $70 0 1 0 0.5 0 0.5 $35.00 $45.00
17 10 $20 $35 $70 0.5 0.5 0 0.75 0 0.25 $27.50 $32.50
18 10 $20 $35 $70 0 1 0 0.25 0.5 0.25 $35.00 $40.00
19 10 $20 $35 $70 0.25 0.5 0.25 0.5 0 0.5 $40.00 $45.00
20 10 $20 $35 $70 0 0.5 0.5 0.25 0 0.75 $52.50 $57.50
21 10 $20 $§35 $70 0 1 0 0.5 0.25 0.25 $35.00 $36.25
22 10 $20 $35 $70 0.25 0.75 0 0.75 0 0.25 $31.25 $32.50
23 10 $20 $35 $70 0 0.75 0.25 0.5 0 0.5 $43.75 $45.00
24 10 $20 $35 $70 0 1 0 0.75 0 0.25 $35.00 $32.50

18¢



Table 4.4: Battery of Binary Lotteries

Left Lottesy Right Lottery
Acmasally-Equivalent ‘Actazilly-Equivalest
Puizes in Points Second Lottesy Lottecy Peobabilities Second Lottery Lottery Probabilities
Final Prize: in the Initial Lorteries Probabiliry of Highest Prize of Firal Prizes Probability of Highest Prize of Final Prizes EV
Highest | Low Midde High Low  Midde High | Lowest  Highest | Low Low  Middle High | Lowsst  Highest Lef

5100 5 ] i) 005 02 [ 0675 0355 025 005 (¥ 07 0463 0538 T2
2 §100 5 20 0 003 02 o7 0713 0288 0.05 02 o7 0625 0375 $28.75
3 5100 5 20 0 005 02 07 0550 0450 025 0.05 02 07 0463 0538 $45.00
§100 5 35 k) 003 035 o7 065 035 025 0.05 035 a7 0.463 0538 $35.00
5100 5 35 0 005 035 07 0725 05 0.05 035 07 0625 0375 $2750
$100 5 35 T0 005 035 07 0563 0438 025 0.05 035 o7 0463 0538 $43.75
5100 5 35 0 003 035 o7 0475 03525 025 0.05 033 o7 0463 0538 $52.50
$100 5 35 T0 005 035 07 0563 0438 05 0.05 035 o7 0625 0.375 $43.75
5100 10 35 0 01 035 o7 033 025 [ 033 o7 045 035 $35.00
$100 10 35 T0 01 035 07 0713 0288 05 0 035 o7 0.600 0.400 $28.75
§100 10 35 0 01 035 07 0475 0325 025 0 033 o7 0.450 0550 $52.50
§100 10 35 k) 0l 035 o7 0563 0433 03 0 033 o7 0.600 0.400 $43.75
§100 20 35 0 02 035 07 065 0335 025 02 035 o7 0425 $35.00
§100 20 35 k) 02 035 o7 0,688 0313 02 035 07 0.550 045 $31.25
§100 20 35 0 02 035 o7 0563 0433 025 02 033 o7 0425 0575 $43.75
$100 20 35 T0 02 035 07 0,650 0350 05 02 035 o7 0.550 0450 $35.00
§100 20 35 k) 02 035 o7 0725 0275 02 033 07 0675 0325 $27.50
5100 20 35 0 02 035 07 0650 0350 02 033 07 0.600 $35.00
$100 20 35 T0 02 035 07 0,600 0.400 02 035 o7 0.550 $40.00
§100 20 35 0 02 035 07 0475 025 02 033 o7 0425 $52.50
§100 20 35 k) 02 035 o7 0630 03 02 035 07 0.638 $35.00
2 5100 20 35 0 02 035 07 0,688 0313 075 02 033 07 0675 0325 §31.25
23 §100 20 35 0 02 035 07 0563 0433 02 035 o7 0.550 045 $43.75
24 §100 20 35 k) 02 035 o7 0630 0350 075 02 035 07 0675 0325 $35.00

¢8¢
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4.9 Appendix C. Structural Estimation of Risk

Preferences

Assume that utility of income is defined by

Ulz) =24 /(1 —7) (4.1)

where z is the lottery prize and r # 1 is a parameter to be estimated. For r = 1 assume
U(z) = In(z) if needed. Thus r is the coefficient of CRRA: r = 0 corresponds to risk
neutrality, » < 0 to risk loving, and r > 0 to risk aversion. Let there be J possible
outcomes in a lottery, and denote outcome j € J as ;. Under EUT the probabilities for
each outcome x;, p(x;), are those that are induced by the experimenter, so expected utility

is simply the probability weighted utility of each outcome in each lottery i:

EU; = ) [p(x;) x U(a;)] (4.2)

The EU for each lottery pair is calculated for a candidate estimate of r, and the index

VEU = EUg — EUy, (4.3)

is calculated, where EUy, is the “left” lottery and EUpg is the “right” lottery as presented
to subjects. This latent index, based on latent preferences, is then linked to observed

choices using a standard cumulative normal distribution function ®(VEU). This “probit”



284

function takes any argument between +o0o and transforms it into a number between 0 and

1. Thus we have the probit link function,

prob(choose lottery R) = ®(VEU) (4.4)

Even though this “link function” is common in econometrics texts, it forms the critical
statistical link between observed binary choices, the latent structure generating the index
VEU, and the probability of that index being observed. The index defined by equation 4.3
is linked to the observed choices by specifying that the R lottery is chosen when

®(VEU) > 0.5, which is implied by equation 4.4.

The likelihood of the observed responses, conditional on the EUT and CRRA specifications
being true, depends on the estimates of r given the above statistical specification and the
observed choices. The “statistical specification” here includes assuming some functional

form for the cumulative density function (CDF). The conditional log-likelihood is then

InL(ryy, X) =Y _[(In®(VEU) x I(y; = 1)) + (in(1 — ®(VEU)) x I(y; = —1))]  (4.5)

where I(.) is the indicator function, y; = 1(—1) denotes the choice of the right (left) lottery
in risk aversion task i, and X is a vector of individual characteristics reflecting age, sex,
race, and so on.

Harrison and Rutstrom (2008, Appendix F) review procedures that can be used to estimate
structural models of this kind, as well as more complex non-EUT models, with the goal of

illustrating how to write explicit maximum likelihood (ML) routines that are specific to
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different structural choice models. It is a simple matter to correct for multiple responses
from the same subject (“clustering”), if needed.

It is also a simple matter to generalize this ML analysis to allow the core parameter r to be
a linear function of observable characteristics of the individual or task. We extend the
model to be r = rg + R x X, where ry is a fixed parameter and R is a vector of effects
associated with each characteristic in the variable vector X. In effect, the unconditional
model assumes r = 1y and estimates ry. This extension significantly enhances the
attraction of structural ML estimation, particularly for responses pooled over different
subjects and treatments, since one can condition estimates on observable characteristics of
the task or subject.

An important extension of the core model is to allow for subjects to make some behavioral
errors. The notion of error is one that has already been encountered in the form of the
statistical assumption that the probability of choosing a lottery is not 1 when the EU of
that lottery exceeds the EU of the other lottery. This assumption is clear in the use of a
non-degenerate link function between the latent index VEU and the probability of picking
one or other lottery; in the case of the normal CDF, this link function is ®(VEU). If there
were no errors from the perspective of EUT, this function would be a step function: zero
for all values of VEU < 0, anywhere between 0 and 1 for VEU = 0, and 1 for all values of
VEU > 0. We employ the error specification originally due to Fechner and popularized by

Hey and Orme (1994). This error specification posits the latent index

VEU = (EUg — EUL) /1 (4.6)
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instead of equation 4.3, where p is a structural “noise parameter” used to allow some errors
from the perspective of the deterministic EUT model. This is just one of several different
types of error story that could be used, and Wilcox (2008) provides a masterful review of
the implications of the alternatives.?® As pu — 0 this specification collapses to the
deterministic choice EUT model, where the choice is strictly determined by the EU of the
two lotteries; but as p gets larger and larger the choice essentially becomes random. When
1 =1 this specification collapses to equation 4.3, where the probability of picking one
lottery is given by the ratio of the EU of one lottery to the sum of the EU of both lotteries.
Thus p can be viewed as a parameter that flattens out the link functions as it gets larger.
An important contribution to the characterization of behavioral errors is the “contextual
error” specification proposed by Wilcox (2011). It is designed to allow robust inferences

about the primitive “more stochastically risk averse than,” and posits the latent index

VEU = (EUg — EUL) /v (4.7)

instead of equation 4.6, where v is a new, normalizing term for each lottery pair L and R.
The normalizing term v is defined as the maximum utility over all prizes in this lottery
pair minus the minimum utility over all prizes in this lottery pair. The value of v varies, in
principle, from lottery choice pair to lottery choice pair: hence it is said to be “contextual.”

For the Fechner specification, dividing by v ensures that the normalized EU difference

23Some specifications place the error at the final choice between one lottery or after the subject has decided
which one has the higher expected utility; some place the error earlier, on the comparison of preferences
leading to the choice; and some place the error even earlier, on the determination of the expected utility of
each lottery.
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[((EUg — EUL)/v] remains in the unit interval for each lottery pair. The term v does not
need to be estimated in addition to the utility function parameters and the parameter for
the behavioral error term, since it is given by the data and the assumed values of those
estimated parameters.

The specification employed here is the CRRA utility function from equation 4.1, the
Fechner error specification using contextual utility from equation 4.7, and the link function

using the normal CDF from 4.4. The log-likelihood is then

InL(r, iy, X) = Y _[(In®(VEU) x L(y; = 1)) + (In(1 — ®(VEU)) x I(y; = ~1))]  (4.8)

and the parameters to be estimated are » and given observed data on the binary choices y

and the lottery parameters in X.



288

Table 4.5: Estimation Results for Treatments A and B

Number of obs = 218
LE chi2 (2) = 4.06
Log likelihood = -117.39741 Prob > chi?2 = 0.1316
| Coef Std. Err z P>z [95% Conf. Intervall]
_____________ o
r I
blp | —-.7015267 .3317442 -2.11 0.034 -1.351733 -.0513201
female | .2341047 .2037852 1.15 0.251 -.165307 .63351¢64
sophomore | -.1999455 .2006873 -1.00 0.319 -.5%32854 .1933943
senior | —-.224371 .2281513 -0.98 0.325 -.6715393 2227973
asian | —-.32886855 . 2579515 -1.27 0.203 -.8342612 1768902
white | -.513592 .362524 -1.42 0.157 -1.224126 .196942
_cons | . 7439132 .1839053 4,05 0.000 .3834655 1.1043¢1
_____________ +________________________________________________________________
mu I
cons | .1417281 025342 5.59 0.000 .0920587 .1913976
lincom [r]l_cons + [rlblp
( 1) [r]blp + [r] cons = 0
| Coef. 5td. Err. z P>|z| [95% Conf. Intervall]
_____________ +________________________________________________________________
(1) | .0423864 .3356574 0.13 0.900 -.6154501 .7002629
predictnl r estimate = xb(r) 1if e(sample)
bysort blp: summ r estimate if e(sample)
-> blp = 0
Variable | Obs Mean std. Dev. Min Max
,,,,,,,,,,,,, o
r estimate | 149 6261916 2954439 .005%8502 .9780179
-> blp =1
Variable | Obs Mean std. Dev. Min Max
_____________ A

r estimate | 69 -.0772987 .288873% -.0955765 .2764911



Table 4.6: Estimation Results for Treatments A, B, E and F

Number of obs 290
LR chiZ (2) = 0.66
Log likelihood = -154.36753 Prob > chi?2 0.7201
| Coef. 5td. Err z P>z [95% Conf. Intervall
,,,,,,,,,,,,, o
r \
blp | -.675734¢ .3085369 -2.19 0D.029 -1.28045¢6 -.0710135
ctalk | . 438053 .5688851 0.77 0.441 -.6769413 1.553047
evinfo | -.174793 .5359854 -0.33 0.744 -1.225305 .875719
female | .136756¢6 .17555%¢ 0.78 0.43¢ -.2073339 .4808471
sophomore | -.2348¢606 .1868328 -1.26 0.209 -.6010462 .131325
senior | -.2005559 2006742 -1.00 0.318 -.5938702 .1927584
asian | -.2721212 .2299213 -1.18 0.237 -. 7227587 .1785163
white | -.4757928 .28915 -1.65 0.100 -1.04251¢e L.0909307
_cons | .8005215 .1645517 4,85 0.000 477222 1.123821
,,,,,,,,,,,,, o
mu \
cons | 1332112 0204761 6.51 0.000 .0930787 .1733437
test ctalk evinfo
1) [rlctalk = 0
2) [rlevinfo = 0
chiz( 2) = 0.66
Prob > chi2 = 0.7191
test blp ctalk evinfo
(1) [rlblp = 0
( 2) [rlctalk = 0
( 3) [rlevinfo = 0
chi2( 3) T.67
Prob > chi2 = 0.0534
bysort blp: summ r estimate if e(sample)
->» blp = 0
Variable | Obs Mean 5td. Dev Min Max
_____________ +________________________________________________________
I_estimate | 149 .6377861 .2530015 .0898e81 .9372781
-> blp = 1
Variable | Obs Mean 5td. Dev Min Max
,,,,,,,,,,,,, o
r estimate | 141 -.050e123 2912195 -.7263549 .5248035



Table 4.7: Estimation Results for Treatments C and D

Number of obs = 7590
Wald chiZz (&) = le.02
Log pseudolikelihood = -4529,7244 Prob > chi2 = 0.0137

(std. Err. adjusted for 309 clusters in id)

| Ecokbust
| Coef. std. Err. z P>|z| [95% Conf. Intervall
_____________ o
r |
blp | -.476e0487 .1585904 -3.00 0.003 -.7868801 -.1652173
female | .1418673 .0e93712 2.05 0.041 .0059023 .2778323
sophomore | .01e8658 .0812459 0.21 0.836 -.1423811 1761126
senior | -.0787157 .0742185 -1.06 0.289 -.2241813 0667458
asian | -.0653329 .081z281e -0.80 0.422 -.2246419 .0939761
white | -.0040662 .0960593 -0.04 0.%66 -.192339 .1842066
_cons | .673391¢ .086703¢6 7.77 0.000 .503455¢6 .8433275
_____________ +________________________________________________________________
mu I
cons | 1639391 0069316 23.65 0.000 .1503535 1775247
lincom [r]_cons + [rlblp
(1) [r]lblp + [r]_cons = 0
| Coef. std. Err. z P>|z]| [95% Conf. Intervall
_____________ +________________________________________________________________
(1) | .1973428 .1701349 1.16 0.246 -.1361155 .5308011
predictnl r estimatel = xb(r) if e(sample)
bysort blp: summ r estimatel if e(sample)
-> blp = 0
Variable | Obs Mean s5td. Dewv. Min Max
,,,,,,,,,,,,, b
r estimatel | cebh4 . 1278554 .083557¢ 5293429 .8321247
-> blp =1
Variable | Cbs Mean s5td. Dev. Min Max
_____________ o

r estimatel | 936 .263594 .071e006 .1320099 .3560759

290
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Chapter 5

Eliciting Subjective Probabilities with

Binary Lotteries

by Glenn W. Harrison, Jimmy Martinez-Correa and Todd J. Swarthout

Abstract

We evaluate the binary lottery procedure for inducing risk neutral behavior in a
subjective belief elicitation task . Harrison, Martnez-Correa and Swarthout (2012a)
found that the binary lottery procedure works robustly to induce risk neutrality when
subjects are given one risk task defined over objective probabilities. Using individuals
sampled from the same pool of subjects, we find evidence which supports the
hypothesis that the binary lottery procedure induces linear utility in a subjective
probability elicitation task that uses the Quadratic Scoring Rule. We also show that
the binary lottery procedure can also induce direct revelation of subjective
probabilities in subjects with certain Non- Expected Utility preference
representations.
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5.1 Introduction

The notion of subjective probabilities as prices at which one is willing to trade is due to de
Finetti (1937, 1970) and Savage (1971), who propose bets as one operational procedure to
both define and elicit subjective probabilities. Their central point is that subjective
probabilities of events are marginal rates of substitution between contingent claims that
obey certain rules of coherence.

This literature relies on the assumption that subjects behave as if they are risk neutral,
which is considered plausible a prior: if the stakes used in the elicitation procedure are
sufficiently small. However, there is systematic evidence that, with the small stakes
normally used in the laboratory, subjects behave as if they are risk averse. Therefore, it is
intuitively obvious, and also well known in the literature (e.g., Winkler and Murphy, 1970,
and Kadane and Winkler, 1988), that risk attitudes will affect the incentive to directly
report one’s subjective probability.

Consider a scoring rule to elicit subjective probabilities. A sufficiently risk averse agent is
going to be drawn to a report of 0.5, since this equalizes earnings under each state of
nature, at least for the most popular scoring rules. Varying degrees of risk aversion will
cause varying distortions in reports from true, latent subjective probabilities. If we knew
the form of the utility function of the subjects, and their degree of risk aversion, we could
infer back from any report what subjective probability they must have had. The need to
do this jointly is in fact central to the operational definition of subjective probability

provided by Savage (1972): under certain postulates, he showed that there existed a
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subjective probability and a utility function that could rationalize observable choices.
Andersen et al. (2010) illustrate how joint estimation of risk attitudes and subjective
beliefs, using structural maximum likelihood, can be used to make the necessary calibration
to recover the latent subjective probability.

An alternative and operationally meaningful approach is to use proper scoring rules
combined with the Binary Lottery Procedure (BLP) to induce linear utility in subjects.
The theoretical prediction is that, under certain conditions, this approach allows the
researcher to directly elicit the subjective probability without further statistical corrections
for risk attitudes.

Procedures to induce linear utility functions have a long history, with the major
contributions being Smith (1961), Roth and Malouf (1979) and Berg et al. (1986). The
consensus appears to be that these “binary lottery procedures” may be fine in theory, but
behaviorally they just do not work as advertized. However, Harrison et al. (2012a) show
that the BLP works for samples of university level students in the simplest possible
environment, where one can avoid contaminating factors such as strategic equilibrium
concepts or traditionally used payment protocols. They find that the BLP works robustly
to induce risk neutrality when subjects are given one simple binary lottery choice, and that
it works well when subjects are given more than one of these binary choices. This does not
imply that BLP is useful for samples from different populations or that it can be
systematically apply to any setting, since it is often the “contaminating factors” of interest
in some designs that can dilute the power of BLP to induce risk neutrality.

We study if the ability of the BLP to induce risk neutrality in simple binary choices defined
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over objective probabilities found by Harrison et al. (2012a) also extends to subjective
probability elicitation tasks. In particular, we study the ability of the Quadratic Scoring
Rule (QSR), combined with the BLP, to directly elicit subjective probabilities without
having to control for risk attitudes. The first statements of this mechanism, joining the
QSR and the BLP, appear to be Allen (1987) and McKelvy and Page (1990). Schlag and
van der Weele (2009) and Hossain and Okui (2011) examine the same extension of the
QSR, along with certain generalizations, calling it a “randomized QSR” and “probabilistic
scoring rule” respectively.

There exist other mechanisms that will elicit subjective probabilities without requiring that
one corrects for risk attitudes, such as the procedures proposed by Grether (1992), Koszegi
and Rabin (2008, p. 199), Offerman et al. (2009), Karni (2009) and Holt and Smith
(2009).Thus there is no shortage of theoretical procedures to elicit subjective probabilities,
and the issue becomes which generates them most reliably from a behavioral perspective.
For example, Trautmann and van de Kuilen (2011) compare several incentivized
procedures in the context of eliciting own-beliefs in a two-person game, and find few
differences between the procedures. That elicitation context, while important, is complex,
as stressed by Rutstrom and Wilcox (2009).

Two aspects of elicitation concern us in operationalizing these procedures. The first is the
use of procedures that assume the validity of the Becker, De Groot and Marschak (1964 )
procedure for eliciting certainty-equivalents; Harrison (1992) explains the concerns. The
second is the use of payment protocols over multiple choices that assume the validity of the

(compound or mixture) independence axiom; Harrison and Swarthout (2012) explain the
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concerns. We avoid both of these in our tests.

Using non-parametric statistical tests we find evidence that the BLP mitigates the
distortion in reports introduced by risk aversion. We cannot claim that the BLP provides
incentives to subjects to truthfully report their true, latent subjective probabilities: this
would require econometric estimations of subjective probabilities, which we leave for future
work. However, we can claim that inferred subjective probabilities under the BLP robustly
shift in the direction predicted under the assumption that subjects are risk averse and that
the BLP reduces the contaminating factor of risk aversion. We can only “reduce in the

" since we cannot know a priori what the true,

predicted direction” rather than “remove,’
latent subjective probability actually is.!
In section 5.2 we review the theory of scoring rules and explain the benefits of using the

BLP in belief elicitation tasks. In section 5.3 we present our experimental design, in section

5.4 we evaluate the results, and in section 5.5 we conclude.

5.2 Theoretical Issues

5.2.1 Binary Scoring Rules for Subjective Probabilities

A binary scoring rule is defined over some binary event, which is either true or false. A
binary scoring rule asks the subject to make some report 6, and then defines how an

elicitor pays a subject depending on their report and the outcome of the event. This

'In this respect tests of the BLP with lotteries defined over objective probabilities are much easier.
Hossain and Okui (2011, §3.1) use the QSR with and without the BLP to test if elicited beliefs are the same
as objective probabilities when one uses the BLP, and find that they are indeed closer when one uses the
BLP.
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framework for eliciting subjective probabilities can be formally viewed from the perspective
of a trading game between two agents: you give me a report, and I agree to pay you $X if
one outcome occurs and $Y if the other outcome occurs. The scoring rule defines the terms
of the exchange quantitatively, explaining how the elicitor converts the report from the
subject into a lottery defined over the subjective probability of the subject. We use the
terminology “report” because we want to view this formally as a mechanism, and want to
emphasize the idea that the report may or may not be the subjective probability 7 of the
subject. When the report is equal to subjective probability of the individual, we say that
the scoring rule is a direct mechanism, following standard methodology.

The popular Quadratic Scoring Rule (QSR) for binary events is defined in terms of two
positive parameters, a and [, that determine a fixed reward the subject gets and a penalty
for error. Assume that the possible outcomes are A or B, where B is the complement of A,
that 6 is the reported probability for A, and that © is the true binary-valued outcome for
A. Hence © =1 if A occurs, and © = 0 if it does not occur (and thus B occurs instead).
The subject is paid S(0|A occurs) = a - (0 — 0)? = a - (1 — 0)? if event A occurs and
S(0|B occurs)= a - (0 — 0)? = a - (0 — 0)* if B occurs. The score or payment penalizes
the subject by the squared deviation of the report from the true binary-valued outcome, ©,
which is 1 and 0 respectively for A and B occurring. An omniscient seer would obviously set
6 = ©. The fixed reward is a convenience? to ensure that subjects are willing to play this
trading game, and the penalty function accentuates the penalty from not responding what

the subject thinks an omniscient seer would respond. It can be shown that a risk neutral

2In the language of mechanism design, it can be chosen to satisfy the participation constraint. This
requires that 6 > .
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decision maker will report his subjective probability truthfully. For example, assume a = 1
and § = 1 so that the subject could earn up to 1 or as little as 0. If they reported 1 they
earned 1 if event A occurred or 0 if event B occurred; if they reported 0.75 they earned

0.9375 or 0.4375; and if they reported 0.5 they earned 0.75 no matter what event occurred.

5.2.2 Subjective Belief Elicitation with Scoring Rules and the
Binary Lottery Procedure

Our strategy is to rely on the BLP to induce linear utility functions in subjects, which
implies that the QSR should provide incentives to subjects to report their subjective
probabilities truthfully. The central insight is to define the payoffs in the QSR as points
that define the probability of winning either a high or a low amount of money in some
subsequent binary lottery. We explain below the conditions under which this combination
of BLP and the QSR provides incentives to individuals to directly report “truthfully” their
unobserved subjective probabilities.

For example, set the high and the low payoff of this binary lottery to be $50 and $0. In
theory the BLP induces subjects to report the true subjective probability of some event
independently of the shape of the utility function and, under some weak conditions,
independently of the shape of the probability weighting function. For exposition purposes,
take first the case of a Subjective Expected Utility (SEU) maximizer that is given a QSR
task defined over points using the BLP to convert those points into money.

Assume that there are two events: a ball drawn from a Bingo Cage is either Red (R) or

White (W). A subject betting on event R might estimate that it happens with subjective
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probability R, and that W will happen with subjective probability my = (1-7g).
Additionally, set the parameters of the QSR to be a = § = 100.

If event R is realized and a subject reports #, he wins an amount of points defined by
S(0|R) = 100 - 1(1 — 6/100)2. For simplicity, the report can be any number between 1 and
100, although for practical purposes we can think of reports in increments of single
percentage points. Similarly, if event W is realized and a subject reports theta, he wins an
amount of points given by S(0|W) = 100 - 1(0 — §/100)2. Suppose a subject reports

f = 30. This implies that he would win 51 points if event R is realized and 91 points if
event W is realized. The BLP implies that a subject would then play a binary lottery
where the probabilities of winning are defined by the points earned. If the realized event is
R, then the individual would play a lottery that pays $50 with 51% and $0 with 49%.
Define pr(0)= S(0|R)/100 as the objective probability of winning $50 in the binary lottery
induced by the points earned in the scoring rule task when the report is equal to 6 and
event R is realized. The objective probability py (6)= S(0|WW)/100 is similarly defined for
event W. In the example above, pr(30) = 51% and py (30)= 91%. Figure 5.1 represents
graphically the subjective compound lottery and the actuariallyequivalent simple lottery
induced by report 6 = 30.

In the QSR a subject may choose among 101 possible Subjective Compound Lotteries
(SCL) of the type depicted in Figure 5.1, because the possible reports are integer numbers
between 0 and 100. In these SCL, the first stage involves subjective probabilities while the
second stage involves objective probabilities defined by the points earn in the first. The

structure of these 101 SCL are explicitly described below:
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1. SCL(6=0): pays simple lottery (pr(0), $50; 1-pr(0), $0) with subjective
probability 7g, and pays simple lottery (py (0), $50; 1-pw (0), $0) with
subjective probability my = (1-7g )

2. SCL(6#=1): pays simple lottery (pg(1), $50; 1-pr(1), $0) with subjective
probability 7r, and pays simple lottery (py (1), $50; 1-py (1), $0) with
subjective probability my = (1-7g )

100. SCL(0=99): pays simple lottery (pr(99), $50; 1-pr(99), $0) with
subjective probability mp, and pays simple lottery (pw (99), $50; 1-pw (99), $0)
with subjective probability my = (1-7g )

101. SCL(6=100): pays simple lottery (pr(100), $50; 1-pr(100), $0) with
subjective probability g, and pays simple lottery (pw (100), $50;1-py,(100),$0)
with subjective probability my = (1-7g)

Figure 5.1: Binary Scoring Rule Using the Binary Lottery Procedure

Sub | ective Co mpou. nd Lotte iy Actuaria H:\', E.qlli"ﬂ lent Lo tteq*

Report: 6=30 (Binary ROCL needed)

7
Slrg + 9y (1-51)m + (1-91) 7z
Red White
Second stage: pr=51 1-pp=49 Pp=91 L-pp=09 $100 30
Binary Lottery Procedire
(Olbyective)
30 50

$100 $100 3

Fisst stage

(Subjectuve)

If the subject maximizes SEU, and therefore satisfies the Reduction of Compound Lotteries

(ROCL) axiom, the valuation of each report # will be given by

SEU(0) =mr x pr(f) x U(350) + (1 — pr(#)) x U(30) -
5.1

and the subject chooses the report §* that maximizes 5.2.2 conditional on the subjective
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belief mr. Because U(.) is unique up to an affine positive transformation under SEU we can

normalize U($50) = 1 and U($0) = 0. Thus the SEU() in 5.2.2 can be simplified to

SEU(0) = mr x pr(0) + (1 — 1r) x pw () = Q(6) (5.2)

We rename SEU () as Q() to emphasize that the subject’s valuation of the SCL induced
by 6 can beinterpreted as the subjective average probability Q(6) of winning the high $50
amount in the binary lottery. For the sake of the argument assume that the state space of
the report is a continuum such that 6 € [0, 100], therefore a SEU maximizer would make a
report 6* that maximizes the subjective expected probability ((.) of winning the binary
lottery. Taking the first order condition with respect to report # we obtain

SEU'(6) = Q'(0) = 7 x Pa(0) + (1 — 7a) X piy(6) = 0
(5.3)

=7mr X [2x (1 —6/100)] + (1 —7R) x [2 % (0—6/100)] =0
The report that maximizes 5.2.2 is #* = wr x 100, which implies that the QSR combined
with the BLP provides incentives to report the true subjective probability directly. The
existence of a unique maximum is guaranteed because the function Q(.) is strictly concave
in € given that it is a linear combination of two strictly concave functions, pr(f) and
pw (0). Note that the strict concavity of these functions is determined by the QSR because
these objective probabilities are a function of the scoring rule.?

For comparison purposes suppose a simple QSR with payouts defined directly in dollars.

3In the present example, pr(#) and py () are strictly concave because p () = pfi(6) = -2/100<0.
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Refer to the score in this case as $5(.). The subject would choose a report 6 that

maximizes the following valuation

SEU0,U(.)) = r x USS(0|R)) + (1 — mx) x U($S(0]W)) (5.4)

Assume a simple power function with risk aversion parameter equal to 0.57 and a
subjective probability of event R of mg = 0.3. In this case the optimal report would be 6*
= 34. Conversely, if 7z =0.7, the optimal report would be #* = 66. Notice that a
sufficiently risk averse individual would be drawn to make a report of 50, independent of
his subjective probability, because this report provides the same payoff under each event.
A proper scoring rule provides incentives to subjects to optimally choose one distinct
report. The uniqueness of the optimal report can be achieved by guaranteeing that the
scoring rule induces strict concavity in the subject’s valuation of choices in the belief
elicitation task. In the case of the scoring rule without BLP, the subject’s valuation
SEU(0,U(.)) is a concave function of 6, assuming only weak monotonicity condition on
U(.). Under SEU this concavity is immediately guaranteed by the concavity of the utility

function.*

4A Linear Scoring Rule (LSR) defines the scores for events A and B as S(6|A occurs) = « - 3|1 — 6| if
event A occurs and S(0|B occurs) = « - 5|0 — 6| if B occurs. Therefore a LSR also results in a subject’s
valuation that is concave in the report if the utility function is concave. Andersen et al. (2010) show how
one can infer true subjective probabilities with the LSR if one also knows the risk attitudes of subjects.
However, if subjects are risk neutral the LSR does not allow one to directly identify subjective probabilities
from reports because the optimal report would be either 0 or 100, depending on whether the true latent
subjective probability was less than 0.5 or greater than 0.5, respectively. This result is immediately relevant
if one wants to induce risk neutrality with the BLP. Consequently, if we rely on risk neutrality being induced
by the BLP, any scoring rule that we use must be concave in the report that subjects can make for all weakly
concave utility functions, and not just for strictly concave utility functions.
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5.2.3 Non-Expected Utility Theory Preference Representations

The incentive-compatibility of the QSR is normally developed theoretically in the context
of Expected Utility Theory (EUT), and specifically SEU, whether or not one assumes the
BLP. When implemented with the BLP, can the QSR be a proper scoring rule for subjects
that have non-EUT preference representations? The answer to this question depends on
the specific non-EUT preference representation.

A subject that follows the Rank-Dependent Utility model (RDU) will report his subjective
probability under relatively weak conditions. Assume that the decision maker is a RDU
maximizer with a strictly increasing probability weighting function. Then the higher prize
receives decision weight w(p), where p is the probability of the higher prize, and the lower
prize receives decision weight 1 — w(p). SEU is violated in this case, but none of the axioms
needed for the BLP to induce linear utility are violated. For the BLP to directly elicit the
subjective probability from a RDU maximizer we need the following assumptions to hold:
(1) uniqueness of U(.) up to an affine positive transformation and U(.) increasing, (2)
probabilistic sophistication as defined by Machina and Schmeidler (1992, 1995), (3) ROCL
for binary lotteries, (4) the probability weighting function is strictly increasing, and (5) the
scoring rule must be strictly concave. We formally derive below the conditions under which
a non-EUT subject would optimally report his true subjective belief.

An individual with RDU preferences will have a QSR valuation of the subjective compound

lottery induced by a report 6 given by

RDU(6) = w(Q(6)) x U($50) + (1 — w(Q(8))) x U(S0) (5.5)
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Binary ROCL implies that the probability weighting is done on the reduced compound
probability Q(#). Since U(.) is unique up to an affine positive transformation in the RDU
model, we can also normalize U($50) = 1 and U($0) = 0 and the valuation of the
individual becomes RDU(6) = w(q(#)). An RDU maximizer and a SEU maximizer, each
with subjective probability mg= 0.3 for example, would have incentives to make exactly the
same optimal report, 8* = mr x 100= 30. This is easily seen by taking the first order

condition on the subject’s valuation of report 6,

RDU'(0) = w'(Q(0)) x Q'(F) = 0, (5.6)

which is satisfied when @’(0) =0, exactly equal to the first order condition of an SEU
maximizer, because the probability weighting function is assumed to be strictly increasing
(i.e.,, w'(Q(0)) > 0). Therefore the RDU maximizer would optimally make the same report
as a SEU maximizer with the same beliefs, and both would have incentives to directly
report their true subjective probability. To guarantee the uniqueness of the optimal report
we rely on two assumptions: (1) that the scoring rule is strictly concave because Q(0) is a
linear combination of strictly concave functions that depend on the scoring rule
(i.e.,pr(0)= S(0|R)/100 and pw (0)= S(8|W)/100 ); and (2) the probability weighting
function must be strictly increasing. This guarantees that w(Q(#)) is strictly
quasi-concave, which implies that there is a unique global maximum.

Proposition 1. If F(.) is strictly increasing and f(.) is strictly concave, then F'(f(.)) is

strictly quasi-concave.
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We want to show this result so the uniqueness of the optimal report is guaranteed in the
scoring rule task with certain non-EUT preference representations.

Proof. Suppose F is strictly increasing and f is strictly concave. We define ¢(.) to be
strictly quasi-concave if g(Ax + (1 — X\)z*) > min{g(x), g(z*)} for A € (0,1). Since f(.) is
strictly concave then f(Az + (1 — A)a*)>Af(x) + (1 — A) f(z*). Since F' is strictly
increasing, F'(f(Az + (1 — N)a*))>F(Af(z) + (1 — A) f(2x)). Because A € (0,1),

Af(z) + (1= AN f(a*)>min{ f(z), f(2*)}. Since F is increasing, F(A\f(x) 4+ (1 — A) f(z*)) >
min{ F'(f(z)), F(f(x*))}. This implies that F(f(Az 4+ (1 — N)az*))>F(A\f(x) + (1 = \) f(z*))
> min{ F(f(z)), F(f(z*))} and thus F(f(Ax 4+ (1 — A\)z*)) > min{F(f(z)), F(f(z*))} for
any A € (0,1). This is the definition of a strictly quasiconcave function, so F\(f(.)) is a
strictly quasi-concave function.

Hossain and Okui (2011) independently prove the same result with respect to RDU, but
our proof is arguably more instructive because it points to a general mechanism-design
principle to show how to make the incentives for the scoring rule more powerful. By
recognizing that the strict quasiconcavity of w(Q(6)) is needed to ensure that the scoring
rule is proper, we can identify ways to design scoring rules that have better properties in
certain regions of §. This issue is an important one when trying to elicit subjective beliefs
with respect to extremely small probabilities, as occurs almost all of the time when
designing insurance contracts for low-probability, but high cost, events.

The approach we consider also works for subjects that follow Cumulative Prospect Theory
(CPT), with just one additional restriction on top of the restriction needed for RDU.

Hossain and Okui (2011) demonstrate that a subject that follows CPT will directly report
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his subjective probability if the probability weighting function is strictly increasing.® This
requirement is weak, although not met by some popular probability weighting functions,

such as the “inverse-S” function for extreme parameter values.

5.3 Experiments

5.3.1 Experimental Design

We implement two between-subjects treatments that were presented with the same stimuli
in any given session. First, in treatment M subjects were presented with only one belief
elicitation question that uses the QSR where the scores are money amounts. Second, in
treatment P subjects were also presented with only one belief elicitation question that
also uses the QSR, but with the scores denominated in points that subsequently determine
the objective probability of winning a binary lottery. In both treatments subjects are
presented first with some relevant information to complete the belief elicitation task and
after that the choice is made. Immediately subjects completed a demographic survey, but
they were explicitly told that their responses would not affect any other earnings. Then
subjects received monetary compensation according to a chance realization of the binary
event and their report in the belief elicitation. There were no other salient tasks, before or
after a subject’s choices, affecting the outcome. Table 5.1 summarizes our experimental

design for each of four sessions, and the sample size of subjects in each treatment per

5They also state that one needs the subject to treat the low payoff in the BLP as a loss and the high
payoff as a gain, but this does not appear necessary if one just assumes non-satiation in the gain domain (or
across domains).
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session.
Table 5.1: Experimental Design
Treatment M Treatment P Total
Session 1 17 18 35
Session 2 16 17 33
Session 3 17 16 33
Session 4 18 19 37
Total 68 70 138

We used software we created in Visual Basic .NET to present the QSR to subjects and
record their choices. Figures 5.2 and 5.3 illustrate the scoring rule task faced by subjects in
treatments M and B, respectively, which are variants on the “slider interface” proposed by
Andersen et al. (2010). Subjects can move one or other of two sliders, and the other slider
changes automatically so that 100 tokens are allocated. The main difference between the
figures is that the payoffs of the scoring rule are denominated in dollars in the case of
Figure 5.2, and determined in points in Figure 5.2. Subjects can earn up to $50 in
treatment M and either $50 or $0 in treatment P.

Our experiment elicits beliefs from subjects in each treatment over the composition of a
Bingo cage that contained red and white Ping-Pong balls with a composition that was not
known with certainty to subjects before they made their choices. We explain below the
procedure used to determine the composition of the Bingo cage. This procedure was
intended to avoid trust issues between the experimental subjects and the experimenter, an
important source of potential confounds in tasks that involve belief elicitation.

The general procedures during an experimental session were as follows. Upon arrival at the
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Figure 5.2: Subject Display for Treatment M
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laboratory, each subject drew a number from a box which determined random seating
position within the laboratory. After being seated and signing the informed consent
document, subjects were given printed introductory instructions and allowed sufficient time
to read these instructions. Then a Verifier was selected at random among subjects solely
for the purpose of verifying that the procedures of the experiment were carried out
according to the instructions. The Verifier was paid a fixed amount for this task. Each
subject was assigned to one of two groups depending on whether the seating number was
even or odd, where each group corresponded to one of the treatments. One of the groups
was then asked to leave and wait outside the room for a few minutes, always under the
supervision of an experimenter. The other group remained in the laboratory and went over
the main instructions with the experimenter. Simultaneously, subjects waiting outside were

given instructions to read individually. Then the groups swapped places and the

6Section 5.6 provides complete subject instructions.
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Figure 5.3: Subject Display for Treatment P
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experimenter read the main instructions designed for the other group. Once all instructions
were finished, and both groups were together in the room again, we proceeded with the rest
of the experiment.

The reason for these procedures is to ensure that M and P subjects would confront the
same stimuli, defined below. We did not want to explain P-specific instructions in the
presence of M subjects and tell them not to pay attention, and vice versa. Subjects were

told the reason for this step using the following language:

Part of this experiment is to test different computer screens. Therefore, we
will divide you into two groups, and each group will be presented with a slightly
different instructions and computer screens. If you are sitting in a computer
station that has an odd number on it, you are part of the Odd group. If you are
sitting in a computer station that has an even number on it, you are part of the
Even group.

An important reason to assign subjects to treatments according to their station number in
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the laboratory is to avoid potential confounds in the results generated by subjects in each
treatment having very different visual access to the stimuli. By mapping even or odd
station numbers to treatment M or P, we ensure that if there exist any difference in
subjects vantage point, this difference was the same across treatments.

We used two bingo cages: Bingo Cage 1 and Bingo Cage 2. Bingo Cage 1 was loaded with
balls numbered 1 to 99 in front of everyone.” A numbered ball was drawn from Bingo Cage
1, but the draw took place behind a divider. The outcome of this draw was not verified in
front of subjects until the very end of the experiment, after their decisions had been made.
The number on the chosen ball from Bingo Cage 1 was used to construct Bingo Cage 2
behind the divider. The total number of balls in Bingo Cage 2 was always 100: the number
of red balls matched the number drawn from Bingo Cage 1, and the number of white balls
was 100 minus the number of red balls. Since the actual composition of Bingo Cage 2 was
only revealed and verified in front of everybody at the end of the experiment, the Verifier’s
role was to confirm that the experimenter constructed Bingo Cage 2 according to the
randomly chosen numbered ball. Once Bingo Cage 2 was constructed, the experimenter put
the chosen numbered ball in an envelope and affixed it to the front wall of the laboratory.
Bingo Cage 2 was then covered and placed on a platform in the front of the room. Bingo
Cage 2 was then uncovered for subjects to see, spun for 10 turns, and covered again.
Subjects then made their decisions about the number of red and white balls in Bingo Cage

2. After choices were made and subjects completed a non-salient demographic survey, the

"When shown in public, Bingo Cage 1 and 2, were always displayed always in front of the laboratory
where everyone could see them. We also used a high resolution video camera to display the bingo cages
in three flat screen TVs distributed throughout the laboratory, and on the projection screen at the front
of the room. Our intention was that everyone had equal chance of observing the bingo cages from a good
perspective.
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experimenter drew a ball from Bingo Cage 2. The sealed envelope was opened and the
chosen numbered ball was shown to everyone, and the experimenter publicly counted the
number of red and white balls in Bingo Cage 2. Then an experimenter approached each
subject and recorded earnings according to the betting choices made and the ball drawn
from Bingo Cage 2. If subjects were part of treatment M, their earnings were determined
by the report and the corresponding score in dollars of the QSR. If subjects were in
treatment P, the number of points they earned in the belief elicitation task was recorded.
Then subjects rolled two 10-sided dice, and if the outcome was less or equal to the number
of points earned they won $50, otherwise they earned $0 in the task. Finally, subjects left
the laboratory and were privately paid their earnings: a $7.50 participation payment in
addition to the monetary outcome of the belief elicitation task. The Verifiers were paid a
flat $25 fee plus the participation fee. Subjects on average earned approximately $45.6

including the participation payment.

5.3.2 Evaluation of Hypothesis

We want to test if the BLP induces linear utility, providing incentives to subjects to report
truthfully and directly their underlying subjective probability. In our tests we assume that
the distributions of risk attitudes across subjects, and also of subjective probabilities, are
the same in treatments M and P. Therefore any observed difference in reports would be a
result of BLP affecting subjects’ behavior.

There are at least two ways of testing our hypothesis. The first takes advantage of

observed behavior in scoring rules of risk averse individuals versus behavior of risk neutral
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individuals. If subjects are indeed risk averse and the BLP does induce linear utility, then
subjects in treatment M should be drawn on average to make reports closer to 50 than
subjects in treatment P. This implies that, depending on the true underlying subjective
probability, the average report in treatment M would be smaller or greater than in
treatment B in such a manner that the former is always closer to 50. To make this test
operational, we calculate a measure of distance between each report and the middle of the
report interval. For example, if a subject made a report of 30 for red balls, then the
measure of report distance is the absolute value of the difference which is 20 ( = |30 — 50]).
If the underlying subjective probability is close to 50%, there would be an identification
problem because subjects in both treatments have strong incentives to make a report close
to 50. This might be very likely in situations where Bingo Cage 2 has a composition of red
and white balls close to 50/50, which was indeed the case in one of our sessions. Similarly,
if the underlying subjective probability is close to 0% or 100% we would have an
identification problem. This did not happen in any of the sessions, but was a risk in this
design, of course the risk was just wasted subject fees and time.

An ideal test of our hypothesis would involve comparing the reports in treatment P with
the underlying subjective probabilities of subjects in treatment M. However, since this is
an unobserved, latent variable, we use instead the correct proportion of red balls in the
Bingo Cage 2 that subjects actually faced in each session as a proxy for the underlying
subjective probability.® If the BLP does induce linear utility, subjects in treatment P

should make reports on average that are closer to the true number of red balls in Bingo

8This assumption implies that on average subjects have the right idea about the number of red balls iin
Bingo Cage 2. In the absence of an estimate, this is a natural proxy for the underlying subjective probability.
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Cage 2 than subjects in treatment M. To make this test operational, we use also a measure
of distance, but instead of using 50 as a point of reference we use the true number of red
balls in the Bingo Cage 2 each subject faced. We also refer to this measure of distance as a
report distance. For example, if a subject made a report of 30 and the correct number of
red balls in the Bingo Cage 2 he faced was 25, then the measure of report distance is the
absolute value of the difference which is 5 ( = [30 — 25|). The comparison across
treatments of this measure of distance is also a test of relative accuracy of reports. Even
though it is interesting in its own right, it is not our primary objective to assess perceptual
accuracy of subjects.’

We pool data across sessions, but also analyze data from individual session. We apply
nonparametric tests to the distance measures to test if there is support for our main

hypothesis that the BLP induces linear utility in the belief elicitation task.

5.4 Results

5.4.1 Does the BLP Mitigate the Effects of Risk Aversion?

We find evidence of a treatment effect which supports the hypothesis that the BLP induces
linear utility in our belief elicitation tasks. Our sample size is almost evenly distributed
among treatments: pooling across sessions, there were 68 subjects in treatment M and 70

in treatment P. Figure 5.4 shows the frequency of reports in each treatment, by session.

9In fact there might be some visual saliency of red balls that might have induced subjects to make reports
higher than if we had used balls of different colors. Again, this is an interesting issue to study but not our
primary research purpose.
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Figure 5.5 displays, again by session, the estimated densities of the reports, the correct
number of red balls in Bingo Cage 2, and the mean report in each treatment. In session 1
the average reports for treatments M and P are 34.2 and 30.8, respectively. Excluding a
subject that did an idiosyncratic report of 100 for red balls, the average report for
treatment P in session 1 is decreased to 26.8.19 The average reports from treatments M
and P are 59.7 and 65.8 for session 2. The panels for sessions 1 and 2 in Figure 5.5 are
illustrative of the treatment effect consistent with risk aversion: the mass of the estimated
densities for treatment M is closer to the middle of the report interval than for the case of
treatment P. This feature is not readily seen in the case of sessions 3 and 4, but one can
use non-parametric statistics to test the statistical significance of this treatment effect
across sessions.

We find evidence that subjects in treatment M tend to make reports closer to 50 than
subjects in treatment P. Across all sessions, the average of the absolute value of the
difference between reports and 50 is 14.2 and 18.7 for treatments M and P, respectively. A
one-sided Fisher-Pitman permutation test for difference in means results in a p-value of
0.02, which suggests that on average subjects in treatment M tend to make reports closer
to 50. Session 3 ended up having a Bingo Cage 2 with composition of red and white balls
close to 50/50, precisely where we predict this treatment effect test would have low power.
Thus we present non-parametric test results on distributions with and without this session

included. Figure 5.6 shows the empirical cumulative distribution of our measure of distance

10 Although this subject’s reporting behavior was certainly puzzling and idiosyncratic, it can still be ratio-
nalized by non-EU preferences. In particular, an appropriate combination of probability weighting function
that violates the assumptions outline in section 1 and subjective beliefs can provide incentives to subjects to
make a report close to 100. A more simple explanation is that the subject had a strong preference for color
red that was not related to the actual configuration of Bingo Cage 2.
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Figure 5.4: Frequency of Reports by Session
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of reports to 50 for sessions 1, 2 and 4 and for all sessions. There is a perceptible difference
between the distributions of treatments M and P, especially for the case where only
sessions 1,2 and 4 are considered. When we exclude session 3, the one-sided
Kolmogorov-Smirnov test results in a p-value of 0.02, which supports the hypothesis that
subjects in treatment M tend to make reports closer to 50. When we pool all the sessions,
the p-value increases to 0.23, which was expected given that this test of the hypothesis has

low power in cases where the composition of the Bingo cage is close to 50/50.
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Figure 5.5: Estimated Densities of Reports by Session
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5.4.2 Does the BLP Improve Accuracy?

We find evidence that subjects from treatment P tend to make reports closer to the correct

number of red balls in Bingo Cage 2, supporting the hypothesis that the BLP induces

linear utility in our belief elicitation tasks. There were 68 subjects in treatment M whose

average report distance was 15.2, while there were 70 subjects in treatment P whose

average report distance was 12.8. Figure 5.7 shows, the empirical distribution of the

absolute value of differences between reports and the correct number of red balls, pooling

over all sessions. Figure 5.7 illustrates how the cumulative distribution of treatment P is
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dominated by the distribution of treatment M, which implies that distances are smaller in
treatment P. The one-sided Kolmogorov-Smirnov test for two samples results in a p-value
of 0.04, which supports the hypothesis that distances of reports from the correct number of
red balls in treatment P are smaller than in treatment M. Under the assumption that the
correct number of red balls in Bingo Cage 2 is a good proxy for the average underlying
subjective probability, we find that subjects tend to make reports closer to the correct
number of red balls. This could be interpreted as better accuracy from the part of subjects
in treatment P. However we interpret this observe behavior as a result of the BLP: this
procedure induces linear utility in subjects which provides incentives to reveal the
underlaying subjective probability, thus mitigating the distortion in reports introduced by

risk attitudes.

5.5 Conclusions

Harrison, Martnez-Correa and Swarthout (2012) found that the binary lottery procedure
works robustly to induce risk neutrality when subjects are given one risk task defined over
objective probabilities and the evaluation of the hypothesis does not depend on the
assumed validity of any strategic equilibrium behavior, or even the customary independence
axiom. Using individuals sampled from the same pool of subjects, we find evidence of
treatment effects which support the hypothesis that the Binary Lottery Procedure induces
linear utility in a belief elicitation task that uses the Quadratic Scoring Rule and that

presents only one question to subjects about the composition of a Bingo Cage.
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First, we found that subjects that were not exposed to the BLP tend on average to make
reports closer to the middle of the report interval, which reduces the uncertainty involved
in the belief elicitation task. Second, we also found evidence that subjects that were
exposed to the BLP tend to make reports closer to the correct number of red balls in Bingo
Cage 2. We interpret both findings as the BLP inducing linear utility in subjects, thus
mitigating the distortion in reports introduced by risk attitudes.

An important feature of the BLP is that it theoretically provides incentives for subjects to
directly report their underlying subjective probability. This applies for subjects with
subjective expected utility representations and, under certain weak conditions, to
individuals with certain non- EU preference representations. In particular, the BLP
theoretically works for subjects that follows Rank-Dependent Utility theory.

There are several important extensions of our approach left for future work. First,
econometric techniques could be used to estimate the underlying subjective probabilities of
subjects not exposed to the BLP and compare them to the reports directly elicited from
subjects exposed to the BLP. In this manner we can say whether the BLP directly elicits
the true subjective probabilities, and not just that is elicits subjective probabilities in the
predicted direction compared to the QSR without controls for risk aversion. Second, a
natural extension of our approach would be to test if the BLP works in more general
scoring rules designed to elicit full distributions for continuous events, such as the
generalization of the QSR proposed by Mathieson and Winkler (1976). Third, the
procedures developed here can be used to test the validity of the reduction of compound

lotteries axiom defined over subjective beliefs. This important extension entails some
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subtle extensions in the experimental design, building on the design employed here.



Figure 5.6: Empirical Cumulative Distribution of Distance of Reports from 50
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Figure 5.7: Empirical Cumulative Distribution of Distance Pooling Data From All Sessions
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5.6 Appendix A. Instructions

A. Introducrory Instructions
sitb-rocl
Introductory Instructions

You are now participating in a decision-making experiment. Based on your decisions in this
experiment, you can earn money that will be paid to you in cash today. It is important that you
understand all instructions before making your choices in this experiment.

Please turn to silent, and put away, your cell phone, laptop computer, or any other device you
may have brought with you. Please do not talk with others seated nearby for the duration of the
experiment. If at any point you have a question, please raise your hand and we will answer you as
soon as possible.

The expenment consists of one decision-making task and a demographics survey. You have
already earned $7.50 for agreeing to participate in the experiment, which will be paid in cash at the
end of the session. In addition to this show-up fee, you may earn considerably more from your
choices in the decision-making task. This task and the potential earnings from it will be explained in
detail as we proceed through the session.

This experiment requires us to do some things out of your sight. However, at the end of the
experiment we will prove to you that we followed the procedures described in the mnstructions.
Additionally, we will select one of you at random solely for the purpose of verifying that the steps of
this experiment are done exactly as desciibed in the instructions. As we proceed in the experiment,
we will outline clearly the steps that this Veunfier has to venfy. In a moment we will select the Venfier
by drawing a random number and matching the outcome with the appropriate seat number. The
Verifier will be paid $25 for this job on top of the $7.50 show-up fee, and will not make any decisions
in the experiment. The Verifier will join the experimenter, observe the procedures, and confirm that
we are following the procedures explained in these instructions. The Verifier must not communicate
with anyone in the room except the experimenter. Failure to do so will result in that person losing the
promised amount, another person being chosen as Verifier, and a restart of the experiment.

Part of this experiment is to test different computer screens. Therefore, we will divide you
into two groups, and each group will be presented with a slightly different instructions and computer
screens. If you are sitting in a computer station that has an odd number on it, you are part of the Odd
group. If you are sitting i a computer station that has an even number on it, you are part of the Even

group.

Once the Venfier 1s chosen and joins the expenimenter at the front of the room, we will hand
out the rest of the instructions. We will then have one of the two groups leave the room for a few
minutes, so that an experimenter can read the instructions aloud to the remaining group and answer
any questions if necessary. Then the groups will swap places and an experimenter will read
instructions to the other group and answer any questions if necessary. There will always be some
experimenters guiding you to get in or out of the room at the right moment.



Once all nstructions are finished, and both groups are together in the room again, we will
proceed with the experiment. Please remain silent during the experiment, and simply raise your hand
if you have any question so that an experimenter will come to you.

B. Instructions jor Treatment M
2m
Your Beliefs

This is a task where you will be paid according to how accurate your beliefs are about certain
things. You will be presented with one and only one question of the type we will explain below. You
will actually get the chance to play the question presented to you, so you should think carefully about
your answer to the question.

You will make decisions about the color of a ball to be drawn from a bingo cage. This bingo
cage will contain 100 balls colored red and white. The exact mix of red and white balls will be
unknown to you, but you will receive information about the mixture. The following instructions
explain in more detail how this experiment will work.

We have selected a Verifier at random solely for the purpose of verifying that we follow the
process described in the instructions. When the time comes we will display a summary of the steps
the Verifier will have to verify. We remind you that the Verifier must not communicate with anyone
in the lab except the experimenter. Failure to do so will result in that person losing the promised
amount, another person being chosen as verifier, and a restart of the experiment.

We have two bingo cages: Bingo Cage 1 and Bingo Cage 2. We will load Bingo Cage 1 with
balls numbered 1 to 99. You will watch us do this, and be able to verify yourself that Bingo Cage 1 1s
loaded with the correct numbered balls. We will then draw a numbered ball from Bingo Cage 1.
However, the draw of a numbered ball from Bingo Cage 1 will take place behind a divider, and you
will not know the outcome of this draw until the very end of the experiment, after you have made
your decisions. Any number between 1 and 99 is equally likely.

The number on the chosen ball from Bingo Cage 1 will be used to construct Bingo Cage 2
behind the divider. The total number of balls in Bingo Cage 2 will always be 100: the number of red
balls will match the number drawn from Bingo Cage 1, and the number of white balls will be 100
minus the number of red balls. Since the actual composition of the Bingo Cage 2 will only be
revealed and verified in front of everybody at the end of the expeniment, the Verifier will confirm that
the experimenter constructs Bingo Cage 2 according to the randomly chosen numbered ball. Once
Bingo Cage 2 is constructed, the experimenter will put the chosen numbered ball in an envelope and
affix it to the front wall above the white board.

Next, Bingo Cage 2 will be covered and placed on the platform in the front of the lab. Then,
Bingo Cage 2 will be uncovered for you to see and spun for 10 turns. After this, we will again cover
Bingo Cage 2. You will then make your decisions about the number of red and white balls in Bingo
Cage 2. After you have made your choices, we will draw a ball from Bingo Cage 2 and your winnings
will depend on your choices and the outcome of this draw. Finally, the sealed envelope will be
opened and we will show the chosen numbered ball to everyone, and we will also publicly count the
number of red and white balls in Bingo Cage 2. We go through with this venfication process so that
you can believe that the experiment will take place exactly as we describe in the instructions.
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Now we will explain how you will actually make your choices. To make your choices, you
will use a computer screen like the one shown below.

What will be the color of the ping-pong ball drawn from Bingo Cage 22
LUnallocated fokens: 0
80—
40|
-
20
10
Ecmings if the balldrawn 15 Red Eamings i the ball drawn 15 Whits
80tokens 50%kene
o3y $37.50 pay $3750
= =
5 Submit your decision or continue maki
Unallocated tokens: O Submit ) -
cices

The display on your computer will be larger and easier to read. You have 2 sliders to adjust,
shown at the bottom of the screen. Each slider allows you to allocate tokens to reflect your belief
about the answer to this question. You must allocate all 100 tokens in order to submit your decision,
and we always start with 50 tokens being allocated to each slider. The dollar payoffs shown on the
screen only apply when you allocate all 100 tokens. As you allocate tokens, by adjusting sliders, the
dollar payoffs displayed on the screen will change. Your earnings are based on the payoffs that are

displayed after you have allocated all 100 tokens.
You can earn up to $50 in this task.

Where you position each slider depends on your beliefs about the color of the Ping-Pong ball
to be drawn from the bingo cage. The tokens you allocate to each bar will naturally reflect your
beliefs about the number of red and white balls in Bingo Cage 2. The bar on the left depends on your
beliefs that the ball to be drawn will be red and the bar on the right depends on your beliefs that the
ball to be drawn will be white. Each bar shows the amount of money you earn if the ball drawn from
the bingo cage is red or white.

To illustrate how you use these sliders, suppose you think there is a fair chance that there are
less red balls than white balls in Bingo Cage 2. Then you mught allocate 30 tokens to the first bar, as
shown below. Notice that the second bar will be automatically adjusted depending on the number of
tokens you allocated on the first bar. Therefore, by allocating 30 tokens to the first bar you are
allocating 70 tokens to the second. So you can see that if indeed the ball drawn 1s red you would now
earn $25.50. If the ball drawn is white instead you would earn $45.50.
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What will be the calor of the ping-pong ball drawn from Binge Cage 22

Earnings if the ball drawn is Red

0tokens
pay §25.50

Unallecated tokens: ©

Eamings if the ball drawn is White

Thtzkens
pay $43.50

Submit your decision or continue making
choices

The above pictures show someone who allocated 30 tokens to red Ping-Pong balls and 70
tokens to white Ping-Pong balls. You can adjust this as much as you want to best reflect your

personal beliefs about the composition of the bingo cage.

Your earnings depend on your reported beliefs and, of course, the ball drawn. Suppose that a
red ball was drawn from Bingo Cage 2 and you reported the beliefs shown above. You would have

earned $25.50.
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What if instead you had put all of your eggs in one basket, and allocated all 100 tokens to the

draw of a red ball? Then you would have faced the earnings outcomes shown below.

What will be the calor of the ping-pong ball drawn from Binge Cage 22
Unallocated tokens: 0
50—
a0
20
20
10—
o $0.00
Eamings if the ball dawn = Red Eamings i the ball diawn 1= Yihile
100 toiczne Diokens
pay 50 pay SO
=
i - o 3
Unallocated tokans: O Submit 3:::':1’; your decigion or continue making

]

Note the “good news” and “bad news” here. If the chosen ball is red, you can earmn the

maximum payoff, shown here as $50. But if a white ball is chosen, then you would have earned

nothing in this task.

It is up to you to balance the strength of your personal beliefs with the risk of them being wrong.
There are three important points for you to keep in mind when making your decisions:

¢  Your belief about the chances of each outcome is a personal judgment that depends
on the information you have about the different events. Remember that you will have
the chance to see Bingo Cage 2 being spun for ten turns before it is covered again. This is the
information you will have to make your choices.

¢ Depending on your choices and the ball drawn from Bingo Cage 2 you can eamn up to
$50.

*  Your choices might also depend on your willingness to take risks or to gamble. There
is no 1ight choice for everyone. For example, in a horse race you mught want to bet on the
long shot since it will bring you more money if it wins. On the other hand, you might want to
bet on the favorite since it is more likely to win something.

The decisions you make are a matter of personal choice. Please work silently, and make your
choices by thinking carefully about the task you are presented with.
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When you are happy with your decisions, you should click on the Submit button and confirm
your choices. When everyone is finished we will uncover and spin Bingo Cage 2, and pickone ball at
random in front of you. Then an experimenter will come to you and record your earnings according
to the color of the ball that was picked and the choices you made.

All payoffs are in cash, and are in addition to the $7.50 show-up fee that you receive just for
being here. The only other task today is for you to answer some demographic questions. Your
answers to those questions will not affect your payoffs.

Are there any questions?
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C. Instructions for Treatuient P

Zp
Your Beliefs

This is a task where you will be paid according to how accurate your beliefs are about certain
things. You will be presented with one and only one question of the type we will explamn below. You
will actually get the chance to play the question presented to you, so you should think carefully about
your answer to the question.

You will make decisions about the color of a ball to be drawn from a bingo cage. This bingo
cage will contain 100 balls colored red and white. The exact mix of red and white balls will be
unknown to you, but you will receive information about the mixture. The following instructions
explan i more detail how this experiment will work.

We have selected a Verifier at random solely for the purpose of verifying that we follow the
process described in the mstructions. When the time comes we will display a summary of the steps
the Verifier will have to verify. We remind you that the Verifier must not communicate with anyone
in the lab except the experimenter. Failure to do so will result in that person losing the promised
amount, another person being chosen as verifier, and a restart of the experiment.

We have two bingo cages: Bingo Cage 1 and Bingo Cage 2. We will load Bingo Cage 1 with
balls numbered 1 to 99. You will watch us do this, and be able to verify yourself that Bingo Cage 1 is
loaded with the correct numbered balls. We will then draw a numbered ball from Bingo Cage 1.
However, the draw of a numbered ball from Bingo Cage 1 will take place behind a divider, and you
will not know the outcome of this draw until the very end of the experiment, after you have made
your decisions. Any number between 1 and 99 is equally likely.

The number on the chosen ball from Bingo Cage 1 will be used to construct Bingo Cage 2
behind the divider. The total number of balls in Bingo Cage 2 will always be 100: the number of red
balls will match the number drawn from Binge Cage 1, and the number of white balls will be 100
minus the number of red balls. Since the actual composition of the Bingo Cage 2 will only be
revealed and verified in front of everybody at the end of the experiment, the Verifier will confirm that
the experimenter constructs Bingo Cage 2 according to the randomly chosen numbered ball. Once
Bingo Cage 2 1s constructed, the experimenter will put the chosen numbered ball in an envelope and
affix it to the front wall above the white board.

Next, Bingo Cage 2 will be covered and placed on the platform in the front of the lab. Then,
Bingo Cage 2 will be uncovered for you to see and spun for 10 turns. After this, we will again cover
Bingo Cage 2. You will then make your decisions about the number of red and white balls in Bingo
Cage 2. After you have made your choices, we will draw a ball from Bingo Cage 2 and your winnings
will depend on your choices and the outcome of this draw. Finally, the sealed envelope will be
opened and we will show the chosen numbered ball to everyone, and we will also publicly count the
number of red and white balls in Bingo Cage 2. We go through with this verification process so that
you can believe that the experiment will take place exactly as we describe m the instructions.
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Now we will explain how you will actually make your choices. To make your choices, you
will use a computer screen like the one shown below.

What will be the color of the ping-pong ball drawn from Bingo Cage 23
Unellocated tokens:
1004
80— 75 points 75 points
60—
a0
20+
o Foints if the ball drown is Red Foinis if the ball drawn is White
Sickens 50 iokers.
pay 73 paintz oay 75 painta
> ()
Unallocated tokens: O E f:::::: your decision or continue making

The display on your computer will be larger and easier to read. You have 2 sliders to adjust,
shown at the bottom of the screen. Each slider allows you to allocate tokens to reflect your belief
about the answer to this question. You must allocate all 100 tokens in order to submut your decision,
and we always start with 50 tokens being allocated to each slider. The point payoffs shown on the
screen only apply when you allocate all 100 tokens. As you allocate tokens, by adjusting sliders, the
point payoffs displayed on the screen will change. Your earnings are based on the payoffs that are
displayed after you have allocated all 100 tokens.

You earn points in this task. Every point that you earn gives you a greater chance of being
pad $50. To be paid for this task you will roll two 10-sided dice, with every outcome between 1 and
100 equally likely. If you roll a number that is less than or equal to your earned points, you earn $50;
otherwise you earn $0.

Where you position each shider depends on your beliefs about the color of the Ping-Pong ball
to be drawn from the bingo cage. The tokens you allocate to each bar will naturally reflect your
beliefs about the number of red and white balls in Bingo Cage 2. The bar on the left depends on your
beliefs that the ball to be drawn will be red and the bar on the nght depends on your beliefs that the
ball to be drawn will be white. Each bar shows the amount of points you earn if the ball drawn from
the bingo cage is red or white.

To illustrate how you use these sliders, suppose you think there is a fair chance that there are

less red balls than white balls in Bingo Cage 2. Then you might allocate 30 tokens to the first bar, as
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shown below. Notice that the second bar will be automatically adjusted depending on the number of
tokens you allocated on the first bar. Therefore, by allocating 30 tokens to the first bar you are
allocating 70 tokens to the second. So you can see that if indeed the ball drawn is red you would now
earn 51 points. If the ball drawn is white instead you would earn 91 points.

What will be the color of the ping-pong ball drawn from Bingo Cage 22
Unallocated tokens: 0
100—
91 porte
a0
50— .
51 points
40
20
Paints if the ball drown is Red Puirts if the ball drawn is Whits
Wtokens T0terens
pay b1 painte pay 81 porte
()
=
Submit your decision or cantinue maki
Unallocated tokens: O Submit choices 4 i

The above pictures show someone who allocated 30 tokens to red Ping-Pong balls and 70
tokens to white Ping-Pong balls. You can adjust this as much as you want to best reflect your
personal beliefs about the composition of the bingo cage.

For instance, suppose you allocated your tokens as in the figure shown above. If a red
ball is drawn from Bingo Cage 2, then you would earn 51 points. Then suppose that you rolled a 40
with the two 10-sided dice. In this case, you would be paid $50 since your dice roll is less than or
equal to your earned points. However, if your dice roll was some number greater than 51, say 60, you
earn $0. If you earn 100 points then you will earn $50 for sure, since every outcome of your dice roll
would result in a number less than or equal to 100.

If you do not earn $50 you receive nothing from this task, but of course get to keep
your show-up fee. Again, the more points you earn in the correct bar the greater your chance of
getting $50 in this task.

What if instead you had put all of your eggs in one basket, and allocated all 100 tokens to the

draw of a red ball? Then you would have faced the earnings outcomes shown below.
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What will be the color of the ping-peng ball drawn frem Binge Cage 22
Unallocated fokzns: 0
1004
30
50
40|
a0
. Opoints
Pomts if the ball drown 1= Red Points if the ball drown 15 White
100tckenz Otckens
pay 100 points. pay poits
==
=
y Submit your decisien or continue maki
Urallocated tokens: 0 Submit chaices v =

Note the “good news” and “bad news” here. If the chosen ball 1s red, you can earn the
maximum payoff, shown here as 100 points. But if a white ball is chosen, then you would have

earned nothing in this task.

It is up to you to balance the strength of your personal beliefs with the risk of them being wrong.
There are three important points for you to keep in mind when making your decisions:

*  Your belief about the chances of each outcome is a personal judgment that depends
on the information you have about the different events. Remember that you will have
the chance to see Bingo Cage 2 being spun for ten turns before it is covered again. This is the
information you will have to make your choices.

¢ Depending on your choices and the ball drawn from Bingo Cage 2 you can only earn
either $50 or $0.

* More points increase your chance of being paid $50. The points you earn will be
compared with the outcome of the roll of the two 10-sided dice to determine whether you

win $50 or $0.

The decisions you make are a matter of personal choice. Please work silently, and make your

choices by thinking carefully about the task you are presented with.

When you are happy with your decisions, you should click on the Submit button and confirm
your choices. When everyone is finished we will uncover and spin Bingo Cage 2, and pick one ball at
random in front of you. Then an experimenter will come to you and record your earnings according

to the color of the ball that was picked and the choices you made.
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All payoffs are in cash, and are in addition to the $7.50 show-up fee that you receive just for
being here. The only other task today is for you to answer some demographic questions. Your
answers to those questions will not affect your payoffs.

Are there any questions?
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